Ab initio computation of the proton-neutron mass difference

Sz. Borsanyi, S. Dürr, Z. Fodor, Christian Hoelbling, S. Katz, S. Krieg, L. Lellouch, T. Lippert, A. Portelli, K. Szabo, B. Toth

Budapest-Marseille-Wuppertal collaboration

Science 347 (2015) 1452 [arXiv:1406.4088]

State of the art 2008

THE LIGHT HADRON SPECTRUM

Lattice QCD

IS THE FINE STRUCTURE RELEVANT?

Christian Hoelbling (Wuppertal)

- Proton, neutron: 3 quarks
- Proton: uud
- Neutron: udd

- *m_u*<*m_d*:*M_p* < *M_n m_u*=*m_d*:*M_p* > *M_n* Proton decays
- $M_p + M_{e^-} \gtrsim M_n$ No hydrogen

IS THE FINE STRUCTURE RELEVANT?

- Proton, neutron: 3 quarks
- Proton: uud
- Neutron: udd

- $m_u < m_d : M_p < M_n$
- *m_u=m_d:M_p > M_n* Proton decays
- $M_p + M_{e^-} \gtrsim M_n$ No hydrogen

IS THE FINE STRUCTURE RELEVANT?

- Proton, neutron: 3 quarks
- Proton: uud
- Neutron: udd

- $m_u < m_d : M_p < M_n$
- $m_u = m_d : M_p > M_n$ Proton decays

M_p + *M<sub>e[−]* ≳ *M_n* No hydrogen
</sub>

IS THE FINE STRUCTURE RELEVANT?

- Proton, neutron: 3 quarks
- Proton: uud
- Neutron: udd

- *m_u*<*m_d*:*M_p* < *M_n m_u*=*m_d*:*M_p* > *M_n* Proton decays
- $M_p + M_{e^-} \gtrsim M_n$ No hydrogen

3/39

MOTIVATION W

Where to go from here?

4/39

ANTHROPIC PUZZLE? THE LIGHT UP QUARK

Isopspin effects

SOURCES OF ISOSPIN SPLITTING

• Two sources of isospin breaking:

- QCD: $\sim \frac{m_d m_u}{\Lambda_{\text{OCD}}} \sim 1\%$
- QED: $\sim \alpha (Q_u Q_d)^2 \sim 1\%$
- On the lattice:
 - Include nondegenerate light quarks $m_u \neq m_d$
 - Include QED

CHALLENGES OF QED SIMULATIONS

- Effective theory only (UV completion unclear)
- π^+ , *p*, etc. no more gauge invariant
- QED (additive) mass renormalization
- Power law FV effects (soft photons)

Zero mode of gauge potential unconstrained by action

						÷		÷	¥		÷		÷	÷			÷	÷	
	÷	÷	÷		÷	÷		÷	¥	Å.	÷		÷	÷		÷	÷	÷	
÷	÷	÷	÷	÷	÷	÷	÷	÷	¥		÷		÷	÷	÷	÷	÷	÷	
	÷	÷	÷	÷	÷	1		÷	Ą.		÷		÷	÷	÷	÷	÷	÷	
•	1	1	۰.	۰.	۰.	۰.		÷	÷	4	÷		1	1	1	1	1	1	-
•	1	۰.	۰.	۰.	۰.	۰.		÷	÷	4	÷		1	1	1	1	1	1	-
•	1	۰.	۰.	۰.	۰.	۰.		÷	÷	4	÷		1	1	1	1	1	1	-
1	1	1	1	1	1	1	1	÷	Ť	4	÷	1	1	1	1	1	1	1	÷.,
1	1	1	1	1	1	1		÷	Ť	4	٠		1	1	1	1	1	1	
1	1	1	1	1	1	1		÷	Ť	4	٠		1	1	1	1	1	1	
1	1	1	1	1	1	1		÷	Ť	4	٠		1	1	1	1	1	1	
1	1	1	1	1	1	1	1	÷	Ť	1	÷	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	÷	Ť	1	٠	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	÷	Ť	1	٠	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	÷	Ť	1	٠	1	1	1	1	1	1	1	÷.,
1	1	1	1	1	1	1	1	t.	7	1	t.	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	t.	7	1	t.	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	÷.	1	1	t.	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	÷.	1	1	t.	1	1	1	1	1	1	1	1
1	1	1	1			۰.	۰.	٠	Ť	1	۰.								

Remove $\vec{p} = 0$ modes in fixed gauge(Hayakawa, Uno, 2008)

QED ACTION

QED is an Abelian gauge theory with no self-interaction

- Compactifying QED induces spurious self-interaction
- → Keep it non-compact (no problem with topology in 4D-U(1))
- Need signals for gauge dependent objects
- ➤ insert gauge links or gauge fixing

$$S_{\text{QED}} = rac{1}{2V_4} \sum_{\mu,k} |\hat{k}|^2 |A_{\mu}^k|^2 \quad \text{with} \quad \hat{k_{\mu}} = rac{e^{iak_{\mu}} - 1}{ia}$$

FINITE VOLUME GAUGE SYMMETRY

• Periodicity requirement from gauge field

$$A_{\mu}(x) \rightarrow A_{\mu}(x) + rac{1}{e} \partial_{\mu} \Lambda(x) \implies \partial_{\mu} \Lambda(x) = \partial_{\mu} \Lambda(x+L)$$

• is loser than from fermion field

$$\psi(x) \to e^{-i\Lambda(x)}\psi(x), \quad \bar{\psi}(x) \to \psi(x)e^{i\Lambda(x)} \implies \Lambda(x) = \Lambda(x+L)$$

• Fermionic action not invariant under GT

$$\Lambda(\mathbf{x}) = \mathbf{c}_{\mu} \mathbf{x}^{\mu} \implies \delta \mathcal{L} = i \bar{\psi} (\gamma^{\mu} \partial_{\mu} \Lambda) \psi = i \mathbf{c}_{\mu} \bar{\psi} \gamma^{\mu} \psi$$

Add source term to action to restore gauge invariance

$$\mathcal{L}_{ ext{src}} = oldsymbol{J}_{\mu} ar{\psi} \gamma^{\mu} \psi \qquad oldsymbol{J}_{\mu} o oldsymbol{J}_{\mu} - oldsymbol{i} oldsymbol{\mathcal{C}}_{\mu}$$

QED IN FINITE VOLUME

• Gauge invariant definition of no external source:

$$\frac{e}{V_4}\int d^4x A_\mu(x) + i J_\mu = 0$$

with partial gauge fixing $J_{\mu} = 0 \rightarrow \mathsf{QED}_{\mathsf{TL}}$

• Imposing electric flux neutrality per timeslice:

$$\frac{e}{V_3}\int d^3x A_i(t,\vec{x})=\mathbf{0}$$

with partial gauge fixing $A_0(t, \vec{p} = 0) = 0 \rightarrow \text{QED}_L$

MOMENTUM SUBTRACTION

- Removing momentum modes with measure 0 as $V \to \infty$ allowed
- Remove k = 0 from momentum sum (*QED_{TL}*)
 - Realised by a constraint term in the action

$$\lim_{\xi\to 0}\frac{1}{\xi}\left(\int d^4x A_{\mu}(x)\right)^2$$

- Couples all times → no transfer matrix!
- Remove $\vec{k} = 0$ from momentum sum (*QED_L*)
 - Realised by a constraint term in the action

$$\lim_{\xi(t)\to 0}\int dt \frac{1}{\xi(t)} \left(\int d^3 x A_{\mu}(x)\right)^2$$

- Transfer matrix exists
- Gauge fields unaffected in QED_{TL}, only Polyakov loops

MOMENTUM SUBTRACTION

- Removing momentum modes with measure 0 as $V \to \infty$ allowed
- Remove k = 0 from momentum sum (*QED_{TL}*)
 - Realised by a constraint term in the action

$$\lim_{\xi\to 0}\frac{1}{\xi}\left(\int d^4x A_{\mu}(x)\right)^2$$

- Couples all times → no transfer matrix!
- Remove $\vec{k} = 0$ from momentum sum (*QED_L*)
 - Realised by a constraint term in the action

$$\lim_{\xi(t)\to 0}\int dt \frac{1}{\xi(t)} \left(\int d^3 x A_{\mu}(x)\right)^2$$

- Transfer matrix exists
- Gauge fields unaffected in QED_{TL}, only Polyakov loops

MOMENTUM SUBTRACTION

- Removing momentum modes with measure 0 as $V \to \infty$ allowed
- Remove k = 0 from momentum sum (*QED_{TL}*)
 - Realised by a constraint term in the action

$$\lim_{\xi\to 0}\frac{1}{\xi}\left(\int d^4x A_{\mu}(x)\right)^2$$

- Couples all times → no transfer matrix!
- Remove $\vec{k} = 0$ from momentum sum (*QED_L*)
 - Realised by a constraint term in the action

$$\lim_{\xi(t)\to 0}\int dt \frac{1}{\xi(t)} \left(\int d^3 x A_{\mu}(x)\right)^2$$

- Transfer matrix exists
- Gauge fields unaffected in QED_{TL}, only Polyakov loops

QUENCHED QED FV EFFECTS

FINITE VOLUME SUBTRACTION

- Universal to $O(1/L^2)$
- Compositmess at 1/L³
- Fit $O(1/L^3)$
- Divergent T dependence for p = 0 mode subtraction
- No *T* dependence for $\vec{p} = 0$ mode subtraction

$$\delta m = q^2 \alpha \left(\frac{\kappa}{2mL} \left(1 + \frac{2}{mL} - \frac{3\pi}{(mL)^3} \right) \right)$$

(BMWc, 2014)

QED in finite volume

KAON FV IN QCD+QED

Setup

QED in finite volume

BARYON FV IN QCD+QED

Christian Hoelbling (Wuppertal)

Lattice QCD

UV FILTERING

Moderate smearing (1 stout) improves scaling dramatically

UPDATING PHOTON FIELD

Long range QED interaction → huge autocorrelation in standard HMC
 Solution: HMC in momentum space

$$\mathcal{H} = rac{1}{2V_4}\sum_{\mu,k}\left(|\hat{k}|^2|\mathcal{A}^k_\mu|^2 + rac{|\Pi^k_\mu|^2}{m_k}
ight)$$

• Use different masses per momentum

$$m_k = \frac{4|\hat{k}|^2}{\pi^2}$$

- Zero mode subtraction trivial
- Coupling to quarks in coordinate space → FFT in every step

Setup Phot

Photon field update

HMC FOR PHOTON FIELDS

Setup

Photon field update

NO EXCEPTIONAL CONFIGURATIONS

Christian Hoelbling (Wuppertal)

IDENTIFYING THE PHYSICAL POINT

We need to fix 6 parameters: m_u , m_d , m_s , m_c , α_s and α

- Requires fixing 5 dimensionless ratios from 6 lattice observables
- 4 "canonical" lattice observables: $M_{\pi^{\pm}}$, M_{K^+} , M_{Ω} , M_D
- Strong isospin splitting from $M_{K^{\pm}} M_{K^{0}}$

• what about α ?

- ★ From $M_{\pi^{\pm}} M_{\pi^0}$ → disconnected diagrams, very noisy
- X From $e^- e^-$ scattering \rightarrow far too low energy
- **X** From $M_{Σ^+} M_{Σ^-}$ → baryon has inferior precision
- ✓ Take renormalized α as input directly
- Use the QED gradient flow Analytic tree level correction

$$\langle F_{\mu\nu}F_{\mu\nu}\rangle = rac{6}{V_4}\sum_k e^{-2|\hat{k}|^2 t}$$

Slightly more complicated for clover plaquette

TREE LEVEL CORRECTION

Christian Hoelbling (Wuppertal)

Lattice QCD

Benasque 2015 20 / 39

EFFECT OF TREE LEVEL CORRECTION

Christian Hoelbling (Wuppertal)

SCALING IN RENORMALISED COUPLING

PLATEAUX

Determining fit ranges

PLATEAUX RANGE

LANDSCAPE

- Hadron masses are even in *e*, so signal $\propto e^2$
- Per configuration fluctuations are not even in e, so noise $\propto e$
- Per configuration cancellation helps in qQED, but not dynamically

SCALING

SCALING

Christian Hoelbling (Wuppertal)

Analysis Simulation parameters

DONT DO THIS STAGGERED

SYSTEMATIC ERROR TREATMENT

One conservative strategy for systematics:

- Identify all higher order effects you have to neglect
- For each of them:
 - Repeat the entire analysis treating this one effect differently
 - Add the spread of results to systematics
- Important:
 - Do not do suboptimal analyses
 - Do not double-count analyses
- Error sources considered:
 - Plateaux range
 - M_{π} , M_{K} , M_{D} , ΔM_{K}^{2} and α interpolations
 - Higher order FV effects
 - Continuum extrapolation

COMBINING RESULTS

How to determine the spread of results?

- Stdev or 1σ confidence interval of results
- Can weight it with fit quality Q

Information theoretic optimum: Akaike Information Criterion

- Information content of a fit depends on how well data are described per fit parameter
- Information lost wrt. correct fit \propto cross-entropy J
- Compute information cross-entropy J_m of each fit m
- Probability that fit is correct $\propto e^{J_m}$

AKAIKE INFORMATION CRITERION

- *N* measurments Γ_i from unknown pdf $g(\Gamma)$
- Fit model $f(\Gamma | \Theta)$ with parameters Θ
- Cross-entropy (~ Kullback-Leibler divergence)

$$J_m = J(g, f_m[\Theta]) = \int d\Gamma g(\Gamma) \ln(f(\Gamma|\Theta))$$

• For $N \to \infty$ and f close to g:

$$J_m = -\frac{\chi_m^2}{2} - p_m$$

where p_m is the number of fit parameters Is this the only correct method? Analysis

Systematic errors

COMBINING RESULTS

 AIC suppresses strongly

- Other weights
 more
 concentrative
 - conservative
- Agreement is excellent crosscheck

COMBINING RESULTS

- AIC suppresses strongly
- Other weights
 more
 conservative
- Agreement is
 excellent
 - crosscheck

COMBINING RESULTS

Christian Hoelbling (Wuppertal)

Lattice QCD

ISOSPIN SPLITTING

(BMWc 2014)

DISENTANGLING CONTRIBUTIONS

Problem:

• Disentangle QCD and QED contributions

- Not unique, $O(\alpha^2)$ ambiguities
- Flavor singlet (e.g. π^0) difficult (disconnected diagrams)

Method:

- Use baryonic splitting Σ^+ - Σ^- purely QCD
 - Only physical particles
 - Exactly correct for pointlike particle
 - Corrections below the statistical error

ISOSPIN SPLITTINGS NUMERICAL VALUES

	splitting [MeV]	QCD [MeV]	QED [MeV]
∆N=n-p	1.51(16)(23)	2.52(17)(24)	-1.00(07)(14)
$\Delta \Sigma = \Sigma^{-} - \Sigma^{+}$	8.09(16)(11)	8.09(16)(11)	0
$\Delta \Xi = \Xi^{-} - \Xi^{0}$	6.66(11)(09)	5.53(17)(17)	1.14(16)(09)
$\Delta D = D^{\pm} - D^{0}$	4.68(10)(13)	2.54(08)(10)	2.14(11)(07)
$\Delta \Xi_{cc} = \Xi_{cc}^{++} - \Xi_{cc}^{+}$	2.16(11)(17)	-2.53(11)(06)	4.69(10)(17)
$\Delta_{\rm CG} = \Delta N - \Delta \Sigma + \Delta \Xi$	0.00(11)(06)	-0.00(13)(05)	0.00(06)(02)

• Quark model relation predicts Δ_{CG} to be small

(Coleman, Glashow, 1961; Zweig 1964)

 $\Delta_{\rm CG} = M(udd) + M(uus) + M(dss) - M(uud) - M(dds) - M(uss)$

 $\Delta_{\mathrm{CG}} \propto ((m_d - m_u)(m_s - m_u)(m_s - m_d), \alpha(m_s - m_d))$

NUCLEON SPLITTING QCD AND QED PARTS

Christian Hoelbling (Wuppertal)

Conclusion

PROGRESS

Christian Hoelbling (Wuppertal)