

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChP⁻

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Conclusions

CHIRAL PERTURBATION AND THE LATTICE

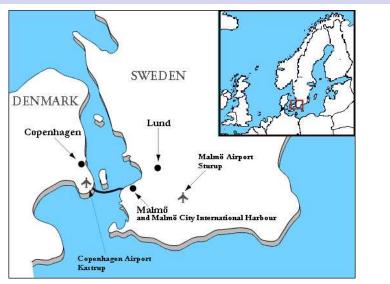
Johan Bijnens

Vetenskapsrådet

Lund University

bijnens@thep.lu.se
http://thep.lu.se/~bijnens
http://thep.lu.se/~bijnens/chpt/
http://thep.lu.se/~bijnens/chiron/

Logos Lund University



+ in Black, negative and Pantomine colour system

2/45

Where is Lund?

Lund-Benasque \approx Lund-North of Sweden

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

- Rydberg (the famous constant)
- MAX IV (Fourth generation syncrotron ring, starts 2016
- ESS European spallation source, building started, first neutrons 2019, 25 instruments ready 2025
- Tetra pak, Sony-Ericsson, Gambro, Axis
- . . .
- Chiral Perturbation Theory

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Lund is known for:

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChP1

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Overview

The three seminal ChPT papers are cited by 5472 papers (2633+3375+3225)

- Lund
- 2 Chiral Perturbation Theory
- 3 Extensions for lattice
- 4 Many LECs?
- 5 A mesonic ChPT program framework
- 6 Determination of LECs in the continuum
- 7 Charged Pion Polarizabilities
- 8 Finite volume
- Onclusions

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Chiral Perturbation Theory

Exploring the consequences of the chiral symmetry of QCD and its spontaneous breaking using effective field theory techniques

Derivation from QCD: H. Leutwyler, *On The Foundations Of Chiral Perturbation Theory*, Ann. Phys. 235 (1994) 165 [hep-ph/9311274]

For references to lectures see: http://www.thep.lu.se/~bijnens/chpt/

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Chiral Perturbation Theory

A general Effective Field Theory:

- Relevant degrees of freedom
- A powercounting principle (predictivity)
- Has a certain range of validity

Chiral Perturbation Theory:

- Degrees of freedom: Goldstone Bosons from spontaneous breaking of chiral symmetry
- Powercounting: Dimensional counting in momenta/masses
- Breakdown scale: Resonances, so about M_{ρ} .

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Chiral Perturbation Theory

A general Effective Field Theory:

- Relevant degrees of freedom
- A powercounting principle (predictivity)
- Has a certain range of validity

Chiral Perturbation Theory:

- Degrees of freedom: Goldstone Bosons from spontaneous breaking of chiral symmetry
- Powercounting: Dimensional counting in momenta/masses
- Breakdown scale: Resonances, so about M_{ρ} .

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Goldstone Bosons

Spontaneous breakdown

- $\langle \bar{q}q \rangle = \langle \bar{q}_L q_R + \bar{q}_R q_L \rangle \neq 0$
- $SU(3)_L \times SU(3)_R$ broken spontaneously to $SU(3)_V$
- 8 generators broken ⇒ 8 massless degrees of freedom and interaction vanishes at zero momentum

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

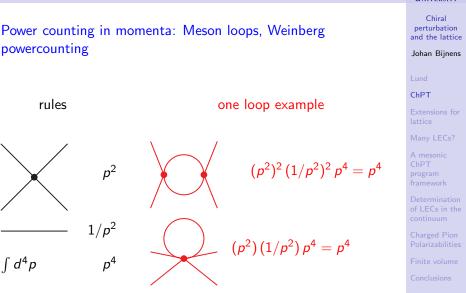
Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities


Finite volume

Goldstone Bosons

powercounting

rules

∫ d⁴p

10/45

Chiral Perturbation Theories

- Which chiral symmetry: $SU(N_f)_L \times SU(N_f)_R$, for $N_f = 2, 3, ...$ and extensions to (partially) quenched
- Or beyond QCD
- Space-time symmetry: Continuum or broken on the lattice: Wilson, staggered, mixed action
- Volume: Infinite, finite in space, finite T
- Which interactions to include beyond the strong one
- Which particles included as non Goldstone Bosons
- My general belief: if it involves soft pions (or soft K, η) some version of ChPT exists

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Lagrangians: Lowest order

 $U(\phi) = \exp(i\sqrt{2}\Phi/F_0)$ parametrizes Goldstone Bosons

$$\Phi(x) = \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} + \frac{\eta_8}{\sqrt{6}} & \pi^+ & K^+ \\ \pi^- & -\frac{\pi^0}{\sqrt{2}} + \frac{\eta_8}{\sqrt{6}} & K^0 \\ K^- & \bar{K}^0 & -\frac{2\eta_8}{\sqrt{6}} \end{pmatrix}$$

LO Lagrangian: $\mathcal{L}_2 = \frac{F_0^2}{4} \{ \langle D_\mu U^\dagger D^\mu U \rangle + \langle \chi^\dagger U + \chi U^\dagger \rangle \},$

 $D_{\mu}U = \partial_{\mu}U - ir_{\mu}U + iUl_{\mu}$, left and right external currents: $r(I)_{\mu} = v_{\mu} + (-)a_{\mu}$

Scalar and pseudoscalar external densities: $\chi = 2B_0(s + ip)$ quark masses via scalar density: $s = M + \cdots$

 $\langle A \rangle = Tr_F(A)$

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Lagrangians: Lagrangian structure (mesons, strong)

	2 flavour		3 flavour		$PQChPT/N_f$ flavour	
p^2	<i>F</i> , <i>B</i>	2	F_0, B_0	2	F_0, B_0	2
<i>p</i> ⁴	I_i^r, h_i^r	7+3	L_i^r, H_i^r	10 + 2	$\hat{L}_{i}^{r}, \hat{H}_{i}^{r}$	11+2
p^6	c_i^r	52+4	C_i^r	90+4	K _i r	112+3

- p^2 : Weinberg 1966
- p⁴: Gasser, Leutwyler 84,85
- p⁶: JB, Colangelo, Ecker 99,00

Li LEC = Low Energy Constants = ChPT parameters
 Hi: contact terms: value depends on definition of currents/densities

- Finite volume: no new LECs
- Other effects: (many) new LECs

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Mesons: which Lagrangians are known $(n_f = 3)$

					<u>.</u>	GITTEROTT
	Loops	$\mathcal{L}_{\mathrm{order}}$	LECs	effects included		Chiral
		\mathcal{L}_{p^2}	2	strong (+ external W, γ)		perturbation and the lattice
		$\mathcal{L}_{e^2p^0}$	1	internal γ		Johan Bijnens
	<i>L</i> = 0	$\mathcal{L}_{G_F p^2}^{\Delta S=1} \ \mathcal{L}_{G_8 e^2 p^0}^{\Delta S=1}$	2	nonleptonic weak		Lund
		$\mathcal{L}_{G_8 e^2 p^0}^{\Delta S=1}$	1	nonleptonic weak+internal γ		ChPT
		$\mathcal{L}^{\mathrm{odd}}_{p^4}$	0	WZW, anomaly		Extensions for lattice
		\mathcal{L}_{p^4}	10	strong (+ external W, γ)		Many LECs?
		$\mathcal{L}_{e^2p^2}$	13	internal γ		A mesonic ChPT
		$\mathcal{L}_{G_8 F p^4}^{\Delta S=1}$	22	nonleptonic weak		program framework
	$L \leq 1$	$\mathcal{L}_{G_{27}p^4}^{\Delta S=1}$	28	nonleptonic weak		Determination of LECs in the
		$\mathcal{L}_{G_8 e^2 p^0}^{\Delta S=1}$	14	nonleptonic weak+internal γ		continuum
		$\mathcal{L}^{\mathrm{odd}}_{p^4}$	23	WZW, anomaly		Charged Pion Polarizabilities
		$\mathcal{L}^{\mathrm{leptons}}_{e^2p^2}$	5	leptons, internal γ		Finite volume Conclusions
	<i>L</i> ≤ 2	\mathcal{L}_{p^6}	90	strong (+ external W, γ)		
		r.			1	14/45

Chiral Logarithms

The main predictions of ChPT:

- Relates processes with different numbers of pseudoscalars/axial currents
- Chiral logarithms
- includes Isospin and the eightfold way $(SU(3)_V)$
- Unitarity included perturbatively

$$m_{\pi}^2 = 2B\hat{m} + \left(\frac{2B\hat{m}}{F}\right)^2 \left[\frac{1}{32\pi^2}\log\frac{(2B\hat{m})}{\mu^2} + 2l_3^r(\mu)\right] + \cdots$$

 $M^2 = 2B\hat{m}$

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

LECs and μ

 $l_3^r(\mu)$

$$ar{l}_i = rac{32\pi^2}{\gamma_i} \, l_i^r(\mu) - \log rac{M_\pi^2}{\mu^2} \, .$$

is independent of the scale μ .

For 3 and more flavours, some of the $\gamma_i = 0$: $L_i^r(\mu)$

Choice of μ :

- m_{π} , m_K : chiral logs vanish
- pick larger scale
- 1 GeV then $L_5^r(\mu) \approx 0$ what about large N_c arguments????
- compromise: $\mu = m_{
 ho} = 0.77$ GeV

Chiral perturbation and the lattice Johan Bijnens ChPT

Finite volume

Expand in what quantities?

- Expansion is in momenta and masses
- But is not unique: relations between masses (Gell-Mann–Okubo) exist
- Express orders in terms of physical masses and quantities (F_{π}, F_{K}) ?
- Express orders in terms of lowest order masses?
- E.g. $s + t + u = 2m_{\pi}^2 + 2m_K^2$ in πK scattering
- Note: remaining μ dependence can occur at a given order
- Can make quite some difference in the expansion
- I prefer physical masses
 - Thresholds correct
 - Chiral logs are from physical particles propagating
 - but sometimes too many masses so very ambiguous

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Extensions for the lattice

• No new parameters:

- Finite temperature
- Finite volume (including ϵ regime)
- Twisted mass
- Boundary conditions: twisted,...
- A few new parameters
 - Partially quenched $(2 \rightarrow 2, 10 \rightarrow 11, 90 \rightarrow 112)$
- Many new parameters
 - Wilson ChPT (2→3,10→18)
 - Staggered ChPT (2→10,10→126 (but dependencies))
 - Mixed actions
- Other operators
 - Local object with well defined chiral properties: include via spurion techniques
 - Examples: tensor current, energy momentum tensor,...

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Many LECs

- Is this too many parameters to do something?
- But if analytic in quark masses added in the fit not much extra
- Example: meson masses at NNLO have only the possible analytic quark mass dependence and the NLO meson-meson scattering parameters as input

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChP7

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Program availability

Making the programs more accessible for others to use:

- Two-loop results have very long expressions
- Many not published but available from http://www.thep.lu.se/~bijnens/chpt/
- Many programs available on request from the authors
- Idea: make a more general framework
- CHIRON:

JB,

"CHIRON: a package for ChPT numerical results at two loops,"

Eur. Phys. J. C **75** (2015) 27 [arXiv:1412.0887] http://www.thep.lu.se/~bijnens/chiron/

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChP7

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Program availability: CHIRON

- Present version: 0.53
- Classes to deal with L_i, C_i, L_i⁽ⁿ⁾, K_i, standardized in/output, changing the scale,...
- Loop integrals: one-loop and sunsetintegrals
- Included so far (at two-loop order):
 - ullet Masses, decay constants and $\langle \bar q q \rangle$ for the three flavour case
 - Masses and decay constants at finite volume in the three flavour case
 - Masses and decay constants in the partially quenched case for three sea quarks
 - Masses and decay constants in the partially quenched case for three sea quarks at finite volume
- A large number of example programs is included
- Manual has already reached 82 pages
- I am continually adding results from my earlier work

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

LEC determination: (Partial) History/References

- Original determination at p⁴: Gasser, Leutwyler, Annals Phys.158 (1984) 142, Nucl. Phys. B250 (1985) 465
- p⁶ 3 flavour: Amorós, JB, Talavera, Nucl. Phys. B602 (2001) 87 [hep-ph/0101127]
- Review article two-loops: JB, Prog. Part. Nucl. Phys. 58 (2007) 521 [hep-ph/0604043]
- Update of fits + new input: JB, Jemos, Nucl. Phys. B 854 (2012) 631 [arXiv:1103.5945]
- Recent review with more p⁶ input: JB, Ecker, Ann. Rev. Nucl. Part. Sci. 64 (2014) 149 [arXiv:1405.6488]
- Review Kaon physics: Cirigliano, Ecker, Neufeld, Pich, Portoles, Rev.Mod.Phys. 84 (2012) 399 [arXiv:1107.6001]
- Lattice: FLAG reports:

Colangelo et al., Eur.Phys.J. C71 (2011) 1695 [arXiv:1011.4408] Aoki et al., Eur. Phys. J. C **74** (2014) 9, 2890 [arXiv:1310.8555]

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Three flavour LECs: uncertainties

- $m_K^2, m_\eta^2 \gg m_\pi^2$
- Contributions from p^6 Lagrangian are larger
- Reliance on estimates of the C_i much larger
- Typically: C^r_i: (terms with) kinematical dependence ≡ measurable quark mass dependence ≡ impossible (without lattice) 100% correlated with L^r_i
- How suppressed are the $1/N_c$ -suppressed terms?
- Are we really testing ChPT or just doing a phenomenological fit?

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Three flavour LECs: uncertainties

- $m_K^2, m_\eta^2 \gg m_\pi^2$
- Contributions from p^6 Lagrangian are larger
- Reliance on estimates of the C_i much larger
- Typically: C^r_i: (terms with) kinematical dependence ≡ measurable quark mass dependence ≡ impossible (without lattice) 100% correlated with L^r_i
- How suppressed are the $1/N_c$ -suppressed terms?
- Are we really testing ChPT or just doing a phenomenological fit?

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Testing if ChPT works: relations

Yes: JB, Jemos, Eur.Phys.J. C64 (2009) 273-282 [arXiv:0906.3118] Systematic search for relations between observables that do not depend on the C_i^r Included:

- m_M^2 and F_M for π, K, η .
- 11 $\pi\pi$ threshold parameters
- 14 πK threshold parameters
- 6 $\eta
 ightarrow 3\pi$ decay parameters,
- 10 observables in $K_{\ell 4}$
- 18 in the scalar formfactors
- 11 in the vectorformfactors
- Total: 76

We found 35 relations

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

- We did numerics for $\pi\pi$ (7), πK (5) and $K_{\ell 4}$ (1) 13 relations
- ππ: similar quality in two and three flavour ChPT The two involving a₃⁻ significantly did not work well
- πK: relation involving a₃⁻ not OK one more has very large NNLO corrections
- The relation with $K_{\ell 4}$ also did not work: related to that ChPT has trouble with curvature in $K_{\ell 4}$
- Conclusion: Three flavour ChPT "sort of" works

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Fits: inputs

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Conclusions

Amorós, JB, Talavera, Nucl. Phys. B602 (2001) 87 [hep-ph/0101127] (ABT01)

JB, Jemos, Nucl. Phys. B 854 (2012) 631 [arXiv:1103.5945] (BJ12) JB, Ecker, arXiv:1405.6488, Ann. Rev. Nucl. Part. Sci .64 (2014) 149-174 (BE14)

•
$$M_{\pi}, M_K, M_{\eta}, F_{\pi}, F_K/F_{\pi}$$

• $\langle r^2 \rangle^\pi_S$, c^π_S slope and curvature of F_S

- $\pi\pi$ and πK scattering lengths a_0^0 , a_0^2 , $a_0^{1/2}$ and $a_0^{3/2}$.
- Value and slope of F and G in $K_{\ell 4}$

•
$$\frac{m_s}{\hat{m}} = 27.5$$
 (lattice)

•
$$\overline{l}_1, \ldots, \overline{l}_4$$

- more variation with C^r_i, a penalty for a large p⁶ contribution to the masses
- 17+3 inputs and 8 L_i^r +34 C_i^r to fit

Main fit

	ABT01	BJ12	L_4^r free	BE14	Chiral perturbation and the lattice
	old data				Johan Bijnens
$10^{3}L_{1}^{r}$	0.39(12)	0.88(09)	0.64(06)	0.53(06)	
$10^{3}L_{2}^{r}$	0.73(12)	0.61(20)	0.59(04)	0.81(04)	Lund
$10^{3}L_{3}^{r}$	-2.34(37)	-3.04(43)	-2.80(20)	-3.07(20)	ChPT
$10^{3}L_{4}^{r}$	$\equiv 0$	0.75(75)	0.76(18)	$\equiv 0.3$	Extensions for lattice
$10^{3}L_{5}^{r}$	0.97(11)	0.58(13)	0.50(07)	1.01(06)	Many LECs?
$10^{3}L_{6}^{r}$	$\equiv 0$	0.29(8)	0.49(25)	0.14(05)	A mesonic ChPT
$10^{3}L_{7}^{r}$	-0.30(15	-0.11(15)	-0.19(08)	-0.34(09)	program
$10^{3}L_{8}^{r}$	0.60(20)	0.18(18)	0.17(11)	0.47(10)	framework Determination
χ^2	0.26	1.28	0.48	1.04	of LECs in the
dof	1	4	?	?	Charged Pion
F_0 [MeV]	87	65	64	71	Polarizabilities
10[1104]	01			' -	Finite volume

$$?=(17+3)-(8+34)$$

27/45

- All values of the C_i^r we settled on are "reasonable"
- Leaving L_4^r free ends up with $L_4^r \approx 0.76$
- keeping L_4^r small: also L_6^r and $2L_1^r L_2^r$ small (large N_c relations)
- Compatible with lattice determinations
- Not too bad with resonance saturation both for L_i^r and C_i^r , including from the scalars
- decent convergence (but enforced for masses)
- Many prejudices went in: large N_c, resonance model, quark model estimates,...

Chiral perturbation and the lattice

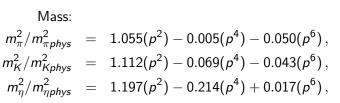
Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?


A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Some results of this fit

Decay constants:

$$F_{\pi}/F_0 = 1.000(p^2) + 0.208(p^4) + 0.088(p^6),$$

$$F_{\kappa}/F_{\pi} = 1.000(p^2) + 0.176(p^4) + 0.023(p^6).$$

Scattering:

$$\begin{array}{lll} a_0^0 &=& 0.160(p^2) + 0.044(p^4) + 0.012(p^6) \,, \\ a_0^{1/2} &=& 0.142(p^2) + 0.031(p^4) + 0.051(p^6) \,. \end{array}$$

Chiral perturbation and the lattice

Johan Bijnens

_und

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

inite volume

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

- Take Bijnens-talavera 2003 result but update for BE14 parameters
- $f_{\pm}^{K^0\pi^-}(0) = 1 0.02276 0.00754 = 0.970 \pm 0.008$
- in good agreement with the latest lattice numbers

Charged pion polarizabilities: experiment

An example where ChPT triumphed Review: Holstein, Scherer, Ann. Rev. Nucl. Part. Sci. 64 (2014) 51 [1401.0140]

• Expand
$$\gamma \pi^{\pm} o \gamma \pi^{\pm}$$
 near threshold: $(z_{\pm} = 1 \pm \cos heta_{
m cm})$

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d_{\Omega}} - \frac{\alpha m_{\pi}^3 \left((s - m_{\pi}^2)^2\right)}{4s^2 \left(sz_+ + m_{\pi}^2 z_-\right)} \left(z_-^2 (\alpha - \beta) + \frac{s^2}{m_{\pi}^4} z_+^2 (\alpha + \beta)\right)$$

• Three ways to measure: (all assume
$$\alpha + \beta = 0$$
)
• $\pi\gamma \rightarrow \pi\gamma$ (Primakoff, high energy pion beam)
Dubna (1985) $\alpha = (6.8 \pm 1.4) \ 10^{-4} \ \text{fm}^3$
Compass (CERN, 2015) $\alpha = (2.0 \pm 0.6 \pm 0.7) \ 10^{-4} \ \text{fm}^3$

•
$$\gamma \pi \to \pi \gamma$$
 (via one-pion exchange)
Lebedev (1986) $\alpha = (20 \pm 12) \ 10^{-4} \ \text{fm}^3$
Mainz (2005) $\alpha = (5.8 \pm 0.75 \pm 1.5 \pm 0.25) \ 10^{-4} \ \text{fm}^3$

• $\gamma\gamma \rightarrow \pi\pi$ (in $e^+e^- \rightarrow e^+e^-\pi^+\pi^-$) MarkII data analyzed (1992) $\alpha = (2.2 \pm 1.1) \ 10^{-4} \text{ fm}^3$

• Extrapolation and subtraction: difficult experiments

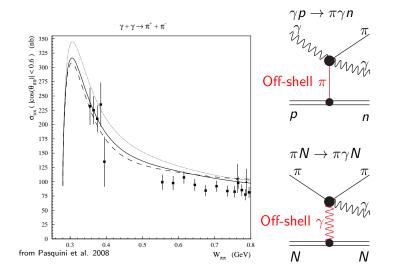
Chiral perturbation and the lattice Johan Bijnens

und

ChPT

Extensions for lattice

Many LECs?


A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Polarizabilities: extrapolations needed

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Charged pion polarizabilities: theory

• ChPT:

- One-loop JB, Cornet, 1986, Donoghue-Holstein 1989 $\alpha + \beta = 0$, $\alpha = (2.8 \pm 0.2) \ 10^{-4} \text{ fm}^3$ input $\pi \to e\nu\gamma$ (error only from this)
- Two-loop Bürgi, 1996, Gasser, Ivanov, Sainio 2006 $\alpha + \beta = 0.16 \ 10^{-4} \ \text{fm}^3, \alpha = (2.8 \pm 0.5) \ 10^{-4} \ \text{fm}^3$

• Dispersive analysis from $\gamma\gamma \rightarrow \pi\pi$:

- Fil'kov-Kashevarov, 2005 $(\alpha_1 \beta_1) = (13.0^{+2.6}_{-1.9}) \cdot 10^{-4} \text{fm}^3$
- Critized by Pasquini-Drechsel-Scherer, 2008
 "Large model dependence in their extraction"
 "Our calculations... are in reasonable agreement with ChPT for charged pions"
 (α₁ β₁) = (5.7) · 10⁻⁴ fm³ perfectly possible

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Finite volume

- Lattice QCD calculates at different quark masses, volumes boundary conditions, . . .
- A general result by Lüscher: relate finite volume effects to scattering (1986)
- Chiral Perturbation Theory is also useful for this
- Start: Gasser and Leutwyler, Phys. Lett. B184 (1987) 83, Nucl. Phys. B 307 (1988) 763 $M_{\pi}, F_{\pi}, \langle \bar{q}q \rangle$ one-loop equal mass case
- I will stay with ChPT and the p regime $(M_{\pi}L >> 1)$
- $1/m_{\pi} = 1.4$ fm may need to go beyond leading $e^{-m_{\pi}L}$ terms
- Convergence of ChPT is given by $1/m_{
 ho} pprox$ 0.25 fm

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Finite volume: selection of ChPT results

- masses and decay constants for π , K, η one-loop Becirevic, Villadoro, Phys. Rev. D 69 (2004) 054010
- M_π at 2-loops (2-flavour)

Colangelo, Haefeli, Nucl.Phys. B744 (2006) 14 [hep-lat/0602017]

- \$\langle \bar{q}q \rangle\$ at 2 loops (3-flavour)
 JB, Ghorbani, Phys. Lett. B636 (2006) 51 [hep-lat/0602019]
- Twisted mass at one-loop Colangelo, Wenger, Wu, Phys.Rev. D82 (2010) 034502 [arXiv:1003.0847]
- Twisted boundary conditions Sachrajda, Villadoro, Phys. Lett. B 609 (2005) 73 [hep-lat/0411033]
- This talk:
 - Twisted boundary conditions and some funny effects
 - Some results on masses 3-flavours at two loop order

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Twisted boundary conditions

- On a lattice at finite volume $p^i = 2\pi n^i/L$: very few momenta directly accessible
- Put a constraint on certain quark fields in some directions: $q(x^i + L) = e^{i\theta_q^i}q(x^i)$
- Then momenta are $p^i = \theta^i / L + 2\pi n^i / L$. Allows to map out momentum space on the lattice much better Bedaque,...

But:

- $\bullet\,$ Box: Rotation invariance $\rightarrow\,$ cubic invariance
- Twisting: reduces symmetry further

Consequences:

- $m^2(\vec{p}^2) = E^2 \vec{p}^2$ is not constant
- There are typically more form-factors
- In general: quantities depend on more (all) components of the momenta
- Charge conjugation involves a change in momentum

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Twisted boundary conditions

- On a lattice at finite volume $p^i = 2\pi n^i/L$: very few momenta directly accessible
- Put a constraint on certain quark fields in some directions: $q(x^i + L) = e^{i\theta_q^i}q(x^i)$
- Then momenta are $p^i = \theta^i / L + 2\pi n^i / L$. Allows to map out momentum space on the lattice much better Bedaque,...
- But:
 - Box: Rotation invariance \rightarrow cubic invariance
 - Twisting: reduces symmetry further

Consequences:

- $m^2(ec{p}^2)=E^2-ec{p}^2$ is not constant
- There are typically more form-factors
- In general: quantities depend on more (all) components of the momenta
- Charge conjugation involves a change in momentum

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Twisted boundary conditions: Two-point function

JB, Relefors, JHEP 05 (2014) 015 [arXiv:1402.1385]

•
$$\int_V \frac{d^d k}{(2\pi)^d} \frac{k_\mu}{k^2 - m^2} \neq 0$$

•
$$\langle \bar{u} \gamma^{\mu} u \rangle \neq 0$$

•
$$j^{\pi^+}_{\mu} = \bar{d}\gamma_{\mu}u$$

satisfies $\partial^{\mu} \langle T(j^{\pi^+}_{\mu}(x)j^{\pi^-}_{\nu}(0)) \rangle = \delta^{(4)}(x) \langle \bar{d}\gamma_{\nu}d - \bar{u}\gamma_{\nu}u \rangle$
• $\Pi^{a}_{\mu\nu}(q) \equiv i \int d^4x e^{iq \cdot x} \langle T(j^a_{\mu}(x)j^{a\dagger}_{\nu}(0)) \rangle$
Satisfies WT identity. $q^{\mu}\Pi^{\pi^+}_{\mu\nu} = \langle \bar{u}\gamma_{\mu}u - \bar{d}\gamma_{\mu}d \rangle$

• ChPT at one-loop satisfies this see also Aubin et al, Phys.Rev. D88 (2013) 7, 074505 [arXiv:1307.4701]

Chiral perturbation and the lattice

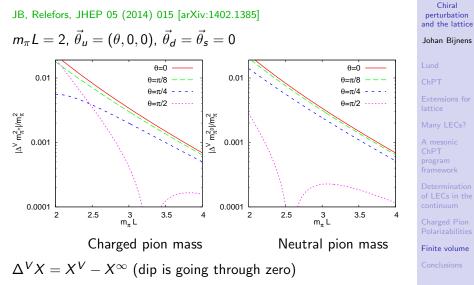
Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

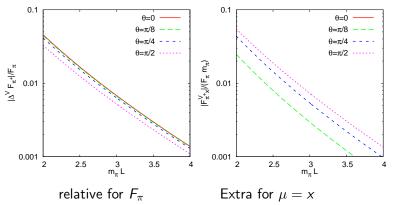

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Twisted boundary conditions: volume correction masses



Volume correction decay constants: F_{π^+}

• JB, Relefors, JHEP 05 (2014) 015 [arXiv:1402.1385]

•
$$\langle 0|A^M_{\mu}|M(p)\rangle = i\sqrt{2}F_Mp_{\mu} + i\sqrt{2}F^V_{M\mu}$$

• Extra terms are needed for Ward identities

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Volume correction electromagnetic formfactor

- JB, Relefors, JHEP 05 (2014) 015 [arXiv:1402.1385]
 earlier two-flavour work: Bunton, Jiang, Tiburzi, Phys.Rev. D74 (2006) 034514 [hep-lat/0607001]
- $\langle M'(p')|j_{\mu}|M(p)\rangle = f_{\mu} = f_{+}(p_{\mu} + p'_{\mu}) + f_{-}q_{\mu} + h_{\mu}$
- Extra terms are again needed for Ward identities
- Note that masses have finite volume corrections
 - q^2 for fixed \vec{p} and \vec{p}' has corrections small effect
 - This also affects the ward identities, e.g. $q^{\mu}f_{\mu} = (p^2 - p'^2)f_+ + q^2f_- + q^{\mu}h_{\mu} = 0$ is satisfied but all effects should be considered

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Volume correction electromagnetic formfactor

 JB, Relefors, JHEP 05 (2014) 015 [arXiv:1402.1385]
 earlier two-flavour work: Bunton, Jiang, Tiburzi, Phys.Rev. D74 (2006) 034514 [hep-lat/0607001]

•
$$\langle M'(p')|j_{\mu}|M(p)\rangle = f_{\mu} = f_{+}(p_{\mu} + p'_{\mu}) + f_{-}q_{\mu} + h_{\mu}$$

- Extra terms are again needed for Ward identities
- Note that masses have finite volume corrections
 - q^2 for fixed \vec{p} and \vec{p}' has corrections small effect
 - This also affects the ward identities, e.g. $q^{\mu}f_{\mu} = (p^2 - p'^2)f_+ + q^2f_- + q^{\mu}h_{\mu} = 0$ is satisfied but all effects should be considered

Chiral perturbation and the lattice

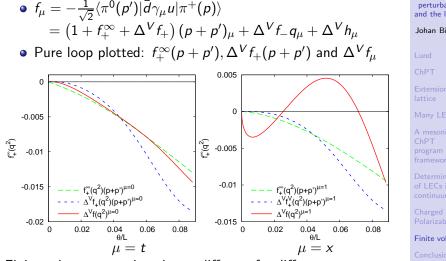
Johan Bijnens

Lund

ChPT

Extensions for lattice

Many LECs?


A mesonic ChPT program framework

Determination of LECs in the continuum

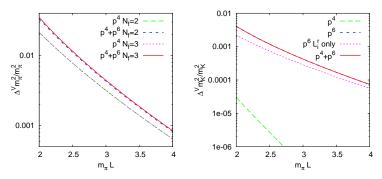
Charged Pion Polarizabilities

Finite volume

Volume correction electromagnetic formfactor

Finite volume corrections large, different for different μ

Chiral perturbation and the lattice


Johan Bijnens

Einite volume

Masses at two-loop order

- Sunset integrals at finite volume done
 JB, Boström and Lähde, JHEP 01 (2014) 019 [arXiv:1311.3531]
- Loop calculations:

JB, Rössler, JHEP 1501 (2015) 034 [arXiv:1411.6384]

Agreement for N_f = 2,3 for pion
K has no pion loop at LO

Chiral perturbation and the lattice

Johan Bijnens

Lund

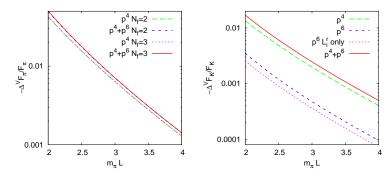
ChPT

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum


Charged Pion Polarizabilities

Finite volume

Decay constants at two-loop order

- Sunset integrals at finite volume done
 JB, Boström and Lähde, JHEP 01 (2014) 019 [arXiv:1311.3531]
- Loop calculations:

JB, Rössler, JHEP 1501 (2015) 034 [arXiv:1411.6384]

Agreement for N_f = 2, 3 for pion
K now has a pion loop at LO

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChP7

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Other stuff I work/want to do

- Partially quenched finite volume mass and decay constant work done, paper being written
- QCD-like theories: partially quenched and finite volume in progress
- Twisted (thus finite volume) and partially quenched: $K_{\ell 3}$
- Leading logarithms: another talk
- Get our quark mass isospin breaking at NNLO calculations in an updated shape + combine with em
- Any more suggestions?

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChP7

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

Conclusions

Chiral perturbation and the lattice

Johan Bijnens

Lund

ChP1

Extensions for lattice

Many LECs?

A mesonic ChPT program framework

Determination of LECs in the continuum

Charged Pion Polarizabilities

Finite volume

- ChPT and all the extensions I talked about can be applied (and have often been) to baryons, heavy mesons,...
- Gave you some examples of the uses of ChPT
- Future:
 - A tool for studying lattice artefacts, finite volume,...
 - Combine with other methods, dispersion relations already heavily done