progress and prospects for heavy flavour physics on the lattice

Carlos Pena

High-Precision QCD at Low Energy, Benasque, 2-22 August 2015

why we care

theory-driven discovery of new physics through loops has an impressive track record from the 70s, 80s, 90s

- no $K_{
 m L}
 ightarrow \mu \mu \;\; \Rightarrow \;\;$ charm [Glashow, Iliopoulos, Maiani 1970]
- $\epsilon_K \Rightarrow$ 3rd generation [Kobayashi, Maskawa 1973]
- Δm_K \Rightarrow m_c [Gaillard, Lee 1974; Vainshtein, Khriplovich 1973]
- $\Delta m_B \Rightarrow m_t$ large (with some hindsight...)
- ...

crucial to build and consolidate the SM!

why we care

SM quark flavour dynamics neatly encoded in CKM matrix

$$V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$$= \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

$$V_{\rm CKM}^{\dagger} V_{\rm CKM} = \mathbf{1} \implies \underbrace{|\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}|}_{(0,0)} \underbrace{|\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}|}_{(0,0)} \underbrace{|\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}|}_{\beta = \phi_1} \underbrace{|\frac{V_{ud}V_{ub}^*}{(1,0)}|}_{(1,0)}$$

why we care

why we still care

- tensions/puzzles: exclusive vs inclusive $|V_{ub}|$ and $|V_{cb}|$, $b \rightarrow s$, lepton universality in R(D), non-leptonic decays, D-mixing, ...
- FCNC (relatively) poorly constrained in several processes
- some complementary precision tests are expected to improve significantly (EDM by 10^2 - 10^3 , CLFV by at least 10^2 , ...)
- upcoming new generation of experimental results

LHCb upgrade		Belle II		BaBar 2009		ፍበ
LHCb 1/fb	~	Belle	~	CLEO 1999	~	50

[quoted from Z Ligeti's TASI Lectures on Flavor Physics, arXiv:1502.01372]

Observables	Belle	Bel	le II	\mathcal{L}_s
	(2014)	5 ab^{-1}	$50~{\rm ab^{-1}}$	$[ab^{-1}]$
$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012$	± 0.012	± 0.008	6
α		$\pm 2^{\circ}$	$\pm 1^{\circ}$	
γ	$\pm 14^{\circ}$	$\pm 6^{\circ}$	$\pm 1.5^{\circ}$	
$S(B \to \phi K^0)$	$0.90\substack{+0.09\\-0.19}$	± 0.053	± 0.018	>50
$S(B\to\eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	± 0.028	± 0.011	>50
$S(B \to K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$	± 0.100	± 0.033	44
$ V_{cb} $ incl.	$\pm 2.4\%$	$\pm 1.0\%$		< 1
$ V_{cb} $ excl.	$\pm 3.6\%$	$\pm 1.8\%$	$\pm 1.4\%$	< 1
$ V_{ub} $ incl.	$\pm 6.5\%$	$\pm 3.4\%$	$\pm 3.0\%$	2
$ V_{ub} $ excl. (had. tag.)	$\pm 10.8\%$	$\pm 4.7\%$	$\pm 2.4\%$	20
$ V_{ub} $ excl. (untag.)	$\pm 9.4\%$	$\pm 4.2\%$	$\pm 2.2\%$	3
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	96 ± 26	$\pm 10\%$	$\pm 5\%$	46
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	5σ	$>>5\sigma$	>50
$R(B \to D \tau \nu)$	$\pm 16.5\%$	$\pm 5.6\%$	$\pm 3.4\%$	4
$R(B\to D^*\tau\nu)$	$\pm 9.0\%$	$\pm 3.2\%$	$\pm 2.1\%$	3
$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40		$\pm 30\%$	>50
$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55		$\pm 30\%$	>50
$\mathcal{B}(B \to X_s \gamma) \ [10^{-6}]$	$\pm 13\%$	$\pm 7\%$	$\pm 6\%$	< 1
$A_{CP}(B \to X_s \gamma)$		± 0.01	± 0.005	8
$S(B \to K^0_S \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	± 0.11	± 0.035	> 50
$S(B o ho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	± 0.23	± 0.07	> 50
$C_7/C_9 \ (B \to X_s \ell \ell)$	$\sim \! 20\%$	10%	5%	
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7	± 0.3		
$\mathcal{B}(B_s \to \tau^+ \tau^-) \ [10^{-3}]$		< 2		

Observables	Belle	Bell	le II	\mathcal{L}_s
	(2014)	5 ab^{-1}	$50 {\rm ~ab^{-1}}$	$[ab^{-1}]$
$\mathcal{B}(D_s \to \mu \nu)$	$5.31 \times 10^{-3} (1 \pm 0.053 \pm 0.038)$	$\pm 2.9\%$	$\pm (0.9\%$ -1.3%)	> 50
$\mathcal{B}(D_s \to \tau \nu)$	$5.70 \times 10^{-3} (1 \pm 0.037 \pm 0.054)$	$\pm (3.5\%$ -4.3%)	$\pm (2.3\%$ -3.6%)	3-5
$y_{CP} \ [10^{-2}]$	$1.11 \pm 0.22 \pm 0.11$	$\pm (0.11 \text{-} 0.13)$	$\pm (0.05 - 0.08)$	5-8
$A_{\Gamma} \ [10^{-2}]$	$-0.03 \pm 0.20 \pm 0.08$	± 0.10	$\pm (0.03 \text{-} 0.05)$	7 - 9
$A_{CP}^{K^+K^-}$ [10 ⁻²]	$-0.32 \pm 0.21 \pm 0.09$	± 0.11	± 0.06	15
$A_{CP}^{\pi^+\pi^-}$ [10 ⁻²]	$0.55 \pm 0.36 \pm 0.09$	± 0.17	± 0.06	> 50
$A_{CP}^{\phi\gamma} \ [10^{-2}]$	\pm 5.6	± 2.5	± 0.8	> 50
$x^{K_S \pi^+ \pi^-} [10^{-2}]$	$0.56 \pm 0.19 \pm {0.07 \atop 0.13}$	± 0.14	± 0.11	3
$y^{K_S \pi^+ \pi^-} [10^{-2}]$	$0.30 \pm 0.15 \pm {0.05 \atop 0.08}$	± 0.08	± 0.05	15
$ q/p ^{K_S\pi^+\pi^-}$	$0.90 \pm {0.16 \atop 0.15} \pm {0.08 \atop 0.06}$	± 0.10	± 0.07	5-6
$\phi^{K_S \pi^+ \pi^-}$ [°]	$-6 \pm 11 \pm rac{4}{5}$	± 6	± 4	10
$A_{CP}^{\pi^0\pi^0}$ [10 ⁻²]	$-0.03 \pm 0.64 \pm 0.10$	± 0.29	± 0.09	> 50
$A_{CP}^{K_S^0 \pi^0} \ [10^{-2}]$	$-0.10 \pm 0.16 \pm 0.09$	± 0.08	± 0.03	> 50
$Br(D^0 \to \gamma \gamma) \ [10^{-6}]$	< 1.5	$\pm 30\%$	$\pm 25\%$	2
	$\tau \to \mu \gamma \ [10^{-9}]$	< 45	< 14.7	< 4.7
	$\tau \to e\gamma \ [10^{-9}]$	< 120	< 39	< 12
	$ au o \mu \mu \mu \ [10^{-9}]$	< 21.0	< 3.0	< 0.3

[BELLE2-NOTE-PH-2015-002, retrieved from B2TiP]

Lattice Quantity	CKM element	WA Expt. Error	Lattice error		
			2013 (Present)	2014	2018
$F(1) \ (B \to D^* \ell \nu)$	$ V_{cb} $	1.3	1.8	1.5	<1
$G(1) \ (B \to D\ell\nu)$	$ V_{cb} $	1.3	1.8	1.5	<1
$G_s(1) \ (B_s \to D_s^* \ell \nu)$	$ V_{cb} $	—	4.6	_	—
$\zeta(B \to \pi \ell \nu)$	$ V_{ub} $	4.1	· <u> </u>	Belle II	Projection
$f_B \ (B \to \tau \nu, \mu \nu)$	$ V_{ub} $	9.0	10 m = 5 m	Exp: Systemati	cs limited 1
$R(D)(B \to D\tau\nu)$	—	13	xisni 41.3	4 Total Statis	_{tics} < 2
Mixing $\zeta(\Delta m_d/\Delta m_s)$	$ V_{td} / V_{ts} $	0.4		Syste	matics y (expected)
	[BEL	LE2-NOTE-PH-2	0.2-	Theor	y (current)

B2TiP]

1

LHCb Run 2 and upgrade projections

n.b.: LHCb outdoing expectations (e.g. baryon semileptonic decay)

LHCb Run 2 and upgrade projections

Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory
B_s^0 mixing	$\phi_s(B^0_s \to J/\psi \phi) \text{ (rad)}$	0.049	0.025	0.009	~ 0.003
	$\phi_s(B_s^0 \to J/\psi \ f_0(980)) \ (\text{rad})$	0.068	0.035	0.012	~ 0.01
	$A_{\rm sl}(B_s^0)~(10^{-3})$	2.8	1.4	0.5	0.03
Gluonic	$\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$	0.15	0.10	0.018	0.02
penguin	$\phi_s^{\text{eff}}(B_s^0 \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.023	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_{\text{S}}) \text{ (rad)}$	0.30	0.20	0.036	0.02
Right-handed	$\phi_s^{\text{eff}}(B_s^0 \to \phi \gamma) \text{ (rad)}$	0.20	0.13	0.025	< 0.01
currents	$ au^{\mathrm{eff}}(B^0_s o \phi \gamma) / au_{B^0_s}$	5%	3.2%	0.6%	0.2%
Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.04	0.020	0.007	0.02
penguin	$q_0^2 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	10%	5%	1.9%	$\sim 7\%$
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV^2/c^4})$	0.09	0.05	0.017	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	14%	7%	$\mathbf{2.4\%}$	$\sim 10\%$
Higgs	$\mathcal{B}(B^0_s \to \mu^+ \mu^-) \ (10^{-9})$	1.0	0.5	0.19	0.3
penguin	$\mathcal{B}(B^0\to\mu^+\mu^-)/\mathcal{B}(B^0_s\to\mu^+\mu^-)$	220%	110%	40%	$\sim 5\%$
Unitarity	$\gamma(B \to D^{(*)}K^{(*)})$	7°	4°	0.9 °	negligible
triangle	$\gamma(B^0_s \to D^{\mp}_s K^{\pm})$	17°	11°	2.0°	negligible
angles	$\beta(B^0 \to J/\psi K_{\rm S}^0)$	1.7°	0.8°	0.31°	negligible
Charm	$A_{\Gamma}(D^0 \to K^+ K^-) \ (10^{-4})$	3.4	2.2	0.4	_
CP violation	$\Delta A_{CP} \ (10^{-3})$	0.8	0.5	0.1	_

[LHCb-PUB-2014-040]

n.b.: LHCb outdoing expectations (e.g. baryon semileptonic decay)

why we still care

- B-physics: much better precision + new channels (e.g. much more information on rare decays)
- + contributions from ATLAS/CMS
- + dedicated charm physics (BESIII running from 2011, large charm production cross section at Belle II, ...)
- theory has to meet the challenge

- starting point:
 - thorough reviews on HQ decays/mixing (C Bouchard) and quark masses (F Sanfilippo) at Lattice 2014 [Bouchard arXiv:1501.03204] [Sanfilippo arXiv:1505.02794]
 - contributions to the Lattice 2015 Conference

- detailed coverage of results up to end 2013 in FLAG-2

[FLAG 2013, Eur J Phys C74 (2014) 2890, arXiv:1310.8555v2]

(unfortunately, no preliminary updates of FLAG averages for HQ quantities yet)

- starting point:
 - thorough reviews on HQ decays/mixing (C Bouchard) and quark masses (F Sanfilippo) at Lattice 2014 [Bouchard arXiv:1501.03204] [Sanfilippo arXiv:1505.02794]
 - contributions to the Lattice 2015 Conference

- detailed coverage of results up to end 2013 in FLAG-2

[FLAG 2013, Eur J Phys C74 (2014) 2890, arXiv:1310.8555v2]

- guidelines:
 - CKM tests focus
 - status overview for decay constants, B-mixing
 - strong progress + expt synergy in semileptonic decays
 - not covered: HQ masses, BSM/rare decays (exc.), processes involving resonances (exc.), D-mixing, spectroscopy, ...

- methods: where we stand (brief!)
 - ensembles used in HQ physics, reach
 - HQ approaches
- brief overview of
 - leptonic charm and B decay
 - B mixing
- charm and B semileptonic decays (+ CKM 2nd and 3rd rows)
- the % precision target
- conclusions and outlook

- methods: where we stand (brief!)
 - ensembles used in HQ physics, reach
 - HQ approaches
- brief overview of
 - leptonic charm and B decay
 - B mixing
- charm and B semileptonic decays (+ CKM 2nd and 3rd rows)
- the % precision target
- conclusions and outlook

charm physics directly accessible for some time now

fraction of available ensembles used for HQ physics still limited

charm physics directly accessible for some time now

• fraction of available ensembles used for HQ physics still limited

- charm physics directly accessible for some time now
- fraction of available ensembles used for HQ physics still limited

approaches to B physics

what one would like to do

approaches to B physics

effective theory used differently, different pros/cons balance: crosschecks crucial

towards a fully relativistic b

crucial issue: strong lattice space dependence of autocorrelations

towards a fully relativistic b

crucial issue: strong lattice space dependence of autocorrelations

-0.002

0

2000

MDTU

[C DeTar, Thu 8:50

4000

6000

[Lüscher, Schaefer 2011] [CLS N_f=2+1 obc programme]

towards a fully relativistic b

crucial issue: strong lattice space dependence of autocorrelations

 $a = 0.048 \text{ fm}, \ m_{\pi} = 340 \text{ MeV}$

[ALPHA f_{B} , arXiv:1404.3590]

- methods: where we stand (brief!)
 - ensembles used in HQ physics, reach
 - HQ approaches
- brief overview of
 - leptonic charm and B decay
 - B mixing
- charm and B semileptonic decays (+ CKM 2nd and 3rd rows)
- the % precision target
- conclusions and outlook

$$\frac{\mathcal{B}(D_{(s)} \to l\nu_l)}{\tau_{D_{(s)}}} = \frac{G_{\rm F}^2}{8\pi} m_{D_{(s)}} m_l^2 \left(1 - \frac{m_l^2}{m_{D_{(s)}}^2}\right)^2 |V_{cq}|^2 f_{D_{(s)}}^2 \quad [+ \text{ h.o. OPE}]$$

 $\langle 0|\bar{c}\gamma^{\mu}\gamma^{5}q|D_{q}(p)\rangle = f_{D_{q}}p^{\mu}$

[from H Ma's talk on behalf of BESIII at CHARM 2015]

[from S Eidelman's talk on behalf of Belle at CHARM 2015]

Observables	Belle	Bel	le II	\mathcal{L}_s
	(2014)	5 ab^{-1}	$50~{\rm ab}^{-1}$	$[ab^{-1}]$
$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012$	± 0.012	± 0.008	6
α		$\pm 2^{\circ}$	$\pm 1^{\circ}$	
γ	$\pm 14^{\circ}$	$\pm 6^{\circ}$	$\pm 1.5^{\circ}$	
$S(B \to \phi K^0)$	$0.90\substack{+0.09\\-0.19}$	± 0.053	± 0.018	>50
$S(B\to\eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	± 0.028	± 0.011	>50
$S(B \to K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$	± 0.100	± 0.033	44
$ V_{cb} $ incl.	$\pm 2.4\%$	$\pm 1.0\%$		< 1
$ V_{cb} $ excl.	$\pm 3.6\%$	$\pm 1.8\%$	$\pm 1.4\%$	< 1
$ V_{ub} $ incl.	$\pm 6.5\%$	$\pm 3.4\%$	$\pm 3.0\%$	2
$ V_{ub} $ excl. (had. tag.)	$\pm 10.8\%$	$\pm 4.7\%$	$\pm 2.4\%$	20
$ V_{ub} $ excl. (untag.)	$\pm 9.4\%$	$\pm 4.2\%$	$\pm 2.2\%$	3
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	96 ± 26	$\pm 10\%$	$\pm 5\%$	46
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	5σ	$>>5\sigma$	>50
$R(B \to D \tau \nu)$	$\pm 16.5\%$	$\pm 5.6\%$	$\pm 3.4\%$	4
$R(B\to D^*\tau\nu)$	$\pm 9.0\%$	$\pm 3.2\%$	$\pm 2.1\%$	3
$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40		$\pm 30\%$	>50
$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55		$\pm 30\%$	>50
$\mathcal{B}(B \to X_s \gamma) \ [10^{-6}]$	$\pm 13\%$	$\pm 7\%$	$\pm 6\%$	< 1
$A_{CP}(B \to X_s \gamma)$		± 0.01	± 0.005	8
$S(B \to K^0_S \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	± 0.11	± 0.035	> 50
$S(B o ho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	± 0.23	± 0.07	> 50
$C_7/C_9 \ (B \to X_s \ell \ell)$	$\sim \! 20\%$	10%	5%	
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7	± 0.3		
$\mathcal{B}(B_s \to \tau^+ \tau^-) \ [10^{-3}]$		< 2		

Observables	Belle	Bell	le II	\mathcal{L}_s
	(2014)	5 ab^{-1}	$50 {\rm ~ab^{-1}}$	$[ab^{-1}]$
$\mathcal{B}(D_s \to \mu \nu)$	$5.31 \times 10^{-3} (1 \pm 0.053 \pm 0.038)$	$\pm 2.9\%$	$\pm (0.9\%$ -1.3%)	> 50
$\mathcal{B}(D_s \to \tau \nu)$	$5.70 \times 10^{-3} (1 \pm 0.037 \pm 0.054)$	$\pm (3.5\%$ -4.3%)	$\pm (2.3\%$ -3.6%)	3-5
$y_{CP} [10^{-2}]$	$1.11 \pm 0.22 \pm 0.11$	$\pm(0.11-0.13)$	$\pm (0.05 - 0.08)$	5-8
$A_{\Gamma} [10^{-2}]$	$-0.03 \pm 0.20 \pm 0.08$	± 0.10	$\pm (0.03 - 0.05)$	7 - 9
$A_{CP}^{K^+K^-}$ [10 ⁻²]	$-0.32 \pm 0.21 \pm 0.09$	± 0.11	± 0.06	15
$A_{CP}^{\pi^+\pi^-}$ [10 ⁻²]	$0.55 \pm 0.36 \pm 0.09$	± 0.17	± 0.06	> 50
$A_{CP}^{\phi\gamma} \ [10^{-2}]$	\pm 5.6	± 2.5	± 0.8	> 50
$x^{K_S \pi^+ \pi^-} [10^{-2}]$	$0.56 \pm 0.19 \pm {0.07 \atop 0.13}$	± 0.14	± 0.11	3
$y^{K_S \pi^+ \pi^-} [10^{-2}]$	$0.30 \pm 0.15 \pm {0.05 \atop 0.08}$	± 0.08	± 0.05	15
$ q/p ^{K_S\pi^+\pi^-}$	$0.90 \pm {0.16 \atop 0.15} \pm {0.08 \atop 0.06}$	± 0.10	± 0.07	5-6
$\phi^{K_S \pi^+ \pi^-}$ [°]	$-6 \pm 11 \pm \frac{4}{5}$	± 6	± 4	10
$A_{CP}^{\pi^0\pi^0}$ [10 ⁻²]	$-0.03 \pm 0.64 \pm 0.10$	± 0.29	± 0.09	> 50
$A_{CP}^{K_S^0 \pi^0} \ [10^{-2}]$	$-0.10 \pm 0.16 \pm 0.09$	± 0.08	± 0.03	> 50
$Br(D^0\to\gamma\gamma)~[10^{-6}]$	< 1.5	$\pm 30\%$	$\pm 25\%$	2
	$\tau \to \mu \gamma \ [10^{-9}]$	< 45	< 14.7	< 4.7
	$\tau \to e\gamma \ [10^{-9}]$	< 120	< 39	< 12
	$ au o \mu \mu \mu \ [10^{-9}]$	< 21.0	< 3.0	< 0.3

[BELLE2-NOTE-PH-2015-002, retrieved from B2TiP]

FLAG-2 on charm decay constants

$N_{ m f}$	$f_D [{ m MeV}]$	f_{D_s} [MeV]	f_{D_s}/f_D
2	208(7)	250(7)	1.20(2)
2+1	209.2(3.3)	248.6(2.7)	1.187(12)

[FLAG 2013, Eur J Phys C74 (2014) 2890, arXiv:1310.8555v2]

new results for $f_{D_{(s)}}$

new results superimposed on FLAG-2 summary plots:

- close to 1% accuracy: "raw" potential of lattice methods
- already at the level where e.g. electromagnetic effects are relevant

$$\frac{\mathcal{B}(B_{(c)} \to l\nu_l)}{\tau_{B_{(c)}}} = \frac{G_{\rm F}^2}{8\pi} m_l^2 m_{B_{(c)}} \left(1 - \frac{m_l^2}{m_{B_{(c)}^2}}\right)^2 |V_{qb}|^2 f_{B_{(c)}}^2 \ [+ \text{h.o. OPE}]$$

 $\langle 0|\bar{b}\gamma^{\mu}\gamma^{5}q|B_{q}(p)\rangle = f_{B_{q}}p^{\mu}$

(+ e.m. corrections!)

$$\frac{\mathcal{B}(B_c \to l\nu_l)}{\frac{\tau_{B_c}}{\Delta}} = \frac{G_{\rm F}^2}{8\pi} m_l^2 m_{B_c} \left(1 - \frac{m_l^2}{m_{B_c^2}}\right)^2 |V_{qb}|^2 f_{B_c}^2 \quad [+ \text{ h.o. OPE}]$$
(negligible)

$$\Delta = 7.3\% \qquad \Delta \sim \mathcal{O}\left(\frac{m_{B_c}^2}{M_W^2}\right) \sim 0.6\%$$

(+ e.m. corrections!)

[arXiv:1411.4413] submitted to Nature

 $B(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}) = (2.8^{+0.7}_{-0.6}) \times 10^{-9}$ Birst observation= 628 significance

B(B⁰→μ⁺μ⁻) = (3.9 $^{+1.6}_{-1.4}$)×10⁻¹⁰ first evidence: 3.0σ significance [arXiv:1411.4413]
B leptonic decay

[from C Park's talk at FPCP 2015]

Belle II projections

Observables	Belle	Bel	\mathcal{L}_s	
	(2014)	5 ab^{-1}	$50~{\rm ab}^{-1}$	$[ab^{-1}]$
$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012$	± 0.012	± 0.008	6
α		$\pm 2^{\circ}$	$\pm 1^{\circ}$	
γ	$\pm 14^{\circ}$	$\pm 6^{\circ}$	$\pm 1.5^{\circ}$	
$S(B \to \phi K^0)$	$0.90\substack{+0.09\\-0.19}$	± 0.053	± 0.018	>50
$S(B\to\eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	± 0.028	± 0.011	> 50
$S(B\to K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$	± 0.100	± 0.033	44
$ V_{cb} $ incl.	$\pm 2.4\%$	$\pm 1.0\%$		< 1
$ V_{cb} $ excl.	$\pm 3.6\%$	$\pm 1.8\%$	$\pm 1.4\%$	< 1
$ V_{ub} $ incl.	$\pm 6.5\%$	$\pm 3.4\%$	$\pm 3.0\%$	2
$ V_{ub} $ excl. (had. tag.)	$\pm 10.8\%$	$\pm 4.7\%$	$\pm 2.4\%$	20
$ V_{ub} $ excl. (untag.)	$\pm 9.4\%$	$\pm 4.2\%$	$\pm 2.2\%$	3
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	96 ± 26	$\pm 10\%$	$\pm 5\%$	46
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	5σ	$>>5\sigma$	>50
$R(B \to D \tau \nu)$	$\pm 16.5\%$	$\pm 5.6\%$	$\pm 3.4\%$	4
$R(B\to D^*\tau\nu)$	$\pm 9.0\%$	$\pm 3.2\%$	$\pm 2.1\%$	3
$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40		$\pm 30\%$	> 50
$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55		$\pm 30\%$	>50
$\mathcal{B}(B \to X_s \gamma) \ [10^{-6}]$	$\pm 13\%$	$\pm 7\%$	$\pm 6\%$	< 1
$A_{CP}(B \to X_s \gamma)$		± 0.01	± 0.005	8
$S(B\to K^0_S\pi^0\gamma)$	$-0.10 \pm 0.31 \pm 0.07$	± 0.11	± 0.035	> 50
$S(B \to \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	± 0.23	± 0.07	> 50
$C_7/C_9 \ (B \to X_s \ell \ell)$	${\sim}20\%$	10%	5%	
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7	± 0.3		
$\mathcal{B}(B_s \to \tau^+ \tau^-) \ [10^{-3}]$		< 2		

Observables	Belle	Bell	le II	\mathcal{L}_s
	(2014)	5 ab^{-1}	$50 {\rm ~ab^{-1}}$	$[ab^{-1}]$
$\mathcal{B}(D_s \to \mu \nu)$	$5.31 \times 10^{-3} (1 \pm 0.053 \pm 0.038)$	$\pm 2.9\%$	$\pm (0.9\%$ -1.3%)	> 50
$\mathcal{B}(D_s \to \tau \nu)$	$5.70 \times 10^{-3} (1 \pm 0.037 \pm 0.054)$	$\pm (3.5\%$ -4.3%)	$\pm (2.3\%$ - $3.6\%)$	3-5
$y_{CP} \ [10^{-2}]$	$1.11 \pm 0.22 \pm 0.11$	$\pm (0.11 \text{-} 0.13)$	$\pm (0.05 - 0.08)$	5-8
$A_{\Gamma} [10^{-2}]$	$-0.03 \pm 0.20 \pm 0.08$	± 0.10	$\pm (0.03 \text{-} 0.05)$	7 - 9
$A_{CP}^{K^+K^-}$ [10 ⁻²]	$-0.32 \pm 0.21 \pm 0.09$	± 0.11	± 0.06	15
$A_{CP}^{\pi^+\pi^-}$ [10 ⁻²]	$0.55 \pm 0.36 \pm 0.09$	± 0.17	± 0.06	> 50
$A_{CP}^{\phi\gamma} \ [10^{-2}]$	\pm 5.6	± 2.5	± 0.8	> 50
$x^{K_S \pi^+ \pi^-} [10^{-2}]$	$0.56 \pm 0.19 \pm {0.07 \atop 0.13}$	± 0.14	± 0.11	3
$y^{K_S \pi^+ \pi^-} [10^{-2}]$	$0.30 \pm 0.15 \pm {0.05 \atop 0.08}$	± 0.08	± 0.05	15
$ q/p ^{K_S\pi^+\pi^-}$	$0.90\pm {0.16\atop 0.15}\pm {0.08\atop 0.06}$	± 0.10	± 0.07	5-6
$\phi^{K_S \pi^+ \pi^-} \ [^\circ]$	$-6\pm11\pmrac{4}{5}$	± 6	± 4	10
$A_{CP}^{\pi^0\pi^0}$ [10 ⁻²]	$-0.03 \pm 0.64 \pm 0.10$	± 0.29	± 0.09	> 50
$A_{CP}^{K_S^0 \pi^0} \ [10^{-2}]$	$-0.10 \pm 0.16 \pm 0.09$	± 0.08	± 0.03	> 50
$Br(D^0\to\gamma\gamma)~[10^{-6}]$	< 1.5	$\pm 30\%$	$\pm 25\%$	2
	$\tau \to \mu \gamma \ [10^{-9}]$	< 45	< 14.7	< 4.7
	$\tau \to e \gamma \ [10^{-9}]$	< 120	< 39	< 12
	$\tau \to \mu \mu \mu \ [10^{-9}]$	< 21.0	< 3.0	< 0.3

[BELLE2-NOTE-PH-2015-002, retrieved from B2TiP]

FLAG-2 on B decay constants

[FLAG 2013, Eur J Phys C74 (2014) 2890, arXiv:1310.8555v2]

(+ HPQCD results for f_{B_c} , not covered by FLAG) [PRD 86 (2012) 074503]

new results for f_{B_q}

new results superimposed on FLAG-2 summary plots:

- still significantly larger error than for charm decay
- few values enter averages, strong need of more results involving different HQ treatments

CP violation: B-mixing

$$H_{\text{eff}}^{\Delta B=2} = \frac{G_{\text{F}}^2 M_W^2}{16\pi^2} \left(\mathcal{F}_d^0 Q_1^d + \mathcal{F}_s^0 Q_1^s \right)$$
$$Q_1^q = (\bar{b}\gamma_{\mu}^{\text{L}}q)(\bar{b}\gamma_{\mu}^{\text{L}}q) \qquad \mathcal{F}_q^0 = \lambda_{tq}^2 S_0(m_t^2/M_W^2), \qquad \lambda_{tq} = V_{tq}^* V_{tb}$$

 $\langle B_q^0 | H_{\text{eff}}^{\Delta B=2} | B_q^0 \rangle = \frac{G_F^2 M_W^2}{16\pi^2} S_0(x_t) \eta_{2B} \lambda_{tq}^2 \langle B_q^0 | Q_{\text{RGI}}^q | B_q^0 \rangle \quad [+ \text{ h.o. OPE}]$

$$B_{B_{q}} = \frac{\langle B_{q}^{0} | Q_{\text{RGI}}^{q} | B_{q}^{0} \rangle}{\frac{8}{3} f_{B_{q}}^{2} m_{B_{q}}^{2}}$$

CP violation: B-mixing

n.b.: in this case one is interested in constraining the apex position, so a priori knowledge of CKM's is needed [$\Delta(\lambda_{tq}^2) \approx 7-8\%$]

FLAG-2 on B-mixing

new results for B-mixing

new results superimposed on FLAG-2 summary plots:

plan

- methods: where we stand (brief!)
 - ensembles used in HQ physics, reach
 - HQ approaches
- brief overview of
 - leptonic charm and B decay
 - B mixing
- charm and B semileptonic decays (+ CKM 2nd and 3rd rows)
- the % precision target
- conclusions and outlook

 $\frac{\mathrm{d}\Gamma(D \to Pl\nu)}{\mathrm{d}q^2} = \frac{G_{\mathrm{F}}^2 |V_{cq}|^2}{24\pi^3} \frac{(q^2 - m_l^2)^2 \sqrt{E_P^2 - m_P^2}}{q^4 m_D^2} \left[\left(1 + \frac{m_l^2}{2q^2}\right) m_D^2 (E_P^2 - m_P^2) |f_+(q^2)|^2 + \frac{3m_l^2}{8q^2} (m_D^2 - m_P^2)^2 |f_0(q^2)|^2 \right]$

$$\langle P(p')|\bar{c}\gamma_{\mu}q|D_{q}(p)\rangle = f_{+}(q^{2})\left(p_{\mu} + p'_{\mu} - \frac{m_{D_{q}}^{2} - m_{P}^{2}}{q^{2}}q_{\mu}\right) + f_{0}(q^{2})\frac{m_{D_{q}}^{2} - m_{P}^{2}}{q^{2}}q_{\mu}, \quad q = p - p'$$

uncertainties from kinematical factors / neglected h.o. OPE at the permille level

[from H Ma's talk on behalf of BESIII at CHARM 2015]

[from H Ma's talk on behalf of BESIII at CHARM 2015]

low q^2 region accessible to lattice computations \Rightarrow CKM can be determined by computing form factors at zero momentum

experimental precision increasing, parametrisation dependence of experimental result for $q^2=0$ relevant: need to start worrying about q^2 dependence (which provides a stronger SM test anyway!)

FLAG-2 on charm semileptonic decay

[FLAG 2013, Eur J Phys C74 (2014) 2890, arXiv:1310.8555v2]

new results for cm

$|V_{cd}|$, $|V_{cs}|$, 2nd row CKM unitarity

averaged leptonic (more precise) and semileptonic determinations

$|V_{cd}|$, $|V_{cs}|$, 2nd row CKM unitarity

precise semileptonic determination will be interesting, sensitivity to $|V_{cb}|$ around the corner

 $\frac{\mathrm{d}\Gamma(B_{(s)} \to Pl\nu)}{\mathrm{d}q^2} = \frac{G_{\mathrm{F}}^2 |V_{cb}|^2}{24\pi^3} \frac{(q^2 - m_l^2)^2 \sqrt{E_P^2 - m_P^2}}{q^4 m_{B_{(s)}}^2} \left[\left(1 + \frac{m_l^2}{2q^2} \right) m_{B_{(s)}}^2 (E_P^2 - m_P^2) |f_+(q^2)|^2 + \frac{3m_l^2}{8q^2} (m_{B_{(s)}}^2 - m_P^2)^2 |f_0(q^2)|^2 \right]$

$$\langle P(p')|\bar{b}\gamma_{\mu}q|B_{q}(p)\rangle = f_{+}(q^{2})\left(p_{\mu} + p'_{\mu} - \frac{m_{B_{q}}^{2} - m_{P}^{2}}{q^{2}}q_{\mu}\right) + f_{0}(q^{2})\frac{m_{B_{q}}^{2} - m_{P}^{2}}{q^{2}}q_{\mu}, \quad q = p - p'$$

uncertainties from kinematical factors / neglected h.o. OPE at the permille level

$$\frac{\mathrm{d}\Gamma(B \to Dl\nu_l)}{\mathrm{d}w} = \frac{G_{\mathrm{F}}^2}{48\pi^3} (m_B + m_D)^2 (w^2 - 1)^{3/2} |\eta_{\mathrm{EW}}|^2 |V_{cb}|^2 |\mathcal{G}(w)|^2 + \mathcal{O}\left(\frac{m_l^2}{q^2}\right)$$
$$\frac{\mathrm{d}\Gamma(B \to D^* l\nu_l)}{\mathrm{d}w} = \frac{G_{\mathrm{F}}^2}{4\pi^3} (m_B - m_{D^*})^2 (w^2 - 1)^{1/2} |\eta_{\mathrm{EW}}|^2 \chi(w) |V_{cb}|^2 |\mathcal{F}(w)|^2 + \mathcal{O}\left(\frac{m_l^2}{q^2}\right)$$

$$w = \frac{p_B \cdot p_{D^{(*)}}}{m_B m_{D^{(*)}}} \qquad \qquad \mathcal{G}(w) = \frac{4 \frac{m_D}{m_B}}{1 + \frac{m_D}{m_B}} f_+(q^2) \quad \text{etc}$$

$$\frac{\mathrm{d}\Gamma(B \to Dl\nu_l)}{\mathrm{d}w} = \frac{G_{\mathrm{F}}^2}{48\pi^3} (m_B + m_D)^2 (w^2 - 1)^{3/2} |\eta_{\mathrm{EW}}|^2 |V_{cb}|^2 |\mathcal{G}(w)|^2 + \mathcal{O}\left(\frac{m_l^2}{q^2}\right)$$
$$\frac{\mathrm{d}\Gamma(B \to D^* l\nu_l)}{\mathrm{d}w} = \frac{G_{\mathrm{F}}^2}{4\pi^3} (m_B - m_{D^*})^2 (w^2 - 1)^{1/2} |\eta_{\mathrm{EW}}|^2 \chi(w) |V_{cb}|^2 |\mathcal{F}(w)|^2 + \mathcal{O}\left(\frac{m_l^2}{q^2}\right)$$

low recoil region accessible to lattice computations \Rightarrow CKM can be determined by computing form factors at w=1

shape information relevant as precision increases

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)} \tau \nu_{\tau})}{\mathcal{B}(B \to D^{(*)} \ell \nu_{\ell})} \quad [\longrightarrow f_0(q^2)]$$

$R(D^{(*)})$, new measurements of $B \to D^* \tau \nu$

[pre-2015, arXiv:1303.0571]

[Ciezarek/Kuhr, FPCP 2015]
 [LHCb, arXiv:1506.08614]
 [Belle, arXiv:1507.03233]

Belle II projections

Observables	Belle	Bel	\mathcal{L}_s	
	(2014)	5 ab^{-1}	$50~{\rm ab}^{-1}$	$[ab^{-1}]$
$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012$	± 0.012	± 0.008	6
α		$\pm 2^{\circ}$	$\pm 1^{\circ}$	
γ	$\pm 14^{\circ}$	$\pm 6^{\circ}$	$\pm 1.5^{\circ}$	
$S(B \to \phi K^0)$	$0.90\substack{+0.09\\-0.19}$	± 0.053	± 0.018	>50
$S(B\to\eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	± 0.028	± 0.011	>50
$S(B\to K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$	± 0.100	± 0.033	44
$ V_{cb} $ incl.	$\pm 2.4\%$	$\pm 1.0\%$		< 1
$ V_{cb} $ excl.	$\pm 3.6\%$	$\pm 1.8\%$	$\pm 1.4\%$	< 1
$ V_{ub} $ incl.	$\pm 6.5\%$	$\pm 3.4\%$	$\pm 3.0\%$	2
$ V_{ub} $ excl. (had. tag.)	$\pm 10.8\%$	$\pm 4.7\%$	$\pm 2.4\%$	20
$ V_{ub} $ excl. (untag.)	$\pm 9.4\%$	$\pm 4.2\%$	$\pm 2.2\%$	3
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	96 ± 26	$\pm 10\%$	$\pm 5\%$	46
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	5σ	$>>5\sigma$	>50
$R(B \to D \tau \nu)$	$\pm 16.5\%$	$\pm 5.6\%$	$\pm 3.4\%$	4
$R(B\to D^*\tau\nu)$	$\pm 9.0\%$	$\pm 3.2\%$	$\pm 2.1\%$	3
$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40		$\pm 30\%$	>50
$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55		$\pm 30\%$	>50
$\mathcal{B}(B \to X_s \gamma) \ [10^{-6}]$	$\pm 13\%$	$\pm 7\%$	$\pm 6\%$	< 1
$A_{CP}(B \to X_s \gamma)$		± 0.01	± 0.005	8
$S(B \to K^0_S \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	± 0.11	± 0.035	> 50
$S(B ightarrow ho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	± 0.23	± 0.07	> 50
$C_7/C_9 \ (B \to X_s \ell \ell)$	$\sim 20\%$	10%	5%	
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7	± 0.3		
$\mathcal{B}(B_s \to \tau^+ \tau^-) \ [10^{-3}]$		< 2		

Observables	Belle	Bell	le II	\mathcal{L}_s
	(2014)	5 ab^{-1}	$50 {\rm ~ab^{-1}}$	$[ab^{-1}]$
$\mathcal{B}(D_s \to \mu \nu)$	$5.31 \times 10^{-3} (1 \pm 0.053 \pm 0.038)$	$\pm 2.9\%$	$\pm (0.9\%$ -1.3%)	> 50
$\mathcal{B}(D_s \to \tau \nu)$	$5.70 \times 10^{-3} (1 \pm 0.037 \pm 0.054)$	$\pm (3.5\%$ -4.3%)	$\pm (2.3\%$ -3.6%)	3-5
$y_{CP} \ [10^{-2}]$	$1.11 \pm 0.22 \pm 0.11$	$\pm (0.11 \text{-} 0.13)$	$\pm (0.05 - 0.08)$	5-8
$A_{\Gamma} [10^{-2}]$	$-0.03 \pm 0.20 \pm 0.08$	± 0.10	$\pm (0.03 \text{-} 0.05)$	7 - 9
$A_{CP}^{K^+K^-}$ [10 ⁻²]	$-0.32 \pm 0.21 \pm 0.09$	± 0.11	± 0.06	15
$A_{CP}^{\pi^+\pi^-}$ [10 ⁻²]	$0.55 \pm 0.36 \pm 0.09$	± 0.17	± 0.06	> 50
$A_{CP}^{\phi\gamma} \ [10^{-2}]$	\pm 5.6	± 2.5	± 0.8	> 50
$x^{K_S \pi^+ \pi^-} [10^{-2}]$	$0.56 \pm 0.19 \pm {0.07 \atop 0.13}$	± 0.14	± 0.11	3
$y^{K_S \pi^+ \pi^-} [10^{-2}]$	$0.30 \pm 0.15 \pm {0.05 \atop 0.08}$	± 0.08	± 0.05	15
$ q/p ^{K_S \pi^+ \pi^-}$	$0.90 \pm {0.16 \atop 0.15} \pm {0.08 \atop 0.06}$	± 0.10	± 0.07	5-6
$\phi^{K_S \pi^+ \pi^-}$ [°]	$-6 \pm 11 \pm \frac{4}{5}$	± 6	± 4	10
$A_{CP}^{\pi^0\pi^0}$ [10 ⁻²]	$-0.03 \pm 0.64 \pm 0.10$	± 0.29	± 0.09	> 50
$A_{CP}^{K_S^0 \pi^0} \ [10^{-2}]$	$-0.10 \pm 0.16 \pm 0.09$	± 0.08	± 0.03	> 50
$Br(D^0 \to \gamma \gamma) \ [10^{-6}]$	< 1.5	$\pm 30\%$	$\pm 25\%$	2
	$\tau \to \mu \gamma \ [10^{-9}]$	< 45	< 14.7	< 4.7
	$\tau \to e\gamma \ [10^{-9}]$	< 120	< 39	< 12
	$ au o \mu \mu \mu \ [10^{-9}]$	< 21.0	< 3.0	< 0.3

[BELLE2-NOTE-PH-2015-002, retrieved from B2TiP]

FLAG-2 on $B \rightarrow D^{(*)} l \nu$

			ation status	uun etter	etr. abolation	rotune to		quark treatment			
Collaboration Ref.	N_f	publi	CONK	Chira.	fluito	1.enor	beek)	form	factor		
FNAL/MILC 13B[446] FNAL/MILC 10 [443] FNAL/MILC 08 [444]	2+1 2+1 2+1	$\mathbf{C}^{ abla}$ \mathbf{C}^{\S} \mathbf{A}	* * *	0 0 0	* * *	0 0 0	√ √ √	$\mathcal{F}^{B \to D^*}(1)$ $\mathcal{F}^{B \to D^*}(1)$ $\mathcal{F}^{B \to D^*}(1)$	$\begin{array}{c} 0.906(4)(12) \\ 0.9017(51)(87)(83)(89)(30)(\\ 0.921(13)(8)(8)(14)(6)(3)(4) \end{array}$	33) [‡]	
FNAL/MILC 13B[446] FNAL/MILC 04A[445]	2+1 2+1	C C	*	0	★ ○*	0 0 [†]	✓ ✓	$\mathcal{G}^{B \to D}(1) \\ \mathcal{G}^{B \to D}(1)$	$1.081(25) \\ 1.074(18)(16)$		w = 1
FNAL/MILC 12A[452]	2+1	А	0	0	*	0	✓	R(D)	0.316(12)(7)		
Atoui 13 [448]	2	Р	*	*	*		✓	$\mathcal{G}^{B \to D}(1)$	1.033(95)		u > 1
Atoui 13 [448]	2	Р	*	*	*	_	\checkmark	$\mathcal{G}^{B_s \to D_s}(1)$	1.052(46)		

[FLAG 2013, Eur J Phys C74 (2014) 2890, arXiv:1310.8555v2]

[∇] Update of FNAL/MILC 08 for Lattice 2013.
[§] Update of FNAL/MILC 08 for CKM 2010.
[‡] Value of *F*(1) presented in Ref. [443] includes 0.7% correction η_{EW}. This correction is unrelated to the lattice calculation and has been removed here.
* No explicit estimate of FV error, but expected to be small.
[†] No explicit estimate of perturbative truncation error in vector current renormalization factor, but expected to be small because of mostly-nonperturbative approach.

FLAG-2 on $B \rightarrow D^{(*)} l \nu$

[FLAG 2013, Eur J Phys C74 (2014) 2890, arXiv:1310.8555v2]

[HPQCD]

new results

[FNAL/MILC]

$$z(w) = \frac{\sqrt{1+w} - \sqrt{2}}{\sqrt{1+w} + \sqrt{2}} \qquad w_{\text{latt}} \in [1.00, 1.16] \quad w_{\text{exp}} \in [1.00, 1.58]$$
$$z_{\text{latt}} \in [0.00, 0.02] \quad z_{\text{exp}} \in [0.00, 0.06]$$

new results for $B \to Dl_{\mathcal{G}(w)}$

[FNAL/MILC]

comparison with quenched results

[De Divitiis, Molinaro, Petronzio, Tantalo PLB 655 (2007) 45]

new results for $B \to D l \nu$

[FNAL/MILC]

[HPQCD]

 $|V_{cb}| \equiv 39.6(1+7) (1.3) \times 10^{-3}$ he exclusive decay $B \to Dl\nu$ at nonzero recoil, where the first error

nd statistical errors from both experiment and theory and the second

new results

[FNAL/MILC]

 $R(D) = \frac{\mathcal{B}(B \to D\tau\nu)}{\mathcal{B}(B \to D\ell\nu)} = 0.299(11)$

0.300(8)

[HPQCD]

status of R(D)

n.b.: Belle II expected to decrease error by factor of 3 at 5/ab, and a factor 5 at 50/ab

$$\frac{\mathrm{d}\Gamma(B_{(s)} \to Pl\nu)}{\mathrm{d}q^2} = \frac{G_{\rm F}^2 |V_{ub}|^2}{24\pi^3} \frac{(q^2 - m_l^2)^2 \sqrt{E_P^2 - m_P^2}}{q^4 m_{B_{(s)}}^2} \left[\left(1 + \frac{m_l^2}{2q^2} \right) m_{B_{(s)}}^2 (E_P^2 - m_P^2) |f_+(q^2)|^2 + \frac{3m_l^2}{8q^2} (m_{B_{(s)}}^2 - m_P^2)^2 |f_0(q^2)|^2 \right]$$

$$\langle P(p')|\bar{b}\gamma_{\mu}q|B_{q}(p)\rangle = f_{+}(q^{2})\left(p_{\mu} + p'_{\mu} - \frac{m_{B_{q}}^{2} - m_{P}^{2}}{q^{2}}q_{\mu}\right) + f_{0}(q^{2})\frac{m_{B_{q}}^{2} - m_{P}^{2}}{q^{2}}q_{\mu}, \quad q = p - p'$$

Belle II projections

Observables	Belle Belle II		le II	\mathcal{L}_s
	(2014)	$5~{\rm ab^{-1}}$	50 ab^{-1}	$[ab^{-1}]$
$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012$	± 0.012	± 0.008	6
α		$\pm 2^{\circ}$	$\pm 1^{\circ}$	
γ	$\pm 14^{\circ}$	$\pm 6^{\circ}$	$\pm 1.5^{\circ}$	
$S(B \to \phi K^0)$	$0.90\substack{+0.09 \\ -0.19}$	± 0.053	± 0.018	>50
$S(B\to\eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	± 0.028	± 0.011	>50
$S(B \to K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$	± 0.100	± 0.033	44
$ V_{cb} $ incl.	$\pm 2.4\%$	$\pm 1.0\%$		< 1
$ V_{cb} $ excl.	$\pm 3.6\%$	$\pm 1.8\%$	$\pm 1.4\%$	< 1
$ V_{ub} $ incl.	$\pm 6.5\%$	$\pm 3.4\%$	$\pm 3.0\%$	2
$ V_{ub} $ excl. (had. tag.)	$\pm 10.8\%$	$\pm 4.7\%$	$\pm 2.4\%$	20
$ V_{ub} $ excl. (untag.)	$\pm 9.4\%$	$\pm 4.2\%$	$\pm 2.2\%$	3
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	96 ± 26	$\pm 10\%$	$\pm 5\%$	46
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	5σ	$>>5\sigma$	>50
$R(B \to D \tau \nu)$	$\pm 16.5\%$	$\pm 5.6\%$	$\pm 3.4\%$	4
$R(B\to D^*\tau\nu)$	$\pm 9.0\%$	$\pm 3.2\%$	$\pm 2.1\%$	3
$\mathcal{B}(B\to K^{*+}\nu\overline{\nu})~[10^{-6}]$	< 40		$\pm 30\%$	>50
$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55		$\pm 30\%$	>50
$\mathcal{B}(B \to X_s \gamma) \ [10^{-6}]$	$\pm 13\%$	$\pm 7\%$	$\pm 6\%$	< 1
$A_{CP}(B \to X_s \gamma)$		± 0.01	± 0.005	8
$S(B\to K^0_S\pi^0\gamma)$	$-0.10 \pm 0.31 \pm 0.07$	± 0.11	± 0.035	> 50
$S(B \to \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	± 0.23	± 0.07	> 50
$C_7/C_9 \ (B \to X_s \ell \ell)$	$\sim 20\%$	10%	5%	
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7	± 0.3		
$\mathcal{B}(B_s \to \tau^+ \tau^-) \ [10^{-3}]$		< 2		

Observables	Belle	Belle II		\mathcal{L}_{s}
	(2014)	5 ab^{-1}	$50 {\rm ~ab^{-1}}$	$[ab^{-1}]$
$\mathcal{B}(D_s \to \mu \nu)$	$5.31 \times 10^{-3} (1 \pm 0.053 \pm 0.038)$	$\pm 2.9\%$	$\pm (0.9\%$ -1.3%)	> 50
$\mathcal{B}(D_s \to \tau \nu)$	$5.70 \times 10^{-3} (1 \pm 0.037 \pm 0.054)$	$\pm (3.5\%$ -4.3%)	$\pm (2.3\%$ -3.6%)	3-5
$y_{CP} \ [10^{-2}]$	$1.11 \pm 0.22 \pm 0.11$	$\pm (0.11 \text{-} 0.13)$	$\pm (0.05 - 0.08)$	5-8
$A_{\Gamma} [10^{-2}]$	$-0.03 \pm 0.20 \pm 0.08$	± 0.10	$\pm (0.03 \text{-} 0.05)$	7 - 9
$A_{CP}^{K^+K^-}$ [10 ⁻²]	$-0.32 \pm 0.21 \pm 0.09$	± 0.11	± 0.06	15
$A_{CP}^{\pi^+\pi^-}$ [10 ⁻²]	$0.55 \pm 0.36 \pm 0.09$	± 0.17	± 0.06	> 50
$A_{CP}^{\phi\gamma} \ [10^{-2}]$	± 5.6	± 2.5	± 0.8	> 50
$x^{K_S \pi^+ \pi^-} [10^{-2}]$	$0.56 \pm 0.19 \pm {0.07 \atop 0.13}$	± 0.14	± 0.11	3
$y^{K_S \pi^+ \pi^-} [10^{-2}]$	$0.30 \pm 0.15 \pm \overset{0.05}{_{0.08}}$	± 0.08	± 0.05	15
$ q/p ^{K_S \pi^+ \pi^-}$	$0.90 \pm {0.16 \atop 0.15} \pm {0.08 \atop 0.06}$	± 0.10	± 0.07	5-6
$\phi^{K_S \pi^+ \pi^-}$ [°]	$-6 \pm 11 \pm rac{4}{5}$	± 6	± 4	10
$A_{CP}^{\pi^0\pi^0}$ [10 ⁻²]	$-0.03 \pm 0.64 \pm 0.10$	± 0.29	± 0.09	> 50
$A_{CP}^{K_S^0 \pi^0} \ [10^{-2}]$	$-0.10 \pm 0.16 \pm 0.09$	± 0.08	± 0.03	> 50
$Br(D^0 \to \gamma \gamma) \ [10^{-6}]$	< 1.5	$\pm 30\%$	$\pm 25\%$	2
	$\tau \to \mu \gamma \ [10^{-9}]$	< 45	< 14.7	< 4.7
	$\tau \to e\gamma \ [10^{-9}]$	< 120	< 39	< 12
	$ au o \mu \mu \mu \ [10^{-9}]$	< 21.0	< 3.0	< 0.3

[BELLE2-NOTE-PH-2015-002, retrieved from B2TiP]

large phase space \Rightarrow accurate description of q^2 dependence over a significant region crucial for a precise CKM determination

FLAG-2 on $B \rightarrow \pi l \nu$

[FLAG 2013, Eur J Phys C74 (2014) 2890, arXiv:1310.8555v2]

FLAG-2 on $B \rightarrow \pi l \nu$

[FLAG 2013, Eur J Phys C74 (2014) 2890, arXiv:1310.8555v2]

new results for $B \to \pi l \nu$

[FNAL/MILC]

[RBC/UKQCD]

 $|V_{ub}| = 3.72(16) \times 10^{-3}$

 $|V_{ub}| = 3.61(32) \times 10^{-3}$

 $B_s \to K l \nu$

[RBC/UKQCD]

[HPQCD]

 $B_s \to K l \nu$

[RBC/UKQCD]

new exclusive determination of $|V_{cb}|/|V_{ub}|$ from LHCb measurement + LQCD computation of form factors

Kenneth G. Wilson Award for Excellence in Lattice Field Theory 2015: **S Meinel**

[Detmold, Lehner, Meitnel arXiv:1503.01421] [cf. Detmold, Lin, Meitnel, Wingate PRD 88 (2013) 014512]

[Detmold, Lehner, Meitnel arXiv:1503.01421] [cf. Detmold, Lin, Meitnel, Wingate PRD 88 (2013) 014512]

[LHCb arXiv:1504.01568]

Corrected $pK^{-}\pi^{+}\mu^{-}$ mass [MeV/c²]

$\left|V_{ub} ight|$, $\left|V_{cb} ight|$

 $\left|V_{ub}
ight|$, $\left|V_{cb}
ight|$

plan

- methods: where we stand (brief!)
 - ensembles used in HQ physics, reach
 - HQ approaches
- brief overview of
 - leptonic charm and B decay
 - B mixing
- charm and B semileptonic decays (+ CKM 2nd and 3rd rows)
- the % precision target
- conclusions and outlook

the % semileptonic precision target

- in order to achieve few % precision there are common issues with other quantities ...
 - limitations of HQ approaches
 - (related:) reliance on perturbation theory
 - mixed-action aspects
 - correct treatment of resonances
 - QED (also inclusive determinations), isospin, OPE corrections
- ... and some specific questions
 - contamination from excited states
 - matching of currents / four-quark operators
 - chiPT for form factors
 - momentum dependence of form factors

q^2 dependence of form factors

[from H Ma's talk on behalf of BESIII at CHARM 2015]

a benchmark case: $f_+(B \to \pi l \nu)$

various parametrisations based on pole dominance: Bećirević-Kaidalov, Ball-Zwicky, Hill, ... difficult to systematically improve precision

[Bećirević, Kaidalov PLB 478 (2000) 417] [Ball, Zwicky PRD 71 (2005) 014015] [Hill PRD 73 (2006) 014012]

z-parametrisations proposed to solve this issue (almost) rigourously by exploiting unitarity and crossing symmetry

[Okubo PRD 3 (1971) 2807, 4 (1971) 725] [Bourrely, Machet, de Rafael NPB 189 (1981) 157] [Boyd, Grinstein, Lebed PRL 74 (1995) 4603] [Lellouch NPB 479 (1996) 353] [Bourrely, Caprini, Micu EJPC 27 (2003) 439] [Arnesen, Grinstein, Rothstein, Stewart PRL 95 (2005) 071802] [Becher, Hill PLB 633 (2006) 61] [Flynn, Nieves PRD 75 (2007) 013008] [Bourrely, Caprini, Lellouch PRD 79 (2009) 013008] a benchmark case: $f_+(B \to \pi l \nu)$

$$z = \frac{\sqrt{t_{+} - q^{2}} - \sqrt{t_{+} - t_{0}}}{\sqrt{t_{+} - q^{2}} + \sqrt{t_{+} - t_{0}}} \implies f_{+}(q^{2}) = \frac{1}{B(q^{2})\phi(q^{2}, t_{0})} \sum_{n \ge 0} a_{n} z(q^{2}, t_{0})^{n}$$
$$\implies t_{+} = (m_{B} + m_{\pi})^{2}, \qquad t_{0} < t_{+} \qquad \text{unitarity bound:} \sum_{m,n} B_{mn}^{(\phi)} a_{m} a_{n} \le 1$$

a benchmark case: $f_+(B \to \pi l \nu)$

$$f_{+}(q^{2}) = \frac{1}{B(q^{2})\phi(q^{2}, t_{0})} \sum_{n \ge 0} a_{n} z(q^{2}, t_{0})^{n} \qquad B(q^{2}) = z(q^{2}, m_{B^{*}}^{2})$$

BGL: complicated outer function $\phi \longrightarrow \sum_{n \ge 0} |a_n|^2 \lesssim 1$ [Boyd, Grinstein, Lebed PRL 74 (1995) 4603]

BCL:
$$f_+(q^2) = \frac{1}{1 - q^2/m_{B^*}^2} \sum_{n \ge 0} a_n z^n \longrightarrow \sum_{m,n \ge 0} B_{mn} a_m a_n \lesssim 1$$

(recommended by FLAG)

[Bourrely, Caprini, Lellouch PRD 79 (2009) 013008]

crucial for optimal use:

- all sub-threshold poles included in Blaschke factor
- fixed kinematics (coefficients implicitly depend on quark masses)

does the unitarity bound apply?

using a z-parametrisation as part of a global fit including a, m_q, ...
 (modified z-expansion) tricky

- poles can cross threshold as quark masses change
- complicated entanglement of (m_q, a) dependence (complete form factor vs. *z*-parametrisation coefficient)
- pole structure not always well-known (scalar channels, D decay), or complicated (Λ_b decay)
- missing sub-threshold poles may imply convergence breakdown (proton charge radius analysis by Hill, Paz et al, D semileptonic decay data by Bećirević et al)

```
[Hill, Paz PRD 82 (2010) 113005]
[Bhattacharya, Hill, Paz PRD 84 (2011) 073006]
[Epstein, Paz, Roy PRD 90 (2014) 074027]
[cf talk by J Zanotti]
[Bećirević et al arXiv:1407.1019]
```

is your z-parametrisation well-behaved?

convergence properties can actually be tested

[FNAL/MILC arXiv:1503.07839]

matching/renormalisation

perturbative convergence known to be poor at b scale

e.g. systematics due to using perturbative running in HQET may well be O(4%) for *B* decay constant

extensive one-loop input for matchings/renormalisation needed in RHQ actions and operators (even tree-level, e.g. $B \rightarrow D$ transition amplitudes at non-zero recoil)

matching/renormalisation

non-perturbative current normalisations for RHQ actions significantly large, huge cutoff dependence; expected effect of RG trajectory tuning?

Parameter	coarse	fine
$Z_V^{(bb)}$	10.037(34)	5.270(13)
$Z_V^{(cc)}$	1.35725(23)	1.18321(14)
$\underline{\qquad Z_V^{(uu)}}$	0.71651(46)	0.74475(12)

[Detmold, Lehner, Meinel arXiv:1503.01421]

matching/renormalisation

[Papinutto, CP, Preti arXiv:1412.1742]

chiPT for SL form factors

- issues in fitting FF light quark mass dependence:
 - how reliable HQchiPT is?
 - uncertainties from g_{H^*HP}
 - explored range in momentum transfer goes well beyond slow pion kinematics
- extension of chiPT to hard pions being rapidly incorporated into analyses
 [Bijnens, Jemos NPB 840 (2010) 54, 844(2011) 182]
- recent efforts aimed at improving precision on g_{H^*HP}

 (HQchiPT systematic dependence should become less relevant as physical pion points enter analyses — H Leutwyler allowing)

[cf. A Jüttner's talk]

chiPT for SL form factors

FNAL/MILC analysis of hard-pion chiPT impact in $B \rightarrow \pi$ [arXiv:1503.07839]

conclusions and outlook

• HQ physics making great progress, remarkably in semileptonics

• still much way to go to meet the new era precision requirements

- crosscheck HQ approaches as much as possible
- full incorporation of available ensembles to HQ physics
- many systematics to be improved: use of perturbation theory, momentum dependence of FFs, incorporation of QED effects, resonances ...

decrease the lattice spacing and get direct access to the b region

• FLAG-3 review foreseen for early 2016: keep tuned

backup

Flavour Lattice Averaging Group

```
advisory board: S Aoki, C Bernard, C Sachrajda
editorial board: G Colangelo, H Leutwyler, A Vladikas, U Wenger
working groups:
    quark masses
                                                T Blum, L Lellouch, V Lubicz
    V_{ud}, V_{us}
                                              A Jüttner, T Kaneko, S Simula
    LECs
                                                  S Dürr, H Fukaya, S Necco
    B_K
                                                  J Laiho, S Sharpe, H Wittig
    \alpha_{\rm s}
                                              R Horsley, T Onogi, R Sommer
    f_{D_a}, f_{B_a}, B_{B_a}
                                         Y Aoki, M Della Morte, A El-Khadra
                                               E Lunghi, CP, R Van de Water
    SL, rare
```

FLAG-2 review published in 2014, includes results up to ≤ end 2013

[FLAG 2013, Eur J Phys C74 (2014) 2890, arXiv:1310.8555v2]

FLAG-3

AB: S Aoki, C Bernard, H Leutwyler, C Sachrajda
EB: G Colangelo, S Hashimoto, A Jüttner, S Sharpe, A Vladikas, U Wenger
WGs:

quark masses (+HQ)T Blum, L Lellouch, V Lubicz V_{ud} , V_{us} P Boyle, T Kaneko, S SimulaLECsS Dürr, H Fukaya, U Heller B_K (+BSM)P Dimopoulos, R Mawhinney, H Wittig α_s R Horsley, T Onogi, R Sommer f_{D_q} , f_{B_q} , B_{B_q} Y Aoki, D Lin, M Della MorteSL, rareD Bećirević, S Gottlieb, E Lunghi, CP

expected publication early 2016, no preliminary averages yet :-(

bounds on neutron EDM

confined ultracold atoms $\Rightarrow |d_n| \sim 10^{-27} - 10^{-28} \ e \cdot cm$

(slow neutron sources at Oak Ridge, J-PARC, PSI, TRIUMF, Lund)

[H Shimizu, FPCP15]

bounds on charged lepton flavour violation

LFV not present in the SM for $m_v \neq 0$, no reason to impose it

[plot from Z Ligeti's review talk at FPCP 2015]

c and b quark masses

almost no new results after F Sanfilippo's review at Lattice 2014

see also talk on JLQCD results from moments method

[K Nakayama, Wed 16:50]
FLAG-2 on charm decay constants

A CONTRACT OF CONT											
Collaboration	Ref.	N_f	q_{hq}			finit	, ten	$h_{e_{a_l}}$	f_D	f_{D_s}	f_{D_s}/f_D
ETM 13F	[154]	2+1+1	С	0	0	0	*	\checkmark	202(8)	242(8)	1.199(25)
FNAL/MILC 13^{∇}	[328]	2+1+1	\mathbf{C}	\star	\star	*	*	\checkmark	212.3(0.3)(1.0)	248.7(0.2)(1.0)	1.1714(10)(25)
FNAL/MILC 12B	[329]	2+1+1	С	*	*	*	*	✓	209.2(3.0)(3.6)	246.4(0.5)(3.6)	1.175(16)(11)
HPQCD 12A	[330]	2+1	А	0	0	*	*	\checkmark	208.3(1.0)(3.3)	246.0(0.7)(3.5)	1.187(4)(12)
FNAL/MILC 11	[331]	2 + 1	А	0	0	★	0	\checkmark	218.9(11.3)	260.1(10.8)	1.188(25)
PACS-CS 11	[332]	2 + 1	А		*		0	\checkmark	226(6)(1)(5)	257(2)(1)(5)	1.14(3)
HPQCD 10A	[94]	2 + 1	А	*	0	*	\star	\checkmark	$213(4)^*$	248.0(2.5)	
HPQCD/UKQCD 07	[164]	2 + 1	А	\star	0	★	★	\checkmark	207(4)	241(3)	1.164(11)
FNAL/MILC 05	[333]	2+1	А	0	0	*	0	✓	201(3)(17)	249(3)(16)	1.24(1)(7)
ETM $13B^{\Box}$	[334]	2	Р	*	0	*	*	✓	208(7)	250(7)	1.20(2)
ETM 11A	[335]	2	А	\star	0	\star	\star	\checkmark	212(8)	248(6)	1.17(5)
ETM 09	[168]	2	А	0	0	*	*	\checkmark	197(9)	244(8)	1.24(3)

^{∇} Update of FNAL/MILC 12B. * This result is obtained by using the central value for f_{D_s}/f_D from HPQCD/UKQCD 07 and increasing the error to account for the effects from the change in the physical value of r_1 .

 \Box Update of ETM 11A and ETM 09.

new results for $f_{D_{(s)}}$

	TWQCD	ETMC phys	χQCD	FNAL/MILC	ETMC
$f_D \; [{ m MeV}]$	202.3(2.2)(2.6)	216.7(2.3)(4.2)		$212.6(0.4)\binom{+1.2}{-1.0}$	209.2(3.3)
f_{D_s} [MeV]	258.7(1.1)(2.9)	255.9(0.5)(5.0)	254(2)(4)	$249.0(0.3)(^{+1.1}_{-1.5})$	248.6(2.7)
f_{D_s}/f_D	1.279(26)	1.206(23)		$1.1712(10)(^{+_{29}}_{{32}})$	1.187(12)
ensembles	TWQCD	ETMC	RBC/UKQCD	MILC	ETMC
N_{f}	2	2	2+1	2+1+1	2+1+1
$a \ (fm)$	1/0.06	1/0.09	2/0.085, 0.111	4/0.06 - 0.15	3/0.062 - 0.089
M_{π}^{\min} [MeV]	259	132	320	130	210
$M_{\pi}^{\min}L$	2	3.0	4.3	3.2	3.1
sea	DW	tmQCD	DW	HISQ	tmQCD
valence	DW	tmQCD/OS	overlap	HISQ	tmQCD/OS
reference	[1404.3648]	[priv. comm.]	[1410.3343]	[1407.3772]	[1411.7908]

+ report of work in progress by RBC/UKQCD [T Tsang, Thu 10:40]

FLAG-2 on B decay constants

Collaboration	Ref.	N_{f}	nQ	.0°,	S.	A.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	40	f_{B^+}	f_{B^0}	f_B	f_{B_s}
ETM 13E	[398]	2+1+1	С	0	0	0	0	\checkmark	_	_	196(9)	235(9)
HPQCD 13	[399]	2+1+1	А	*	*	*	0	✓	184(4)	188(4)	186(4)	224(5)
RBC/UKQCD 13A	[400]	2+1	С	0	0	*	0	\checkmark	_	_	$191(6)^{\diamond}_{\mathrm{stat}}$	$233(5)^{\diamond}_{\mathrm{stat}}$
HPQCD 12	[401]	2 + 1	А	0	0	\star	0	\checkmark	_	_	191(9)	228(10)
HPQCD 12	[401]	2 + 1	А	0	0	\star	0	\checkmark	_	_	$189(4)^{ riangle}$	_
HPQCD 11A	[365]	2 + 1	А	\star	0	\star	\star	\checkmark	_	_	_	$225(4)^{\nabla}$
FNAL/MILC 11	[331]	2 + 1	А	0	0	\star	0	\checkmark	197(9)	_	_	242(10)
HPQCD 09	[402]	2+1	А	0	0	*	0	✓	_	_	$190(13)^{\bullet}$	$231(15)^{\bullet}$
ALPHA 13	[403]	2	С	*	*	*	*	\checkmark	_	_	187(12)(2)	224(13)
ETM 13B, 13C [334	, 404]	2	\mathbf{P}^{\dagger}	\star	0	\star	0	\checkmark	_	_	189(8)	228(8)
ALPHA 12A	[369]	2	С	\star	\star	\star	\star	\checkmark	_	_	193(9)(4)	219(12)
ETM $12B$	[392]	2	С	\star	0	\star	0	\checkmark	_	_	197(10)	234(6)
ALPHA 11	[364]	2	С	\star	0	\star	\star	\checkmark	_	_	174(11)(2)	_
ETM 11A	[335]	2	А	0	0	*	0	\checkmark	_	_	195(12)	232(10)
ETM 09D	[391]	2	А	0	0	0	0	\checkmark	_	_	194(16)	235(12)

^oStatistical errors only.

^{\triangle}Obtained by combining f_{B_s} from HPQCD 11A with f_{B_s}/f_B calculated in this work.

^{∇} This result uses one ensemble per lattice spacing with light to strange sea-quark mass ratio $m_{\ell}/m_s \approx 0.2$. • This result uses an old determination of $r_1 = 0.321(5)$ fm from Ref. [379] that has since been superseded. [†]Update of ETM 11A and 12B.

new results for f_{B_q}

	ALPHA (def)	RBC/UKQCD	RBC/UKQCD _{stat}	ETMC
f_B [MeV]	186(13)	196(15)/200(13)*	219(31)	194(5)(3)
f_{B_s} [MeV]	224(14)	235(12)	264(37)	229(4)(3)
f_{B_s}/f_B	1.203(65)	1.223(71)/1.197(50)*	1.193(48)	1.179(18)(18)
ensembles	CLS	RBC/UKQCD	RBC/UKQCD	ETMC
$N_{ m f}$	2	2+1	2+1	2+1+1
$a \ ({\rm fm})$	3/0.0483 - 0.0749	2/0.085, 0.111	2/0.085, 0.111	3/0.062 - 0.089
M_{π}^{\min} [MeV]	190	289	289	210
$M_{\pi}^{\min}L$	4.0	4.0	4.0	3.1
l quarks	NP O(<i>a</i>) improved	DW	DW	tmQCD
<i>b</i> quark	npHQET	RHQ (Columbia)	static	tmQCD/OS
reference	[1404.3590]	[1404.4670]	[1406.6192]	[priv. comm.]
		* f_{B^+}/f_{B^0}		

+ report of work in progress by RBC/UKQCD, FNAL/MILC [T Ishikawa, Thu 8:30]

[C DeTar, Thu 8:50]

FLAG-2 on B-mixing

FLAG-2 on B-mixing

new results for B-mixing

RBC/UKQCD static limit

[Y Aoki et al, PRD 91 (2014) 114505, arXiv:1406.6192]

ensembles	RBC/UKQCD	$f_{B_d}\sqrt{\hat{B}_{B_d}} = 240(15)(33)$
$N_{ m f}$	2+1	$\int \hat{\hat{\mathbf{p}}} = 000(0)(40)$
$a \ (fm)$	2/0.085, 0.111	$f_{B_s} \bigvee B_{B_s} = 290(9)(40)$
M_{π}^{\min} [MeV]	320	$\hat{B}_{B_d} = 1.17(11)(24)$
$M_{\pi}^{\min}L$	4.3	$\hat{B}_{B_s} = 1.22(6)(19)$
/ quarks	DWF	$B_{B_s}/B_{B_d} = 1.028(60)(49)$
<i>b</i> quark	static	$\xi = 1.208(41)(52)$

preliminary FNAL/MILC $N_{\rm f}=2+1: \xi = 1.211(19)$

+ work in progress by FNAL/MILC, RBC/UKQCD

[J Simone, Thu 9:10] [A Khamseh, Thu 11:00] [T Ishikawa, Thu 8:30] [T Kawanai, Fri 16:30] [O Witzel, Fri 17:10] [P Korcyl, Tue 16:30]

FLAG-2 on charm semileptonic decay

			the set of							
Collaboration	Ref.	N_{f}	lqnq	CONX	Chira	hnite	reho.	Acar.	$f_+^{D\pi}(0)$	$f_+^{DK}(0)$
HPQCD 11	[337]	2+1	А	0	0	*	*	\checkmark	0.666(29)	
HPQCD 10B	[341]	2 + 1	А	0	0	*	*	\checkmark		0.747(19)
FNAL/MILC 04	[356]	2+1	А	•	•	*	0	\checkmark	0.64(3)(6)	0.73(3)(7)
ETM 11B	[344]	2	С	0	0	*	*	\checkmark	0.65(6)(6)	0.76(5)(5)

new results for

 $N_{\rm f}$

sea

-

_

—

0.5

1,5

 q^2 (GeV²)

2

2,5

3

new results for charm SL form factors

ensembles	MILC
$N_{ m f}$	2+1+1
$a \ ({\rm fm})$	4/0.042 - 0.12
M_{π}^{\min} [MeV]	130
$M_{\pi}^{\min}L$	3.2
sea	HISQ
valence	HISQ

- tbc to get precise form factor at $q^2=0$
- tbc allow for fine momentum spacing
- no quotable numbers outside plots

new results for charm SL form factors

[T Suzuki, Thu 11:20]

- very preliminary
- results consistent with FLAG "average" and CLEO-c shape within large errors

HPQCD arXiv:1305.1465 ($D \rightarrow K$)

discussed in FLAG-2, unable to rate/average it due to incomplete information on systematics

new results for $B \to D^{(*)} l \nu$

	FNAL/MILC*	FNAL/MILC	HPQCD
process	$B \to D^* \ell \nu$	$B \to D l \nu$	$B \to D l \nu$
kinematics	w = 1	$w \ge 1$	$w \ge 1$
ensembles	MILC	MILC	MILC
$N_{ m f}$	2+1	2+1	2+1
$a \ (fm)$	5/0.045 - 0.15	4/0.045 - 0.12	2/0.09, 0.12
M_{π}^{\min} [MeV]	260	220	260
$M_{\pi}^{\min}L$	3.8	3.8	3.8
/ quarks	asqtad	asqtad	asqtad
c quark	RHQ (Fermilab)	RHQ (Fermilab)	HISQ
<i>b</i> quark	RHQ (Fermilab)	RHQ (Fermilab)	NRQCD
reference	[1403.0635]	[1503.07237]	[1505.03925]

(* full publication of $B \rightarrow D^*$ results, no changes wrt proceedings value quoted in FLAG)

[HPQCD]

new results

[FNAL/MILC]

FFs from combination of double and single ratios of current matrix elements

FFs from direct fit to threepoint functions

new results for $B \to D l \nu$

[FNAL/MILC]

[HPQCD]

FFs from combination of double and single ratios of current matrix elements

$$z = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$$

$$t_+ = (m_B + m_\pi)^2, \qquad t_0 < t_+$$

FLAG-2 on $B \rightarrow \pi l \nu$

new results for $B\to \pi l\nu$

	FNAL/MILC	RBC/UKQCD	HPQCD
ensembles	MILC	RBC/UKQCD	MILC
$N_{ m f}$	2+1	2+1	2+1
$a \ (\mathrm{fm})$	4/0.045 - 0.12	2/0.086, 0.11	2/0.09, 0.12
M_{π}^{\min} [MeV]	220	289	260
$M_{\pi}^{\min}L$	3.8	4.0	3.8
/ quarks	asqtad	DW	asqtad
<i>b</i> quark	RHQ (Fermilab)	RHQ (Columbia)	NRQCD
reference	[1503.07839]	[1501.05373]	[1310.3207]

new results for $B\to \pi l\nu$

=rror (%) f

 $B_s \to K l \nu$

	RBC/UKQCD	HPQCD	ALPHA
ensembles	RBC/UKQCD	MILC	CLS
$N_{ m f}$	2+1	2+1	2
$a \ ({\rm fm})$	2/0.086, 0.11	2/0.09, 0.12	3/0.0483 - 0.0749
M_{π}^{\min} [MeV]	289	260	310
$M_{\pi}^{\min}L$	4.0	3.8	4.0
/ quarks	DW	asqtad	NP O(a) improved
<i>b</i> quark	RHQ (Columbia)	NRQCD	npHQET
reference	[1501.05373]	[1406.2279]	[1411.3916]

 $B_s \to K l \nu$

impact of fitting, systematics estimation

significant differences in estimates of fit and systematic uncertainties in otherwise very similar computations

well-known example from light-quark physics (both computations use MILC ensembles, relatively minor differences)

MILC 13
$$f_{K^{\pm}}/f_{\pi^{\pm}}|_{N_{\rm f}=2+1+1} = 1.1947(26)(33)(17)(2)$$

HPQCD 13 $f_{K^{\pm}}/f_{\pi^{\pm}}|_{N_{f}=2+1+1} = 1.1916(15)(12)(1)(10)$