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1. Introduction

Symmetries of QCD at high temperature

Restoration of non-singlet chiral symmetry

Theoretical questions

2. Eigenvalue distribution of Dirac operator 

1. U(1)_A symmetry at high T ?

relation ?

U(1)B � SU(Nf)L � SU(Nf )R

�(�) �: eigenvalue of Dirac operator



Eigenvalue density

Banks-Casher relation
if chiral symmetry is restored.
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Anomalous U(1)A symmetry is fully restored.If �(�) has a gap
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gap

(See later.)



Susceptibility

σ meson: 1 ⊗ 1 π meson: γ5 ⊗ τa

δ meson: 1 ⊗ τaη meson: γ5 ⊗ 1

chiral SU(2)

chiral SU(2)
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U(1)A susceptibilities

���� � �� � ������ � �� � ������ � �� � ��

If U(1)A is recovered, ���� = ���� = ���� = 0.

Nf = 2



2. Previous Theoretical Investigation

S.A, H. Fukaya, Y. Taniguchi,
 “Chiral symmetry restoration, eigenvalue density of Dirac operator and axial 

U(1) anomaly at finite temperature”, 
Phys. Rev D86(2012)114512.



Set up

Lattice regularization with Overlap fermion, 2-flavor

Eigenvalue spectrum �A
n + �̄A

n = aR�̄A
n �A

n

h

1/Ra 2/Ra

0

−1/Ra
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x

y

zero modes(chiral) doublers(chiral)

Exact “chiral” symmetry but explicit U(1)_A anomaly form Ginsparg-Wilson relation

2 Overlap fermions

The argument is the previous section is ”formal”, since an existence of U(1)A

anomaly is not explicitly taken into account there. It is therefore interesting and
important to extend the argument to the case of overlap fermions.

2.1 Chiral symmetry W-T identities

We first consider the W-T identities for the overlap fermion under chiral symmetry,
which is compactly written as

⟨(Ja
x − δa

xS)O + δa
xO⟩ = 0 (58)

where δa
x is the local chiral rotation, Ja

x is the corresponding contribution from the
measure term, O is an arbitrary operator, and the action is given by

S = ψ̄Dψ − m

∫
d4x ψ̄F (D)ψ. (59)

Here the overlap Dirac operator D satisfies the GW relation that

Dγ5 + γ5D = aDRγ5D (60)

and F (D) = 1 − R

2
aD. Since the total derivative term in δS vanishes after x

integration as
∫

d4x ∂µJa
µ = 0, we obtain

∫
d4x⟨{Ja

x + 2mP a(x)}O + δa
xO⟩ = 0. (61)

This is the master equation in this section. Here scalar and pseudo-scalar operators
are defined by

Sa(x) = ψ̄(x)T aF (D)ψ(x), (62)
P a(x) = ψ̄(x)T aiγ5F (D)ψ(x), (63)

which are transformed as

δbSa(x) = 2dab
c P c(x), (δ0Sa(x) = 2P a(x) = δaS0(x)) (64)

δbP a(x) = −2dab
c Sc(x), (δ0P a(x) = −2Sa(x) = δaP 0(x)) (65)

under the global chiral transformation δa =
∫

d4x δa
x, where

{
T a, T b

}
= 2dab

c T c.
In this note, the infinitesimal ”chiral” transformation for the overlap fermion is

defined by

θa(x)δa
xψ(x) = iθa(x)T aγ5(1 − RaD)ψ(x), (66)

θa(x)δa
xψ̄(x) = iψ̄(x)θa(x)T aγ5, (67)

for the infinitesimal parameter θa(x), under which the measure term is given by

Ja
x = −2itr T aγ5

(
1 − R

2
aD

)
(x, x) = −δa02iNf tr γ5

(
1 − R

2
aD

)
(x, x).(68)

where the minus sign comes from the fact that ψ and ψ̄ are Grassmann numbers.
For O = Sa(y)P a(z) and δb = δ0, we obtain the anomalous WT identity,
〈∫

d4x {J0
x + 2mP 0}Sa(y)P a(z) + 2P a(y)P a(z) − 2Sa(y)Sa(z)

〉
= 0, (69)
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A: gauge configuration

D(A)�A
n = �A

n �A
n D(A)�5�

A
n = �̄A

n �5�
A
n

complex pair



Propagator

Measure

zero modes(chiral) doublers(chiral)bulk modes(non-chiral)
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positive definite and even function of m �= 0 for even Nf

N_f=2 in this talk.
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Chiral symmetry is restored

lim
m�0

��aOn1,n2,n3,n4�m = 0

On1,n2,n3,n4 = (P a)n1(Sa)n2(P 0)n3(S0)n4 Sa =
�

d4xSa(x), P a =
�

d4xP a(x)

scalar pseudo-scalar

chiral rotation at N_f=2 �aSb = 2�abP 0, �aP b = �2�abS0

�aS0 = 2P a, �aP 0 = �2Sa



Some assumptions 

non-singlet chiral symmetry is restored.Assumption 1

Assumption 2 if O(A) is m-independent

�O(A)�m = f(m2) f(x) is analytic at x = 0

Note that this does not hold if the chiral symmetry is spontaneously broken.

Ex. lim
V��

1
V

�Q(A)2�m = m
�
Nf

+ O(m2)

topological charge

A: gauge configuration
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Assumption 3 eigenvalues density can be expanded as

More precisely, configurations whose eigenvalue density can not be 
expanded at the origin are “measure zero” in the configuration space. 

=
��

n=0

�A
n

�n

n! at � = 0 (� < � )

At finite lattice spacing, integrals over all eigenvalues are convergent, since  

|�| � 2
Ra



Analysis (some examples)
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m�0
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3.3 Constraints at N = 2

We consider the (non-singlet) chiral susceptibilities defined by

χσ−π =
1

V 2
⟨S2

0 − P 2
a ⟩m, χη−δ =

1
V
⟨P 2

0 − S2
a⟩m. (3.20)

For χσ−π, a term with two traces is dominate in the large volume limit. We therefore
obtain

χσ−π =
〈
N2

f

(
1

mV
NR+L + I1

)2〉

m
+ O

(
1
V

)
. (3.21)

Again positivity implies

lim
m→0

lim
V →∞

1
m2V 2

⟨(NA
R+L)2⟩m = lim

m→0
lim

V →∞

1
mV

⟨NA
R+L ρ

A
0 ⟩m = lim

m→0
⟨(ρA

0 )2⟩m = 0.(3.22)

The last two conditions are automatically satisfied since ⟨ρA
0 ⟩m ∝ m2 and ρA

0 is m inde-
pendent. The first condition gives

lim
V →∞

1
V 2

⟨(NA
R+L)2⟩m = O(m4). (3.23)

Since NA
R+L does not depend on quark mass m, we conclude

lim
V →∞

1
V
⟨NA

R+L⟩m = m4N̄2 + O(m6), (3.24)

which means that N̄1 = 0.
We next consider χη−δ, which becomes

χη−δ = Nf

〈
1

m2V
{2NR+L − NfQ(A)2} +

1
Zm

(
I1

mR
+ I2

)〉

m

(3.25)

where, Q(A) = NA
R − NA

L ,

I2 =
2

Zm

∫ ΛR

0
dλ ρA(λ)

m2
R − λ2g0(λ2)gm

(λ2 + m2
R)2

, gm =
1

Z2
m

(
1 +

m2

2Λ2
R

)
. (3.26)

Since, in the m → 0 limit, we have

I1

mR
+ I2 = ρA

0

(
πm

m
+

2
ΛR

)
+ 2ρA

1 + O(m), (3.27)

in addition to ⟨NR+L⟩m = O(m4V ) and ⟨ρA
0 ⟩m = O(m2), the condition that limm→0 χη−δ =

0 gives

lim
m→0

N2
f ⟨Q(A)2⟩m

m2V
= 2 lim

m→0
⟨ρA

1 ⟩m ≡ 2ρ̄1. (3.28)

– 7 –
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topological charge
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��A
0 �m = O(m2)

repeat these analysis for higher susceptibilities.

from others



Final Results

lim
m�0

��A(�)�m = lim
m�0

��A
3 �m

|�|3

3!
+ O(�4)

No constraints to higher ��A
n �m

��A
3 �m �= 0 even for ”free” theory.

We think that we can not prove ⟨ρA
3 ⟩0 = 0 in general since ⟨ρA

3 ⟩0 ̸= 0 for the free theory.
Note here that the density of eigenvalues is always defined in the V → ∞ limit.

For discrete zero modes, we have

lim
V →∞

1
V k

⟨(NA
R+L)k⟩m = 0, lim

V →∞

1
V k

⟨Q(A)2k⟩m = 0 (3.83)

for an arbitrary positive integer k even at a small but non-zero m.

4. Singlet susceptibilities

In this section, we consider possible constraints to singlet susceptibilities using constraints
obtained in the previous section. It seems that singlet susceptibilities at odd N automat-
ically vanish. We explicitly check this property at N = 1, 3, 5. See appendix B for more
general cases. We therefore consider even N here.

4.1 N = 2 case

At N = 2 a nontrivial singlet susceptibility is given by

χπ−η =
1
V
⟨P 2

a − P 2
0 ⟩m = lim

V →∞

N2
f

m2V
⟨Q(A)2⟩m = 0. (4.1)

Therefore the singlet susceptibility vanishes at this order.

4.2 N=4

From Appendix B, there are two non-trivial susceptibilities at N = 4 , which is given by

χ6 = ⟨O0022 −O2002⟩m, χ7 = ⟨O0022 −O0220⟩m (4.2)

See Appendix B. Since we can neglect NA
R+L/V and Q(A)2/V terms in the large N limit,

we have

lim
m→0

lim
V →∞

χ6

V 3
= − lim

m→0
lim

V →∞
N3

f

〈
NfQ(A)2

m2V

(
NA

R+L

mV
+ I1

)2〉

m

= 0, (4.3)

lim
m→0

lim
V →∞

χ7

V 3
= lim

m→0
lim

V →∞

N3
f

m

〈(
NA

R+L

mV
+ I1

)2 (
NA

R+L

mV
+ I1 −

NfQ(A)2

mV

)〉

m

= lim
m→0

N3
f

m

〈
I3
1

〉
m

. (4.4)

The second term also vanishes as

⟨I3
1 ⟩m = ⟨

(
πρA

1 + O(m)
)3⟩m = O(m3). (4.5)

We therefore conclude that leading order contributions in V for the singlet susceptibilities
vanish also at N = 4.

– 15 –

��A
0 �m = 0



Consequences

Singlet susceptibility at high T

This, however, does not mean U(1)_A symmetry is recovered at high T.

is necessary but NOT “sufficient” for the recovery of U(1)_A .

lim
m�0

���� = 0

lim
V�0

���� = lim
m�0

lim
V��

N2
f

m2V
�Q(A)2�m = 0

”m� = m�”



More general Singlet WT identities

�J0O + �0O�m = O(m)
anomaly(measure) singlet rotation

We can show for

where k is the smallest integer which makes the V �� limit finite.

lim
m�0

lim
V��

1
V k

��0O�m = 0

On1,n2,n3,n4 = (P a)n1(Sa)n2(P 0)n3(S0)n4O =

lim
V��

1
V k

�J0O�m = lim
V��

�
Q(A)2

mV
� O(V 0)

�

m

= 0

Breaking of U(1)_A symmetry is invisible for these “bulk quantities”.

S0 � O(V ), P a, Sa, P 0 � O(V 1/2)

SU(2)L � SU(2)R � Z4



Remarks
Important conditions

Large volume limit 

chiral limit 

lattice chiral symmetry

m� 0

V ��

Ginsparg-Wilson relation

2 Overlap fermions

The argument is the previous section is ”formal”, since an existence of U(1)A

anomaly is not explicitly taken into account there. It is therefore interesting and
important to extend the argument to the case of overlap fermions.

2.1 Chiral symmetry W-T identities

We first consider the W-T identities for the overlap fermion under chiral symmetry,
which is compactly written as

⟨(Ja
x − δa

xS)O + δa
xO⟩ = 0 (58)

where δa
x is the local chiral rotation, Ja

x is the corresponding contribution from the
measure term, O is an arbitrary operator, and the action is given by

S = ψ̄Dψ − m

∫
d4x ψ̄F (D)ψ. (59)

Here the overlap Dirac operator D satisfies the GW relation that

Dγ5 + γ5D = aDRγ5D (60)

and F (D) = 1 − R

2
aD. Since the total derivative term in δS vanishes after x

integration as
∫

d4x ∂µJa
µ = 0, we obtain

∫
d4x⟨{Ja

x + 2mP a(x)}O + δa
xO⟩ = 0. (61)

This is the master equation in this section. Here scalar and pseudo-scalar operators
are defined by

Sa(x) = ψ̄(x)T aF (D)ψ(x), (62)
P a(x) = ψ̄(x)T aiγ5F (D)ψ(x), (63)

which are transformed as

δbSa(x) = 2dab
c P c(x), (δ0Sa(x) = 2P a(x) = δaS0(x)) (64)

δbP a(x) = −2dab
c Sc(x), (δ0P a(x) = −2Sa(x) = δaP 0(x)) (65)

under the global chiral transformation δa =
∫

d4x δa
x, where

{
T a, T b

}
= 2dab

c T c.
In this note, the infinitesimal ”chiral” transformation for the overlap fermion is

defined by

θa(x)δa
xψ(x) = iθa(x)T aγ5(1 − RaD)ψ(x), (66)

θa(x)δa
xψ̄(x) = iψ̄(x)θa(x)T aγ5, (67)

for the infinitesimal parameter θa(x), under which the measure term is given by

Ja
x = −2itr T aγ5

(
1 − R

2
aD

)
(x, x) = −δa02iNf tr γ5

(
1 − R

2
aD

)
(x, x).(68)

where the minus sign comes from the fact that ψ and ψ̄ are Grassmann numbers.
For O = Sa(y)P a(z) and δb = δ0, we obtain the anomalous WT identity,
〈∫

d4x {J0
x + 2mP 0}Sa(y)P a(z) + 2P a(y)P a(z) − 2Sa(y)Sa(z)

〉
= 0, (69)

6

Fractional power for the eigenvalue density

�A(�) � cA�� , � > 0 non-singlet chiral symmetry is recovered.

� � 2 is excluded. � > 2

consistent with the integer case (n > 2)



3. Recent Numerical Results

A. Tomiya et al. (JLQCD), Lat2015
G. Cossu et al. (JLQCD), Lat2015



Eigenvalue densities
�(�) = lim

V��

1
V

�

n

�(�� �n)

FIG. 5: Spectral density of the massless overlap-Dirac operator in two-flavor QCD. Top and

bottom panels are the data clearly below and above the critical temperature, respectively. The

middle panel corresponds to those around the transition point. The jackknife errors are shown for

each bin of the histogram. When the histogram is terminated at the lower end, it implies that we

find no eigenmode below that value. The statistical error in that case is also zero, because we use

the jackknife method. The lighter the color the lighter the mass.

argument about the power α and the point where gap opens would not be possible with the

currently available data. There is even a possibility that the gap develops right above the

critical point. Much more extensive data at several quark masses and volumes would be

necessary for a definite conclusion on this point.
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Cossu et al. (JLQCD), Overlap
Phys. Rev. D87 (2013) 114514 

Gap seems to open at 
smaller quark mass.

Tc � 180 MeV
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FIG. 7. The eigenvalue spectrum for T = 149−195 MeV, expressed in the MS scheme at the

scale µ = 2 GeV. The imaginary, “unphysical” eigenvalues are plotted as −
√
|Λ2 − m̃2

l |.

The spectra from the 323 × 8 ensembles are plotted as histograms and fit with a linear

(T = 149 − 178 MeV) or a quadratic (T = 186 − 195 MeV) function (blue dashed line).

The spectrum from each of the 163 × 8 ensembles [7] is plotted as a black solid line.
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Gap seems to close at or above critical 
temperature

Small eigenvalues appear.

Tc � 180 MeV
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FIG. 8. (Left to right) The renormalized eigenvalue spectrum for T = 177 � 195 MeV

without the removal of the bare quark mass. The statistics are likely insu�cient for 186

MeV on the 163 ⇥ 8 ensemble; only 5 instances of ”near-zero modes” are collected.

larger. Below 10 MeV the spectrum is distorted by a combination of finite volume

and residual chiral symmetry breaking e↵ects. The non-vanishing intercept, inter-

preted through the Banks-Casher relation, is consistent with the non-vanishing chiral

condensate and vacuum chiral symmetry breaking observed at these temperatures

which lie below the pseudo-critical temperature.

For T = 168 MeV, the linear behavior continues to be visible, but the intercept

has essentially vanished, suggesting that 168 MeV is close to the pseudo-critical

temperature, consistent with the temperature dependence of the SU(2)L ⇥ SU(2)R-

breaking susceptibility di↵erence �⇡ � �� shown in Fig. 4.

For T = 177 MeV, a small peak in ⇢(�) near the origin emerges as a cluster of

near-zero modes. Such a cluster of near-zero modes might result from the Atiyah-

Singer theorem and non-vanishing topological charge or from the dilute instanton gas

approximation (DIGA). As is discussed below, the volume dependence of this peak

and the distribution of the chirality of these modes is consistent with the DIGA and

inconsistent with their arising from non-zero global topology. This small eigenvalue

region can be best seen in the expanded view given in Fig. 8.
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8

Group Fermion Size Gap in the 
spectrum

UA(1)
Correlator

U(1)A  

JLQCD
(2013)

Overlap
(Top. fixed) 2 fm Gap Degenerate Restored

TWQCD
(2013)

Optimal 
domain-wall 3 fm No gap Degenerate Restored

LLNL/RBC,
Hot QCD

(2013,2014)

(Möbius)-
Domain-wall

(W/ ov)
2, 4, 
11 fm No gap No 

degeneracy Violated

Viktor Dick et 
al

(2015)

OV on HISQ 
sea 3, 4 fm No gap No 

degeneracy Violated

Even DW-type quarks do not agree...
Akio Tomiya(Osaka Univ.)

Why ?
Fermion(Chiral sym.), Volumes or Topology ?

T & Tc

Summary of recent results from chiral fermions.



What causes this difference ?

volume ? quark mass ? lattice chiral symmetry ?

Overlap: exact GW relation DomainWall: approximated  GW relation
JLQCD collaboration LLNL/RBC collaborations

Recent study by A. Tomiya et al. for JLQCD collaboration

generate gauge configurations with an improved DomainWall quarks
very small violation of GW relation

(1)calculate eigenvalue distribution of overlap operator on these configurations

partially quenched 

(2)reweighting factor from the improved DW to Overlap is introduced to obtain 
the full eigenvalue distribution full Overlap

Preliminary

(0)calculate eigenvalue distribution of DW operator on these configurations

original



T=190 MeV for L=3 fm, T=1.05 Tc
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(finer lattice)
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Akio Tomiya(Osaka Univ.)

After the reweighting, small eigenvalues in PQ disappear, and the gap seems to 
open in full Overlap.

An exact lattice chiral symmetry is essential. A tiny violation of the chiral symmetry 
may destroy the theoretically expected relation.

Preliminary

A. Tomiya et al. (JLQCD), Lat2015



� := �� � ��U(1)_A susceptibility

� =
2NR+L

V m2
+

�

��=0

2m2

V (�2 + m2)2

REWEIGHT IT! (DWF TO OVERLAP)
Before After

Topology from mode countingTopology from smeared conf.

zero-modes

DomainWall reweighted Overlap

� �

G. Cossu et al. (JLQCD), Lat2015



REWEIGHTING IS CRUCIAL

Point: Reweighting is crucial
Partially quenched results show accumulation of unphysical near zero modes

� �

Partially Quenched

G. Cossu et al. (JLQCD), Lat2015

If the gap opens, the effective symmetry is

SU(2)L � SU(2)R �U(1)A



S. Sharma, V. Dick, F. Karsch, E. Laermann, S. Mukherjee, Lattice2015
Eigenvalues density of Overlap on DomainWall (partially quenched !)

Eigenvalue distribution near Tc

General features: Near zero mode peak +bulk
We fit to the ansatz: ρ(λ) = Aϵ

λ2+A
+ Bλγ

Bulk rises linearly as λ,no gap seen.
No gap even when quark mass reduced!
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From Sharma’s talk@Lat2015, 

This is an artifact due to PQ !



4. Discussion



Possible loopholes for the theoretical argument ?

Assumption 2 �O(A)�m = f(m2) f(x) is analytic at x = 0

May this be violated ?

Note that non-analyticity comes from valence quarks, not from determinant, even 
at zero temperature, where non-analyticity appears due to the spontaneous 
chiral symmetry breaking. 

What kind of physics implies non-analyticity at m=0 ?

Assumption 3 eigenvalues density can be expanded at the origin ?

Ex. claim by LLNL/RBC: accumulation of near-zero modes leads to

�(�) � cm�(�) + · · ·

��(�) � 1/L

�2 + 1/L2

�(�)

�
0

cmL

1/L
Is this possible ?

# of near zero-modes � V L = (V )5/4



Order of phase transition in 2-flavor QCD

1st or 2nd ?

Conformal bootstrap method predicts IR fixed point for these cases.

Even if the phase transition is of 2nd order, its universality class should be 
different from O(4).

density with gap

gapless density SU(2)L � SU(2)R � Z4

SU(2)L � SU(2)R �U(1)A


