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why we care

theory-driven discovery of new physics through loops has an 
impressive track record from the 70s, 80s, 90s

[Glashow, Iliopoulos, Maiani 1970]

[Kobayashi, Maskawa 1973]

[Gaillard, Lee 1974; Vainshtein, Khriplovich 1973]

• no                      charm

•              3rd generation

•   

•                      large (with some hindsight...)

• ...

crucial to build and consolidate the SM!

KL → µµ ⇒

�K ⇒

∆mK ⇒ mc

∆mB ⇒ mt



why we care

SM quark flavour dynamics neatly encoded in CKM matrix

2 11. CKM quark-mixing matrix

Figure 11.1: Sketch of the unitarity triangle.

The CKM matrix elements are fundamental parameters of the SM, so their precise
determination is important. The unitarity of the CKM matrix imposes

∑
i VijV

∗
ik = δjk

and
∑

j VijV
∗
kj = δik. The six vanishing combinations can be represented as triangles in

a complex plane, of which the ones obtained by taking scalar products of neighboring
rows or columns are nearly degenerate. The areas of all triangles are the same, half of
the Jarlskog invariant, J [7], which is a phase-convention-independent measure of CP
violation, defined by Im

[
VijVklV

∗
il V

∗
kj

]
= J

∑
m,n εikmεjln.

The most commonly used unitarity triangle arises from

Vud V ∗
ub + Vcd V ∗

cb + Vtd V ∗
tb = 0 , (11.6)

by dividing each side by the best-known one, VcdV
∗
cb (see Fig. 1). Its vertices are exactly

(0, 0), (1, 0), and, due to the definition in Eq. (11.4), (ρ̄, η̄). An important goal of
flavor physics is to overconstrain the CKM elements, and many measurements can be
conveniently displayed and compared in the ρ̄, η̄ plane.

Processes dominated by loop contributions in the SM are sensitive to new physics, and
can be used to extract CKM elements only if the SM is assumed. In Sec. 11.2 and 11.3,
we describe such measurements assuming the SM, we give the global fit results for the
CKM elements in Sec. 11.4, and discuss implications for new physics in Sec. 11.5.

11.2. Magnitudes of CKM elements

11.2.1. |Vud| :
The most precise determination of |Vud| comes from the study of superallowed 0+ → 0+

nuclear beta decays, which are pure vector transitions. Taking the average of the twenty
most precise determinations [8] yields

|Vud| = 0.97425± 0.00022. (11.7)
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[CKMfitter 2001 vs 2014]
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Figure 14-12. The overall 95% CL for ( , ) in 1998, including the limits on via the
amplitude measurements (described in the text). Each contour is a 95% CL obtained with one fixed
set of theoretical parameters. These parameters are scanned within the boundaries of Table 14-3
and the set of all these contours represents the best constraints on and at 95% CL. Also
shown (for illustrative purposes only) as dotted lines, are the individual constraints brought by the
different measurements: they are obtained by varying coherently all the uncertainties (experimental
and theoretical) to produce the maximum and minimum variation in this plane. For , the
dotted line represents the constraint obtained by taking the ratio using simply the limit

and the upper value of .
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why we still care

[quoted from Z Ligeti’s TASI Lectures on Flavor Physics, arXiv:1502.01372]

• tensions/puzzles: exclusive vs inclusive        and       ,         , 
lepton universality in R(D), non-leptonic decays, D-mixing, ...

• FCNC (relatively) poorly constrained in several processes

• some complementary precision tests are expected to improve 
significantly (EDM by 102-103, CLFV by at least 102, ...)

• upcoming new generation of experimental results

LHCb upgrade
LHCb 1/fb

Belle II
Belle

BaBar 2009
CLEO 1999

50∼∼∼

|Vub| |Vcb| b → s



Belle II projections 



[BELLE2-NOTE-PH-2015-002, retrieved from B2TiP]

VII. SUMMARY OF THE SENSITIVITY FOR SELECTED OBSERVABLES

TABLE XXXVIII: Expected errors on several selected observables with an integrated
luminosity of 5 ab−1 and 50 ab−1 of Belle II data. The current results (from Belle) are also
given. Ls denotes the approximate integrated luminosity at which the statistical precision
of a given observable will match its systematic uncertainty. Errors given in % represent

relative errors.

Observables Belle Belle II Ls

(2014) 5 ab−1 50 ab−1 [ab−1]

sin 2β 0.667± 0.023± 0.012 ±0.012 ±0.008 6

α ±2◦ ±1◦

γ ±14◦ ±6◦ ±1.5◦

S(B → φK0) 0.90
+0.09
−0.19 ±0.053 ±0.018 >50

S(B → η�K0) 0.68± 0.07± 0.03 ±0.028 ±0.011 >50

S(B → K0
SK0

SK0
S) 0.30± 0.32± 0.08 ±0.100 ±0.033 44

|Vcb| incl. ±2.4% ±1.0% < 1

|Vcb| excl. ±3.6% ±1.8% ±1.4% < 1

|Vub| incl. ±6.5% ±3.4% ±3.0% 2

|Vub| excl. (had. tag.) ±10.8% ±4.7% ±2.4% 20

|Vub| excl. (untag.) ±9.4% ±4.2% ±2.2% 3

B(B → τν) [10−6] 96± 26 ±10% ±5% 46

B(B → µν) [10−6] < 1.7 5σ >> 5σ >50

R(B → Dτν) ±16.5% ±5.6% ±3.4% 4

R(B → D∗τν) ±9.0% ±3.2% ±2.1% 3

B(B → K∗+νν) [10−6] < 40 ±30% >50

B(B → K+νν) [10−6] < 55 ±30% >50

B(B → Xsγ) [10−6] ±13% ±7% ±6% < 1

ACP (B → Xsγ) ±0.01 ±0.005 8

S(B → K0
Sπ0γ) −0.10± 0.31± 0.07 ±0.11 ±0.035 > 50

S(B → ργ) −0.83± 0.65± 0.18 ±0.23 ±0.07 > 50

C7/C9 (B → Xs��) ∼20% 10% 5%

B(Bs → γγ) [10−6] < 8.7 ±0.3

B(Bs → τ+τ−) [10−3] < 2

52

TABLE XXXIX: Continued from previous page.

Observables Belle Belle II Ls

(2014) 5 ab−1 50 ab−1 [ab−1]

B(Ds → µν) 5.31× 10−3(1± 0.053± 0.038) ±2.9% ±(0.9%-1.3%) > 50

B(Ds → τν) 5.70× 10−3(1± 0.037± 0.054) ±(3.5%-4.3%) ±(2.3%-3.6%) 3-5

yCP [10−2] 1.11± 0.22± 0.11 ±(0.11-0.13) ±(0.05-0.08) 5-8

AΓ [10−2] −0.03± 0.20± 0.08 ±0.10 ±(0.03-0.05) 7 - 9

AK+K−
CP [10−2] −0.32± 0.21± 0.09 ±0.11 ±0.06 15

Aπ+π−
CP [10−2] 0.55± 0.36± 0.09 ±0.17 ± 0.06 > 50

Aφγ
CP [10−2] ± 5.6 ±2.5 ±0.8 > 50

xKSπ+π− [10−2] 0.56± 0.19± 0.07
0.13 ±0.14 ±0.11 3

yKSπ+π− [10−2] 0.30± 0.15± 0.05
0.08 ±0.08 ±0.05 15

|q/p|KSπ+π− 0.90± 0.16
0.15 ±

0.08
0.06 ±0.10 ±0.07 5-6

φKSπ+π− [◦] −6± 11± 4
5 ±6 ±4 10

Aπ0π0

CP [10−2] −0.03± 0.64± 0.10 ±0.29 ±0.09 > 50

A
K0

Sπ0

CP [10−2] −0.10± 0.16± 0.09 ±0.08 ±0.03 > 50

Br(D0 → γγ) [10−6] < 1.5 ±30% ±25% 2

τ → µγ [10−9] < 45 < 14.7 < 4.7

τ → eγ [10−9] < 120 < 39 < 12

τ → µµµ [10−9] < 21.0 < 3.0 < 0.3

53

Belle II projections 



[BELLE2-NOTE-PH-2015-002, retrieved from B2TiP]

Belle II projections 
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FIG. 9: |Vub| extraction methods.
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FIG. 10: |Vcb| exclusive.
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APPENDIX A: LATTICE PROJECTIONS

To provide appropriate projections for the exclusive and leptonic methods of Vub and
Vcb extraction, the LQCD projections are briefly summarised. The LQCD collaboration,
USQCD, recently prepared a “white-paper” outlining the projected precision of their LQCD
predictions for the coming 5 years [20]. The relevant projections for UT side determination
are listed in Table XL. Notable improvements are expected in exclusive |Vub|, where LQCD
limits the precision. The bulk of the improvement will come from use of increased computing
power for higher statistics, and reduced lattice spacings. Sub per-cent level uncertainties will
require treatment of previously ignored effects. For reference the values of the semi-tauonic
quantity, R(D), and the mixing quantity ζ for the determination of |Vtd|/|Vts| are also listed.
This list is not exhaustive, for example |Vub| can also be extracted from the vector mode,
B → ρ�ν, but accurate modern calculations do not yet exist. Similarly the semi-tauonic
ratio of the vector mode, R(D∗), is yet to be accurately determined on the lattice.

TABLE XL: LQCD projections used in the evaluation of UT sides parameters. Errors are
given in percent on the respective CKM parameter. The world average (WA) experimental

errors are given for reference [7]. Dashes are given where no predictions are provided.

Lattice Quantity CKM element WA Expt. Error Lattice error
2013 (Present) 2014 2018

F (1) (B → D∗�ν) |Vcb| 1.3 1.8 1.5 <1
G(1) (B → D�ν) |Vcb| 1.3 1.8 1.5 <1
Gs(1) (Bs → D∗

s�ν) |Vcb| − 4.6 − −
ζ(B → π�ν) |Vub| 4.1 8.7 4 2
fB (B → τν, µν) |Vub| 9.0 2.5 1.5 <1
R(D)(B → Dτν) − 13 4.3 4 < 2
Mixing ζ(∆md/∆ms) |Vtd|/|Vts| 0.4 4.0 − < 1
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LHCb Run 2 and upgrade projections

n.b.: LHCb outdoing expectations (e.g. baryon semileptonic decay)



LHCb Run 2 and upgrade projectionsTable 27: Statistical sensitivities of the LHCb upgrade to key observables. For each observable the expected sensitivity is
given for the integrated luminosity accumulated by the end of LHC Run 1, by 2018 (assuming 5 fb−1 recorded during Run
2) and for the LHCb Upgrade (50 fb−1). An estimate of the theoretical uncertainty is also given – this and the potential
sources of systematic uncertainty are discussed in the text.

Type Observable LHC Run 1 LHCb 2018 LHCb upgrade Theory
B0

s mixing φs(B0
s → J/ψφ) (rad) 0.049 0.025 0.009 ∼ 0.003

φs(B0
s → J/ψ f0(980)) (rad) 0.068 0.035 0.012 ∼ 0.01
Asl(B0

s ) (10
−3) 2.8 1.4 0.5 0.03

Gluonic φeff
s (B0

s → φφ) (rad) 0.15 0.10 0.018 0.02
penguin φeff

s (B0
s → K∗0K̄∗0) (rad) 0.19 0.13 0.023 < 0.02

2βeff(B0 → φK0
S) (rad) 0.30 0.20 0.036 0.02

Right-handed φeff
s (B0

s → φγ) (rad) 0.20 0.13 0.025 < 0.01
currents τ eff(B0

s → φγ)/τB0
s

5% 3.2% 0.6% 0.2%
Electroweak S3(B0 → K∗0µ+µ−; 1 < q2 < 6GeV2/c4) 0.04 0.020 0.007 0.02
penguin q20 AFB(B0 → K∗0µ+µ−) 10% 5% 1.9% ∼ 7%

AI(Kµ+µ−; 1 < q2 < 6GeV2/c4) 0.09 0.05 0.017 ∼ 0.02
B(B+ → π+µ+µ−)/B(B+ → K+µ+µ−) 14% 7% 2.4% ∼ 10%

Higgs B(B0
s → µ+µ−) (10−9) 1.0 0.5 0.19 0.3

penguin B(B0 → µ+µ−)/B(B0
s → µ+µ−) 220% 110% 40% ∼ 5%

Unitarity γ(B → D(∗)K(∗)) 7◦ 4◦ 0.9◦ negligible
triangle γ(B0

s → D∓
s K

±) 17◦ 11◦ 2.0◦ negligible
angles β(B0 → J/ψK0

S) 1.7◦ 0.8◦ 0.31◦ negligible
Charm AΓ(D0 → K+K−) (10−4) 3.4 2.2 0.4 –

CP violation ∆ACP (10−3) 0.8 0.5 0.1 –
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[LHCb-PUB-2014-040]

n.b.: LHCb outdoing expectations (e.g. baryon semileptonic decay)



why we still care

• B-physics: much better precision + new channels (e.g. much more 
information on rare decays)

•+ contributions from ATLAS/CMS

•+ dedicated charm physics (BESIII running from 2011, large charm 
production cross section at Belle II, ...)

• theory has to meet the challenge



• starting point:
- thorough reviews on HQ decays/mixing (C Bouchard) and quark 

masses (F Sanfilippo) at Lattice 2014

- contributions to the Lattice 2015 Conference

- detailed coverage of results up to end 2013 in FLAG-2

• guidelines:
- CKM tests focus
- status overview for decay constants, B-mixing
- strong progress + expt synergy in semileptonic decays
- not covered: HQ masses, BSM/rare decays (exc.), processes 

involving resonances (exc.), D-mixing, spectroscopy, ...

plan

[Bouchard arXiv:1501.03204]
[Sanfilippo arXiv:1505.02794]

[FLAG 2013, Eur J Phys C74 (2014) 2890, arXiv:1310.8555v2]

(unfortunately, no preliminary updates of FLAG averages for 
HQ quantities yet)



plan
• starting point:
- thorough reviews on HQ decays/mixing (C Bouchard) and quark 

masses (F Sanfilippo) at Lattice 2014

- contributions to the Lattice 2015 Conference

- detailed coverage of results up to end 2013 in FLAG-2

• guidelines:
- CKM tests focus
- status overview for decay constants, B-mixing
- strong progress + expt synergy in semileptonic decays
- not covered: HQ masses, BSM/rare decays (exc.), processes 

involving resonances (exc.), D-mixing, spectroscopy, ...

[Bouchard arXiv:1501.03204]
[Sanfilippo arXiv:1505.02794]

[FLAG 2013, Eur J Phys C74 (2014) 2890, arXiv:1310.8555v2]



plan

•methods: where we stand (brief!)
- ensembles used in HQ physics, reach
- HQ approaches

• brief overview of
- leptonic charm and B decay
- B mixing

• charm and B semileptonic decays (+ CKM 2nd and 3rd rows)

• the % precision target

• conclusions and outlook
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ensembles/physics reach

[G Herdoíza]

Lattice QCD

� � � �mtmbmcmsmdmu

10 102 103 104 105 MeV

Fig. 6.1 Quark masses.

• It would allow to study QCD in different conditions, such as high density or
temperature, as took place in the early universe or in very dense systems such as
neutron stars

• QCD is in some sense a model field theory for many extensions of the SM, as
well as for the lattice approach. In QCD we know where the UV fixed point lies
so we know where the continuum limit is and how to approach it. The lattice
method might be necessary to study other field theories, such as those in models
of technicolor or dynamical gauge symmetry breaking, where things might not be
so easy. Clearly having solved QCD is a benchmark to guide future investigations.

Giving the spread of quark masses that span six orders of magnitude, dealing with
all quarks in a lattice simulation is very difficult since approaching the continuum limit
in controlled conditions would require

amq � 1, (6.7)

and therefore extremely fine lattices. This brute force approach is not practical. Fortu-
nately, when we try to describe the low energy regime, the effect of the heavy quarks
can be accurately described by an effective theory that results from integrating them
out. It is a consequence of the decoupling theorem (Appelquist and Carazzone, 1975)
(which is another scenification of Wilsonian renormalization group), that the effects of
the heavy quarks in the low-energy dynamics are well represented by local operators
of the light fields only (gluons and the lighter quarks), where the effect of the heavy
scales is reabsorbed in the couplings. This implies that in order to study hadron pro-
cesses at energies much lower than the heavy quark mass scale, we can simply ignore
the heavy quarks.

We are also interested however in processes involving heavy hadrons. An efficient
way to do this is to consider them as static sources, as is done in the heavy quark ef-
fective theory. I refer to R. Sommer’s lectures (Sommer, 2009) for a detailed discussion
of this effective theory as an efficient tool to study heavy flavours on the lattice.

6.1 Wilson formulation of Lattice QCD

By now, it should be clear how to discretize this action following for example the
Wilson approach

SQCD[U, ψ̄,ψ] = S[U ] + SW [U, ψ̄,ψ] (6.8)

amq ≈ 1/3

Mπ (experiment)
JLQCD/CP-PACS (2001) Nf = 2
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ensembles/physics reach

[G Herdoíza]

• charm physics directly accessible for some time now
• fraction of available ensembles used for HQ physics still limited
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approaches to B physics

what one would like to do

Λ/mq
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ci



approaches to B physics

Λ/mq

a

b

c

interp/ratio
Λ/mq

a

b

c

npHQET

Λ/mq

a

b

c

NRQCD
Λ/mq

a

b

c

RHQ

(perturbatively) tuned RG 
trajectory for good scaling

effective theory used differently, different pros/cons balance: crosschecks crucial

ratios cancel systematics, 
lead to known static point

scaling window expected

non-perturbative QCD-
HQET matching at mb



towards a fully relativistic b

Topological charge

Topological charge shows dramatic slow down.
Already in pure gauge theory.
How does this match with 1/a expectation for HMC?

SOMMER, VIROTTA, ST.S’10
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crucial issue: strong lattice space dependence of autocorrelations

[Del Debbio, Panagopoulos, Vicari 2002]
[Schaefer, Sommer, Virotta 2010]
[Lüscher, Schaefer 2011]
[CLS Nf=2+1 obc programme]

[S Gottlieb, Tue 18:10]
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[C DeTar, Thu 8:50]



towards a fully relativistic b
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Figure 2: Example of long-tail contributions to the total budget from ensemble N6 (τN6
exp =

200MDU). On the left we plot the normalized autocorrelation function for the lattice spacing,

ρN6
a (t) = ΓN6

a (t)/ΓN6
a (0), and on the right accordingly for the quantity φ defined in eq. (2.15).

For the lattice spacing data that enters ρa, measurements have been performed on each stored

configuration, separated by 4 MDU, while for φ measurements are separated by 8MDU.

different chiral and continuum extrapolations to the physical point (mπ, a) = (mexp
π , 0).

The latter are being discussed in more detail in Section 3. Finally, we collect the values of

the static quantities f stat
B , f stat

Bs
and f stat

Bs
/f stat

B in Table 3.

2.4 Error analysis and propagation

We follow [41, 42] for all sources of errors. All results or intermediate quantities are con-

sidered as functions f(p̄, Y ) of the means p̄α(e) = N−1
e

�Ne
m=1 p

m
α (e) of primary MC data

pmα (e) originating from configuration m of the ensemble number e (corresponding to e-id in

Table 2 and 3), as well as functions of additional input Y , such as the HQET parameters

ωi. Also the results of fits to the data are considered as functions of the original data, where

the weights in the fits (we always use only the diagonal errors as weights) are precomputed

and then kept fixed, i.e., a dependence of f on the weights is not considered.

The error σf of such a function is then

σ2
f =

�

e

σ2
f (e) +

�

i,j

∂f

∂Yi
CY
ij

∂f

∂Yj
. (2.18)

The block-diagonal covariance matrix CY
of the additional input is known: a block [34]

for the axial current renormalization factors at the three different β (entering the lattice

spacing determination and fπ) and a block [30] for the ωi. The contributions from the

individual ensembles e are

σ2
f (e) =

1

Ne

�
Γe
f (0) + 2

W−1�

m=1

Γe
f (m) + 2τ eexpΓ

e
f (W )

�
,

Γe
f (m) =

�

α,β

∂f

∂p̄α
Γe
αβ(m)

∂f

∂p̄β
. (2.19)

The term proportional to τ eexp accounts for the difficult-to-estimate contribution of the tails

to the autocorrelation function Γe
f [42]. For τ eexp we insert our previously estimated values

8

[ALPHA fB, arXiv:1404.3590]

a = 0.048 fm , mπ = 340 MeV

crucial issue: strong lattice space dependence of autocorrelations
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charm leptonic decay
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charm leptonic decay

8

Comparisons of B[D+ +v ] and fD+

B[D+ ] fD+ [MeV]

[from H Ma’s talk on behalf of BESIII at CHARM 2015]



charm leptonic decay

[from S Eidelman’s talk on behalf of Belle at CHARM 2015]

Detroit, CHARM15 May 18-22, 2015

Summary on D+
s → µ+νµ – II

) (%)µ!
+µ"s

+B(D
0.6 0.8 1 1.2 1.4

CLEO-c

Average

Belle

BaBar

0.007)%±0.045±(0.565

0.019)%±0.028±(0.531

0.034)%±0.038±(0.602

S.Eidelman, BINP p.17/30

Detroit, CHARM15 May 18-22, 2015

Summary on D+
s → τ+ντ – II

) (%)!"
+!#s

+B(D
5 10 15 20 25 30

v)+$#+!CLEO-c(

vv)+e#+!CLEO-c(

v)+%#+!CLEO-c(

average

)v)µ(e/+!BaBar(

)v)$/µ(e/+!Belle(

0.18)%±0.81±(6.42

0.22)%±0.47±(5.30

0.21)%±0.57±(5.52

0.49)%±0.35±(5.00

)%-0.30
+0.310.21±(5.70

S.Eidelman, BINP p.19/30

∆ = 4.5% ∆ = 4.3%



[BELLE2-NOTE-PH-2015-002, retrieved from B2TiP]

VII. SUMMARY OF THE SENSITIVITY FOR SELECTED OBSERVABLES

TABLE XXXVIII: Expected errors on several selected observables with an integrated
luminosity of 5 ab−1 and 50 ab−1 of Belle II data. The current results (from Belle) are also
given. Ls denotes the approximate integrated luminosity at which the statistical precision
of a given observable will match its systematic uncertainty. Errors given in % represent

relative errors.

Observables Belle Belle II Ls

(2014) 5 ab−1 50 ab−1 [ab−1]

sin 2β 0.667± 0.023± 0.012 ±0.012 ±0.008 6

α ±2◦ ±1◦

γ ±14◦ ±6◦ ±1.5◦

S(B → φK0) 0.90
+0.09
−0.19 ±0.053 ±0.018 >50

S(B → η�K0) 0.68± 0.07± 0.03 ±0.028 ±0.011 >50

S(B → K0
SK0

SK0
S) 0.30± 0.32± 0.08 ±0.100 ±0.033 44

|Vcb| incl. ±2.4% ±1.0% < 1

|Vcb| excl. ±3.6% ±1.8% ±1.4% < 1

|Vub| incl. ±6.5% ±3.4% ±3.0% 2

|Vub| excl. (had. tag.) ±10.8% ±4.7% ±2.4% 20

|Vub| excl. (untag.) ±9.4% ±4.2% ±2.2% 3

B(B → τν) [10−6] 96± 26 ±10% ±5% 46

B(B → µν) [10−6] < 1.7 5σ >> 5σ >50

R(B → Dτν) ±16.5% ±5.6% ±3.4% 4

R(B → D∗τν) ±9.0% ±3.2% ±2.1% 3

B(B → K∗+νν) [10−6] < 40 ±30% >50

B(B → K+νν) [10−6] < 55 ±30% >50

B(B → Xsγ) [10−6] ±13% ±7% ±6% < 1

ACP (B → Xsγ) ±0.01 ±0.005 8

S(B → K0
Sπ0γ) −0.10± 0.31± 0.07 ±0.11 ±0.035 > 50

S(B → ργ) −0.83± 0.65± 0.18 ±0.23 ±0.07 > 50

C7/C9 (B → Xs��) ∼20% 10% 5%

B(Bs → γγ) [10−6] < 8.7 ±0.3

B(Bs → τ+τ−) [10−3] < 2
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TABLE XXXIX: Continued from previous page.

Observables Belle Belle II Ls

(2014) 5 ab−1 50 ab−1 [ab−1]

B(Ds → µν) 5.31× 10−3(1± 0.053± 0.038) ±2.9% ±(0.9%-1.3%) > 50

B(Ds → τν) 5.70× 10−3(1± 0.037± 0.054) ±(3.5%-4.3%) ±(2.3%-3.6%) 3-5

yCP [10−2] 1.11± 0.22± 0.11 ±(0.11-0.13) ±(0.05-0.08) 5-8

AΓ [10−2] −0.03± 0.20± 0.08 ±0.10 ±(0.03-0.05) 7 - 9

AK+K−
CP [10−2] −0.32± 0.21± 0.09 ±0.11 ±0.06 15

Aπ+π−
CP [10−2] 0.55± 0.36± 0.09 ±0.17 ± 0.06 > 50

Aφγ
CP [10−2] ± 5.6 ±2.5 ±0.8 > 50

xKSπ+π− [10−2] 0.56± 0.19± 0.07
0.13 ±0.14 ±0.11 3

yKSπ+π− [10−2] 0.30± 0.15± 0.05
0.08 ±0.08 ±0.05 15

|q/p|KSπ+π− 0.90± 0.16
0.15 ±

0.08
0.06 ±0.10 ±0.07 5-6

φKSπ+π− [◦] −6± 11± 4
5 ±6 ±4 10

Aπ0π0

CP [10−2] −0.03± 0.64± 0.10 ±0.29 ±0.09 > 50

A
K0

Sπ0

CP [10−2] −0.10± 0.16± 0.09 ±0.08 ±0.03 > 50

Br(D0 → γγ) [10−6] < 1.5 ±30% ±25% 2

τ → µγ [10−9] < 45 < 14.7 < 4.7

τ → eγ [10−9] < 120 < 39 < 12

τ → µµµ [10−9] < 21.0 < 3.0 < 0.3
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Belle II projections 



FLAG-2 on charm decay constants

[FLAG 2013, Eur J Phys C74 (2014) 2890, arXiv:1310.8555v2]

Figure 13: Decay constants of the D and Ds mesons [values in Table 20 and Eqs. (93), (94)].
The significance of the colours is explained in section 2. The black squares and grey bands
indicate our averages. Errors in FNAL/MILC 13 are smaller than the symbols.

different lattice spacings to fixed values of the heavy-quark mass. In the case of the SU(3)
breaking ratio fDs/fD, the uncertainty associated with the chiral extrapolation is estimated
by comparing fits either following heavy meson χPT or assuming a simple linear dependence
on the light-quark mass. These results have been further updated in ETM 13B [334] by using
optimized smearing interpolating fields in order to suppress excited states contributions and
by changing the chiral extrapolation. The ensembles used are the same as in ETM 11A. Val-
ues at the physical point are obtained by first extrapolating fDs

√
mDs linearly in m2

l and in
a2 and then by extrapolating the double ratio (fDs/fD)/(fK/fπ) using HMχPT. The value
of fK/fπ is taken from the Nf = 2 + 1 average in [1], in order to avoid correlations with
estimates obtained by the ETM collaboration.

As results from just one collaboration exist in the literature, the Nf = 2 averages are
simply given by the values in ETM 13B, which read

Nf = 2 : fD = (208 ± 7) MeV, fDs = (250 ± 7) MeV,
fDs

fD
= 1.20 ± 0.02 . (93)

The ALPHA Collaboration presented preliminary results on fD(s)
with two dynamical

flavours at the Lattice 2013 Conference [336]. The proceedings however appeared after the
deadline for consideration in this review and therefore are not discussed here.

Several collaborations have produced results with Nf = 2 + 1 dynamical flavours. The
most precise determinations come from a sequence of publications by HPQCD/UKQCD [94,
164, 330]. In all cases configurations generated by MILC with Asqtad rooted staggered
quarks in the sea and a one-loop tadpole improved Symanzik gauge action have been analysed
(see [15] and references therein). The main differences are in the ensembles utilized and in
the absolute scale setting. The relative scale is always set through r1 derived from the static
quark-antiquark potential.

In HPQCD/UKQCD 07 [164] three lattice spacings, a ≈ 0.15, 0.12 and 0.09 fm, with
RMS pion masses between 542 and 329 MeV, have been considered. This gives rather large
values for the charm-quark mass in lattice units, 0.43 < amc < 0.85, and indeed lattice

95

2 208(7) 250(7) 1.20(2)
2+1 209.2(3.3) 248.6(2.7) 1.187(12)

fDs [MeV]fD [MeV] fDs/fDNf



new results for fD(s)

new results superimposed on FLAG-2 summary plots:

- close to 1% accuracy: “raw” potential of lattice methods 
- already at the level where e.g. electromagnetic effects are relevant
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B leptonic decay
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B leptonic decay

[+ h.o. OPE]
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B leptonic decay
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B leptonic decay
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[BELLE2-NOTE-PH-2015-002, retrieved from B2TiP]

VII. SUMMARY OF THE SENSITIVITY FOR SELECTED OBSERVABLES

TABLE XXXVIII: Expected errors on several selected observables with an integrated
luminosity of 5 ab−1 and 50 ab−1 of Belle II data. The current results (from Belle) are also
given. Ls denotes the approximate integrated luminosity at which the statistical precision
of a given observable will match its systematic uncertainty. Errors given in % represent

relative errors.

Observables Belle Belle II Ls

(2014) 5 ab−1 50 ab−1 [ab−1]

sin 2β 0.667± 0.023± 0.012 ±0.012 ±0.008 6

α ±2◦ ±1◦

γ ±14◦ ±6◦ ±1.5◦

S(B → φK0) 0.90
+0.09
−0.19 ±0.053 ±0.018 >50

S(B → η�K0) 0.68± 0.07± 0.03 ±0.028 ±0.011 >50

S(B → K0
SK0

SK0
S) 0.30± 0.32± 0.08 ±0.100 ±0.033 44

|Vcb| incl. ±2.4% ±1.0% < 1

|Vcb| excl. ±3.6% ±1.8% ±1.4% < 1

|Vub| incl. ±6.5% ±3.4% ±3.0% 2

|Vub| excl. (had. tag.) ±10.8% ±4.7% ±2.4% 20

|Vub| excl. (untag.) ±9.4% ±4.2% ±2.2% 3

B(B → τν) [10−6] 96± 26 ±10% ±5% 46

B(B → µν) [10−6] < 1.7 5σ >> 5σ >50

R(B → Dτν) ±16.5% ±5.6% ±3.4% 4

R(B → D∗τν) ±9.0% ±3.2% ±2.1% 3

B(B → K∗+νν) [10−6] < 40 ±30% >50

B(B → K+νν) [10−6] < 55 ±30% >50

B(B → Xsγ) [10−6] ±13% ±7% ±6% < 1

ACP (B → Xsγ) ±0.01 ±0.005 8

S(B → K0
Sπ0γ) −0.10± 0.31± 0.07 ±0.11 ±0.035 > 50

S(B → ργ) −0.83± 0.65± 0.18 ±0.23 ±0.07 > 50

C7/C9 (B → Xs��) ∼20% 10% 5%

B(Bs → γγ) [10−6] < 8.7 ±0.3

B(Bs → τ+τ−) [10−3] < 2
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TABLE XXXIX: Continued from previous page.

Observables Belle Belle II Ls

(2014) 5 ab−1 50 ab−1 [ab−1]

B(Ds → µν) 5.31× 10−3(1± 0.053± 0.038) ±2.9% ±(0.9%-1.3%) > 50

B(Ds → τν) 5.70× 10−3(1± 0.037± 0.054) ±(3.5%-4.3%) ±(2.3%-3.6%) 3-5

yCP [10−2] 1.11± 0.22± 0.11 ±(0.11-0.13) ±(0.05-0.08) 5-8

AΓ [10−2] −0.03± 0.20± 0.08 ±0.10 ±(0.03-0.05) 7 - 9

AK+K−
CP [10−2] −0.32± 0.21± 0.09 ±0.11 ±0.06 15

Aπ+π−
CP [10−2] 0.55± 0.36± 0.09 ±0.17 ± 0.06 > 50

Aφγ
CP [10−2] ± 5.6 ±2.5 ±0.8 > 50

xKSπ+π− [10−2] 0.56± 0.19± 0.07
0.13 ±0.14 ±0.11 3

yKSπ+π− [10−2] 0.30± 0.15± 0.05
0.08 ±0.08 ±0.05 15

|q/p|KSπ+π− 0.90± 0.16
0.15 ±

0.08
0.06 ±0.10 ±0.07 5-6

φKSπ+π− [◦] −6± 11± 4
5 ±6 ±4 10

Aπ0π0

CP [10−2] −0.03± 0.64± 0.10 ±0.29 ±0.09 > 50

A
K0

Sπ0

CP [10−2] −0.10± 0.16± 0.09 ±0.08 ±0.03 > 50

Br(D0 → γγ) [10−6] < 1.5 ±30% ±25% 2

τ → µγ [10−9] < 45 < 14.7 < 4.7

τ → eγ [10−9] < 120 < 39 < 12

τ → µµµ [10−9] < 21.0 < 3.0 < 0.3
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Belle II projections 



Figure 16: Decay constants of the B and Bs mesons. The values are taken from Table 24 (the
fB entry for FNAL/MILC 11 represents fB+). The significance of the colours is explained in
section 2. The black squares and grey bands indicate our averages in Eqs. (110), (111) and
(112).

Wilson fermion action. In ETM 09D and ETM 11A the heavy-quark masses are in the charm
region and above while keeping amh<∼ 0.5. ETM 12B includes slightly heavier masses than
ETM 09D and ETM 11A, while ETM 13B, 13C includes masses as heavy as amh ∼ 0.85 at
the largest two lattice spacings. In ETM 11A two methods are used to obtain fB(s)

from their
heavy Wilson data: the ratio and the interpolation methods. In the interpolation method they
supplement their heavy Wilson data with a static limit calculation. In the ratio method (see
Appendix A.1.3) they construct ratios (called z(s)) from a combination of the decay constants
fh!(s) and the heavy-quark pole masses that are equal to unity in the static limit. Ratios of

pole-to-MS mass conversion factors are included at NLO in continuum perturbation theory.
ETM 09D, ETM 12B and ETM 13B, 13C use only the ratio method. Finally, ETM analyses
the SU(3) breaking ratio Φhs/Φh! (or the ratio of ratios, zs/z) and combines it with Φhs or
(zs) to obtain fB, instead of directly extracting it from their Φh! (or z) data. In ETM 11A,
ETM 12B, and ETM 13B, 13C the data are interpolated to a fixed set of reference masses
on all ensembles, and subsequently extrapolated to the continuum and to the physical light-
quark masses in a combined fit. The static limit calculation for the interpolation method in
ETM 11A is done at two intermediate lattice spacings, a ≈ 0.085, 0.067 fm. The results from
the interpolation method have larger (statistical and systematic) errors than those from the
ratio method, since statistical and systematic errors tend to cancel in the ratios. The observed
discretization effects (as measured by the percentage difference between the lattice data at the
smallest lattice spacing and the continuum extrapolated results) are smaller than what would
be expected from power-counting estimates. Over the range of heavy quark masses used in
their simulations ETM finds discretization errors <∼ 3% for Φhs and <∼ 1.5% for the ratio
zs. As a result, the dominant error on fBs is the statistical (combined with the chiral and
continuum extrapolation and heavy quark interpolation) uncertainty, whereas the dominant
error on the SU(3) breaking ratio is due to the chiral extrapolation.

The ALPHA collaboration calculates the B- and Bs-meson decay constants at the phys-

112

FLAG-2 on B decay constants

[FLAG 2013, Eur J Phys C74 (2014) 2890, arXiv:1310.8555v2]

2 189(8) 228(8) 1.206(24)
2+1 190.5(4.2) 227.7(4.5) 1.202(22)
2+1+1 186(4) 224(5) 1.205(7)

Nf fB [MeV] fBs [MeV] fBs/fB

(+ HPQCD results for     , not covered by FLAG)fBc [PRD 86 (2012) 074503]



new results for fBq

new results superimposed on FLAG-2 summary plots:

- still significantly larger error than for charm decay
- few values enter averages, strong need of more results involving 

different HQ treatments



CP violation: B-mixing
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Figure 2: Proper time distribution of B0
s → D−

s π+ candi-
dates tagged as mixed (red) or unmixed (blue) in the LHCb
experiment, displaying B0
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0
s oscillations (from Ref. [46]) .

The information on |Vts| obtained in the framework of the

Standard Model is hampered by the hadronic uncertainty, as

in the B0
d case. However, several uncertainties cancel in the

frequency ratio
∆ms

∆md
=

mBs

mBd

ξ2
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2

, (18)

where ξ = (fBs

√

BBs)/(fBd

√

BBd
) = 1.268± 0.063 is an SU(3)

flavor-symmetry breaking factor obtained from unquenched

lattice QCD calculations [45]. Using the measurements of

Eqs. (15) and (17), one can extract

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

= 0.2166± 0.0007(exp) ± 0.0108(lattice) , (19)

in good agreement with (but much more precise than) the value

obtained from the ratio of the b → dγ and b → sγ transition

rates observed at the B factories [44].

The CKM matrix can be constrained using experimental

results on observables such as ∆md, ∆ms, |Vub/Vcb|, εK , and

sin(2β) together with theoretical inputs and unitarity condi-

tions [44,48,49]. The constraint from our knowledge on the

ratio ∆ms/∆md is more effective in limiting the position of the

apex of the CKM unitarity triangle than the one obtained from

the ∆md measurements alone, due to the reduced hadronic un-

certainty in Eq. (18). We also note that the measured value of

∆ms is consistent with the Standard Model prediction obtained

August 21, 2014 13:17

n.b.: in this case one is interested in constraining the apex position, so 
a priori knowledge of CKM’s is needed [                     ]∆(λ2

tq) ≈ 7–8%

CP violation: B-mixing



FLAG-2 on B-mixing

Figure 17: Neutral B and Bs meson mixing matrix elements and bag parameters [values in
Table 26 and Eqs. (124), (125)].

The ETM collaboration has presented their first results for B-mixing quantities with
Nf = 2 sea quarks in Refs. [392, 413] (ETM 12A, 12B) using ensembles at three lattice spacings
in the range a ≈ 0.065−0.098 fm with a minimum pion mass of 270 MeV. Additional ensembles
at a ≈ 0.054 fm are included in ETM 13B [334]. The valence and sea quarks are simulated with
two different versions of the twisted-mass Wilson fermion action. The heavy-quark masses are
in the charm region and above while keeping amh<∼ 0.6 for ETM 12A and 12B. Larger masses
up to amh<∼ 0.85 are used for ETM 13B. In this series of calculations the ratio method first
developed for B-meson decay constants (see Appendix A.1.3 and Section 8.1) is extended
to B-meson mixing quantities. ETM again constructs ratios of B-mixing matrix elements
(now called ωd(s)) that are equal to unity in the static limit, including also an analogous
ratio for ξ. The renormalization of the four-quark operator is calculated nonperturbatively in
the RI’/MOM scheme. As an intermediate step for the interpolation to the physical b-quark
mass, these ratios include perturbative matching factors to match the four-quark operator
from QCD to HQET; these include tree-level and leading log contributions in ETM 12A and
12B, and additionally next-to-leading-log contributions in ETM 13B. Similar to their decay
constant analysis, ETM analyses the SU(3) breaking ratio of ratios, ωs/ω!, and combines it
with ωs to obtain BBd . The data are interpolated to a fixed set of heavy-quark reference
masses on all ensembles, and subsequently extrapolated to the continuum and to the physical
light-quark masses in a combined fit. The interpolation to the physical b-quark mass is
linear or quadratic in the inverse of the heavy-quark mass. While ETM 13B reports RGI
bag parameters, ETM 12A and 12B report only BB(mb)MS,NDR at mb = 4.35 GeV. Taking

αs(MZ) = 0.1184 [97], we apply an RGI conversion factor of B̂B/BB(mb)MS,NDR = 1.521 to
obtain the B̂B values quoted in Table 26. The observed discretization effects (as measured
by the percentage difference between the lattice data at the smallest lattice spacing and the
continuum extrapolated results) are <∼ 1% over the range of heavy-quark masses used in their
simulations. As a result, the dominant error on the bag parameters and on the ratio of bag
parameters is the combined statistical uncertainty, whereas the dominant error on the SU(3)
breaking ratio ξ is due to the chiral extrapolation. Because these studies appear either in
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Figure 18: The SU(3) breaking quantities ξ and BBs/BBd [values in Table 27 and Eq. (126)].

superseded, and that differs from the new value by about two standard deviations. Dimen-
sionless quantities are, of course, affected by a change in r1 only through the inputs, which
are a subdominant source of uncertainty. The scale uncertainty itself is also subdominant in
the error budget, and this change therefore does not affect HPQCD 09’s results for fBq

√
BBq

outside of the total error.
The RBC/UKQCD collaboration has presented a result for the SU(3) breaking ratio ξ

in Ref. [405] using a static-limit action on Nf = 2 + 1 domain wall ensembles at a single
lattice spacing a ≈ 0.11 fm with a minimum pion mass of approximately 430 MeV. They use
both HYP and APE smearing for the static-limit action and one-loop mean field improved
lattice perturbation theory to renormalize the static-limit four-quark operators. Effects of
O(1/mh) are not included in the static-limit action and operators, but Ref. [405] includes
an estimate of this effect via power counting as O ((ms −md)/mb) in the error budget. The
statistical errors in this work are significant (∼ 5− 6%), as are the chiral extrapolation errors
(∼ 7%, estimated from the difference between fits using NLO SU(2) HMχPT and a linear fit
function), due to the rather large pion masses used in this in this work. With data at only one
lattice spacing, discretization errors cannot be estimated from the data, but a power counting
estimate of this error of 4% is included in the systematic error budget. With only one lattice
spacing this result does not enter our averages. The RBC/UKQCD collaboration reported
at Lattice 2013 [407] that they are extending this study, using HYP and HYP2 smearings
for the static-limit action, smaller pion masses, larger volumes and two lattice spacings. The
conference proceedings [407], however, did not appear until after the closing deadline and is
therefore not included in this review.

Another calculation of the SU(3) breaking ratio ξ is presented by the Fermilab Lattice
and MILC collaborations in Ref. [414] (FNAL/MILC 12). The calculation uses the Fermi-
lab method for the b quarks together with Asqtad light and strange valence quarks on a
subset of the MILC Asqtad Nf = 2 + 1 ensembles, including lattice spacings in the range
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new results for B-mixing
new results superimposed on FLAG-2 summary plots:



•methods: where we stand (brief!)
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- HQ approaches
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- B mixing
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• conclusions and outlook
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charm semileptonic decay

12

Comparison of B[D0 K( ) e+v]

B[D0 K e ] B[D0 e ]

[from H Ma’s talk on behalf of BESIII at CHARM 2015]



charm semileptonic decay

[from H Ma’s talk on behalf of BESIII at CHARM 2015]

!"

Extracted Parameters of Form Factors

D0 K-e+v D0 -e+v

fK
+(0)|Vcs| 0.7209 0.0022 0.0033 f +(0)|Vcd| 0.1475 0.0014 0.0005

Simple Pole
Mpole 1.9207 0.0103 0.0069 Mpole 1.9114 0.0118 0.0038

fK
+(0)|Vcs| 0.7163 0.0024 0.0034 f +(0)|Vcd| 0.1437 0.0017 0.0008

Mod. Pole
0.3088 0.0195 0.0129 0.2794 0.0345 0.0113

fK
+(0)|Vcs| 0.7139 0.0023 0.0034 f +(0)|Vcd| 0.1415 0.0016 0.0006

ISGW2
rISGW2 1.6000 0.0141 0.0091 rISGW2 2.0688 0.0394 0.0124

fK
+(0)|Vcs| 0.7172 0.0025 0.0035 f +(0)|Vcd| 0.1435 0.0018 0.0009

Series.2.Par
r1 -2.2278 0.0864 0.0575 r1 -2.0365 0.0807 0.0260

fK
+(0)|Vcs| 0.7196 0.0035 0.0041 f +(0)|Vcd| 0.1420 0.0024 0.0010

r1 -2.3331 0.1587 0.0804 r1 -1.8434 0.2212 0.0690Series.3.Par

r2 3.4223 3.9090 2.4092 r2 -1.3871 1.4615 0.4677

D0 -e+vD0 K-e+v



charm semileptonic decay
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Extracted Parameters of Form Factors

D0 K-e+v D0 -e+v

fK
+(0)|Vcs| 0.7209 0.0022 0.0033 f +(0)|Vcd| 0.1475 0.0014 0.0005

Simple Pole
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+(0)|Vcs| 0.7139 0.0023 0.0034 f +(0)|Vcd| 0.1415 0.0016 0.0006

ISGW2
rISGW2 1.6000 0.0141 0.0091 rISGW2 2.0688 0.0394 0.0124

fK
+(0)|Vcs| 0.7172 0.0025 0.0035 f +(0)|Vcd| 0.1435 0.0018 0.0009

Series.2.Par
r1 -2.2278 0.0864 0.0575 r1 -2.0365 0.0807 0.0260

fK
+(0)|Vcs| 0.7196 0.0035 0.0041 f +(0)|Vcd| 0.1420 0.0024 0.0010

r1 -2.3331 0.1587 0.0804 r1 -1.8434 0.2212 0.0690Series.3.Par

r2 3.4223 3.9090 2.4092 r2 -1.3871 1.4615 0.4677

D0 -e+vD0 K-e+v

low q2 region accessible to lattice computations ⇒ CKM can be 
determined by computing form factors at zero momentum

experimental precision increasing, parametrisation dependence of 
experimental result for q2=0 relevant: need to start worrying about q2 
dependence (which provides a stronger SM test anyway!)



FLAG-2 on charm semileptonic decay

Figure 14: D → π"ν and D → K"ν semileptonic form factors at zero momentum transfer.
The HPQCD result for fDπ

+ (0) is from HPQCD 11, the one for fDK
+ (0) represents HPQCD

10B (see Table 21).

averaged Nf = 2 and Nf = 2 + 1 results for fD and fDs in Eqs. (93) and (94). We obtain

|Vcd| = 0.2218(35)(95) , |Vcs| = 1.018(11)(21) , (leptonic decays, Nf = 2 + 1)(100)

|Vcd| = 0.2231(95)(75) , |Vcs| = 1.012(21)(28) , (leptonic decays, Nf = 2) (101)

where the errors shown are from the lattice calculation and experiment (plus non-lattice
theory), respectively. For the Nf = 2 + 1 determinations, the uncertainties from the lattice-
QCD calculations of the decay constants are two to three times smaller than the experimental
uncertainties in the branching fractions; the lattice central values and errors are dominated
by those of the HPQCD calculations. Although the Nf = 2 and Nf = 2 + 1 results for |Vcs|
are slightly larger than one, they are both consistent with unity within errors.

For the semileptonic decays, we use the latest experimental averages from the Heavy
Flavour Averaging Group [125]:31

fDπ
+ (0)|Vcd| = 0.146(3) , fDK

+ (0)|Vcs| = 0.728(5) . (102)

For each of fDπ
+ (0) and fDK

+ (0), there is only a single Nf = 2 + 1 lattice-QCD calculation
that satisfies the FLAG criteria. Using these results, which are given in Eq. (98), we obtain
our preferred values for |Vcd| and |Vcs|:

|Vcd| = 0.2192(95)(45) , |Vcs| = 0.9746(248)(67) , (semileptonic decays, Nf = 2 + 1)(103)

31We note that HFAG currently averages results for neutral and charged D meson decays without first
removing the correction due to the Coulomb attraction between the charged final-state particles for the neutral
D meson decays.
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[FLAG 2013, Eur J Phys C74 (2014) 2890, arXiv:1310.8555v2]

2+1 0.666(29) 0.747(19)
fDπ
+ (0) fDK

+ (0)



new results for charm SL form factors
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,      , 2nd row CKM unitarity|Vcd| |Vcs|

Figure 15: Comparison of determinations of |Vcd| and |Vcs| obtained from lattice methods
with non-lattice determinations and the Standard Model prediction based on CKM unitarity.
When two references are listed on a single row, the first corresponds to the lattice input for
|Vcd| and the second to that for |Vcs|. The results denoted by squares are from leptonic decays,
while those denoted by triangles are from semileptonic decays.
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averaged leptonic (more precise) and semileptonic determinations

|Vcd|2 + |Vcs|2 + |Vcb|2 − 1 = 0.04(6)X



,      , 2nd row CKM unitarity|Vcd| |Vcs|

precise semileptonic determination will be interesting, sensitivity to 
|Vcb| around the corner

|Vcd|2 + |Vcs|2 + |Vcb|2 − 1 = 0.04(6)X
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uncertainties from kinematical factors / neglected h.o. OPE at the 
permille level

e,μ suppressed
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B semileptonic decay: |Vcb|
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B semileptonic decay: |Vcb|
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B semileptonic decay: |Vcb|

) [%]! l - D" 0B(B
1.5 2 2.5

ALEPH
 0.45± 0.18 ±2.15 

CLEO
 0.35± 0.16 ±2.19 

BELLE
 0.52± 0.12 ±2.08 

BABAR global fit
 0.13± 0.03 ±2.16 

BABAR tagged 
 0.08± 0.11 ±2.14 

Average
 0.09± 0.03 ±2.13 

HFAG
PDG 2014
/dof = 0.5/ 8 (CL = 100.00 %)2#

Figure 50: Illustration of Table 63.

Table 65: Average of B− → D0�−ν� branching fraction measurements. This fit uses only
measurements of the charged mode.

Experiment B(B− → D0�−ν�) [%] (rescaled) B(B− → D0�−ν�) [%] (published)
CLEO [430] 2.20± 0.13stat ± 0.17syst 2.32± 0.17stat ± 0.20syst
BABAR [429] 2.29± 0.09stat ± 0.09syst 2.33± 0.09stat ± 0.09syst
Average 2.27 ± 0.07stat ± 0.08syst χ2/dof = 0.1/1 (CL=72.1%)

in Table 66 for B0 → D0π+�−ν�, B
0 → D∗0π+�−ν�, B− → D+π−�−ν�, and B− → D∗+π−�−ν�.

The measurements included in the average are scaled to a consistent set of input parameters
and their errors [418]. For both the BABAR and Belle results, the B semileptonic signal yields
are extracted from a fit to the missing mass squared in a sample of fully reconstructed BB
events. Figure 51 illustrates the measurements and the resulting average.

5.1.4 B → D∗∗�−ν�

The D∗∗ mesons contain one charm quark and one light quark with relative angular momentum
L = 1. According to Heavy Quark Symmetry (HQS) [435], they form one doublet of states
with angular momentum j ≡ sq + L = 3/2 [D1(2420), D∗

2(2460)] and another doublet with
j = 1/2 [D∗

0(2400), D
�
1(2430)], where sq is the light quark spin. Parity and angular momentum

conservation constrain the decays allowed for each state. The D1 and D∗
2 states decay through
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B semileptonic decay: |Vcb|
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a) b)

Figure 48: (a) Average branching fractions of exclusive semileptonic B decays B → D∗�−ν�:
(a) B0 → D∗+�−ν (Table 60) and (b) B− → D∗0�−ν� (Table 61).

5.1.2 B → D�−ν�

The relevant form factor for the decay B → D�−ν� is ηEWG(w), which in CLN [417] is described
by only two parameters: the normalization ηEWG(1)|Vcb| and the slope ρ2.

Experiments measure the differential decay width as a function of w and determine these two
form factor parameters. We use the analyses shown in Table 62 and correct them to match the
latest values of the input parameters [418]. These measurements are sensitive to both isospin
states (B0 → D+�−ν and B− → D0�−ν�). So, isospin symmetry is assumed in the analysis.

The form factor parameters are extracted by a two-dimensional fit to the rescaled mea-
surements of ηEWG(1)|Vcb| and ρ2 taking into account correlated statistical and systematic
uncertainties. The result of the fit reads

ηEWG(1)|Vcb| = (42.65± 1.53)× 10−3 , (173)
ρ2 = 1.185± 0.054 , (174)

with a correlation of
ρηEWG(1)|Vcb|,ρ2 = 0.824 . (175)

The uncertainties and the correlation coefficient include both statistical and systematic contri-
butions. The χ2 of the fit is 0.5 for 8 degrees of freedom, which corresponds to a confidence
level of 100.0%. An illustration of this fit result is given in Fig. 49.

The most recent lattice QCD result obtained for the form factor normalization ηEWG(1)
is [433]

ηEWG(1) = 1.081± 0.024 , (176)
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TABLE X. Previous measurements of R(D(∗)).

Measurement R(D) R(D∗)

Belle 2007 [13] — 0.44 ± 0.08 ± 0.08

BABAR 2008 [14] 0.42 ± 0.12 ± 0.05 0.30 ± 0.06 ± 0.02

Belle 2009 [15] 0.59 ± 0.14 ± 0.08 0.47 ± 0.08 ± 0.06

Belle 2010 [16] 0.34 ± 0.10 ± 0.06 0.43 ± 0.06 ± 0.06

0.2 0.4 0.6 0.80.2 0.4 0.6 0.8 0.3 0.4 0.5 0.60.3 0.4 0.5 0.6
R(D)R(D) R(D∗)R(D∗)

Belle 2007

BABAR 2008

Belle 2009

Belle 2010

BABAR 2012

FIG. 24. (Color online). Comparison of the previous mea-
surements of R(D(∗)) with statistical and total uncertainties
(Table X) with this measurement (BABAR 2012). The verti-
cal bands represent the average of the previous measurements
(light shading) and SM predictions (dark shading), separately
for R(D) and R(D∗). The widths of the bands represents the
uncertainties.

X. CONCLUSIONS

In summary, we have measured the ratios R(D(∗)) =
B(B → D(∗)τ−ντ )/B(B → D(∗)#−ν") based on the full
BABAR data sample, resulting in

R(D) = 0.440± 0.058± 0.042,

R(D∗) = 0.332± 0.024± 0.018,

where the first uncertainty is statistical and the second is
systematic. These results supersede the previous BABAR
measurements [14]. Improvements of the event selec-
tion have increased the reconstruction efficiency of signal
events by more than a factor of 3, and the overall statis-
tical uncertainty has been reduced by more than a factor
of 2.
Table X shows the results of previous B → D(∗)τ−ντ

analyses. In 2007 and 2010, the Belle collaboration mea-
sured the absolute B → D(∗)τ−ντ branching fractions
which we translate to R(D(∗)) with B(B− → D0#−ν") =
(2.26 ± 0.11)% [12] and B(B0 → D∗+#−ν") = (4.59 ±
0.26)% [48]. For the translation of R(D∗), we choose
Belle’s measurement of the branching fraction, instead
of the world average, because of the current large spread
of measured values. For Belle 2009, we average the re-
sults for B0 and B− decays.
The values measured in this analysis are compatible

with those measured by the Belle Collaboration, as illus-
trated in Fig. 24.
The results presented here exceed the SM predictions

ofR(D)SM = 0.297±0.017 and R(D∗)SM = 0.252±0.003

by 2.0σ and 2.7σ, respectively. The combined signifi-
cance of this disagreement, including the negative corre-
lation between R(D) and R(D∗), is 3.4σ. Together with
the measurements by the Belle Collaboration, which also
exceed the SM expectations, this could be an indication
of NP processes affecting B → D(∗)τ−ντ decays.

These results are not compatible with a charged Higgs
boson in the type II 2HDM, and, together with B → Xsγ
measurements, exclude this model in the full tanβ–mH+

parameter space. More general charged Higgs models, or
NP contributions with nonzero spin, are compatible with
the measurements presented here.

An analysis of the efficiency corrected q2 spectra of
B → Dτ−ντ and B → D∗τ−ντ decays shows good agree-
ment with the SM expectations, within the estimated un-
certainties. The combination of the measured values of
R(D(∗)) and the q2 spectra exclude a significant portion
of the type III 2HDM parameter space. Charged Higgs
contributions with small scalar terms, |SR + SL| < 1.4,
are compatible with the measured R(D(∗)) and q2 distri-
butions, but NP contributions with spin 1 are favored by
data.
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VII. SUMMARY OF THE SENSITIVITY FOR SELECTED OBSERVABLES

TABLE XXXVIII: Expected errors on several selected observables with an integrated
luminosity of 5 ab−1 and 50 ab−1 of Belle II data. The current results (from Belle) are also
given. Ls denotes the approximate integrated luminosity at which the statistical precision
of a given observable will match its systematic uncertainty. Errors given in % represent

relative errors.

Observables Belle Belle II Ls

(2014) 5 ab−1 50 ab−1 [ab−1]

sin 2β 0.667± 0.023± 0.012 ±0.012 ±0.008 6

α ±2◦ ±1◦

γ ±14◦ ±6◦ ±1.5◦

S(B → φK0) 0.90
+0.09
−0.19 ±0.053 ±0.018 >50

S(B → η�K0) 0.68± 0.07± 0.03 ±0.028 ±0.011 >50

S(B → K0
SK0

SK0
S) 0.30± 0.32± 0.08 ±0.100 ±0.033 44

|Vcb| incl. ±2.4% ±1.0% < 1

|Vcb| excl. ±3.6% ±1.8% ±1.4% < 1

|Vub| incl. ±6.5% ±3.4% ±3.0% 2

|Vub| excl. (had. tag.) ±10.8% ±4.7% ±2.4% 20

|Vub| excl. (untag.) ±9.4% ±4.2% ±2.2% 3

B(B → τν) [10−6] 96± 26 ±10% ±5% 46

B(B → µν) [10−6] < 1.7 5σ >> 5σ >50

R(B → Dτν) ±16.5% ±5.6% ±3.4% 4

R(B → D∗τν) ±9.0% ±3.2% ±2.1% 3

B(B → K∗+νν) [10−6] < 40 ±30% >50

B(B → K+νν) [10−6] < 55 ±30% >50

B(B → Xsγ) [10−6] ±13% ±7% ±6% < 1

ACP (B → Xsγ) ±0.01 ±0.005 8

S(B → K0
Sπ0γ) −0.10± 0.31± 0.07 ±0.11 ±0.035 > 50

S(B → ργ) −0.83± 0.65± 0.18 ±0.23 ±0.07 > 50

C7/C9 (B → Xs��) ∼20% 10% 5%

B(Bs → γγ) [10−6] < 8.7 ±0.3

B(Bs → τ+τ−) [10−3] < 2

52

TABLE XXXIX: Continued from previous page.

Observables Belle Belle II Ls

(2014) 5 ab−1 50 ab−1 [ab−1]

B(Ds → µν) 5.31× 10−3(1± 0.053± 0.038) ±2.9% ±(0.9%-1.3%) > 50

B(Ds → τν) 5.70× 10−3(1± 0.037± 0.054) ±(3.5%-4.3%) ±(2.3%-3.6%) 3-5

yCP [10−2] 1.11± 0.22± 0.11 ±(0.11-0.13) ±(0.05-0.08) 5-8

AΓ [10−2] −0.03± 0.20± 0.08 ±0.10 ±(0.03-0.05) 7 - 9

AK+K−
CP [10−2] −0.32± 0.21± 0.09 ±0.11 ±0.06 15

Aπ+π−
CP [10−2] 0.55± 0.36± 0.09 ±0.17 ± 0.06 > 50

Aφγ
CP [10−2] ± 5.6 ±2.5 ±0.8 > 50

xKSπ+π− [10−2] 0.56± 0.19± 0.07
0.13 ±0.14 ±0.11 3

yKSπ+π− [10−2] 0.30± 0.15± 0.05
0.08 ±0.08 ±0.05 15

|q/p|KSπ+π− 0.90± 0.16
0.15 ±

0.08
0.06 ±0.10 ±0.07 5-6

φKSπ+π− [◦] −6± 11± 4
5 ±6 ±4 10

Aπ0π0

CP [10−2] −0.03± 0.64± 0.10 ±0.29 ±0.09 > 50

A
K0

Sπ0

CP [10−2] −0.10± 0.16± 0.09 ±0.08 ±0.03 > 50

Br(D0 → γγ) [10−6] < 1.5 ±30% ±25% 2

τ → µγ [10−9] < 45 < 14.7 < 4.7

τ → eγ [10−9] < 120 < 39 < 12

τ → µµµ [10−9] < 21.0 < 3.0 < 0.3
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FNAL/MILC 13B[446] 2+1 C! ! ◦ ! ◦ " FB→D∗
(1) 0.906(4)(12)

FNAL/MILC 10 [443] 2+1 C§ ! ◦ ! ◦ " FB→D∗
(1) 0.9017(51)(87)(83)(89)(30)(33) ‡

FNAL/MILC 08 [444] 2+1 A ! ◦ ! ◦ " FB→D∗
(1) 0.921(13)(8)(8)(14)(6)(3)(4)

FNAL/MILC 13B[446] 2+1 C ! ◦ ! ◦ " GB→D(1) 1.081(25)

FNAL/MILC 04A[445] 2+1 C # # ◦∗ ◦† " GB→D(1) 1.074(18)(16)

FNAL/MILC 12A[452] 2+1 A ◦ ◦ ! ◦ " R(D) 0.316(12)(7)

Atoui 13 [448] 2 P ! ! ! — " GB→D(1) 1.033(95)

Atoui 13 [448] 2 P ! ! ! — " GBs→Ds(1) 1.052(46)

! Update of FNAL/MILC 08 for Lattice 2013.
§ Update of FNAL/MILC 08 for CKM 2010.
‡ Value of F(1) presented in Ref. [443] includes 0.7% correction ηEW . This correction is unrelated to the
lattice calculation and has been removed here.

∗ No explicit estimate of FV error, but expected to be small.
† No explicit estimate of perturbative truncation error in vector current renormalization factor, but expected
to be small because of mostly-nonperturbative approach.

Table 29: Lattice results for the B → D∗!ν, B → D!ν, and Bs → Ds!ν semileptonic form
factors and R(D).

have therefore become important and timely. FNAL/MILC has published the first un-
quenched lattice determination of R(D) [452]. They use a subset of the MILC ensembles
from the ongoing B → D!ν semileptonic project [447], namely two light-quark masses each
on a ≈ 0.12 and 0.09 fm lattices, and find,

R(D) = 0.316(12)(7). (155)

This SM prediction is about ∼ 1.7σ lower than the Babar measurement.

8.4.4 Ratios of B and Bs semileptonic decay form factors

In addition to B → D!ν semileptonic decays there is also interest in Bs → Ds!ν semileptonic
decays. In particular, [Bs → Ds!ν]/[B → D!ν] semileptonic form factor ratios can be used to
obtain ratios of Bq meson (q = d, s) fragmentation fractions, fs/fd. This latter ratio enters

137

[FLAG 2013, Eur J Phys C74 (2014) 2890, arXiv:1310.8555v2]

w ≥ 1

w = 1



FLAG-2 on B → D(∗)lν

[FLAG 2013, Eur J Phys C74 (2014) 2890, arXiv:1310.8555v2]

into LHCb’s analysis of Bs → µ+µ− decays. There is now one unquenched calculation by

FNAL/MILC of ratios of the scalar form factors f (q)
0 (q2) [453]:

f (s)
0 (M2

π)/f
(d)
0 (M2

K) = 1.046(44)(15), f (s)
0 (M2

π)/f
(d)
0 (M2

π) = 1.054(47)(17), (156)

where the first error is statistical and the second systematic. These results lead to fragmenta-
tion fraction ratios fs/fd that are consistent with LHCb’s measurements via other methods.

8.4.5 Summary

In Table 29 we summarize the existing results for the B → D∗!ν, B → D!ν, and Bs → Ds!ν
form factors at zero recoil, FB→D∗

(1), GB→D(1), and GBs→Ds(1), as well as for the ratio
R(D) = B(B → Dτν)/B(B → Dlν). Further details of the lattice calculations are provided
in Appendix B.6.4. Selecting those results that are published in refereed journals (or are
straightforward updates thereof) and have no red tags, our averages for FB→D∗

(1) and R(D)
are

Nf = 2 + 1 : FB→D∗
= 0.906(4)(12), R(D) = 0.316(12)(7). (157)

Figure 21: B → D∗!ν semileptonic form factor at zero recoil [values in Table 29 and Eq. (157)].

8.5 Determination of |Vub|

We now use the lattice-determined Standard-Model transition amplitudes for leptonic (Sec. 8.1)
and semileptonic (Sec. 8.3) B-meson decays to obtain exclusive determinations of the CKM
matrix element |Vub|. The relevant formulae are Eqs. (106) and (127). Among leptonic chan-
nels the only input comes from B → τντ , since the rates for decays to e and µ have not yet
been measured. In the semileptonic case we only consider B → π!ν# transitions (experimen-
tally measured for ! = e, µ), since no theoretical prediction for hadronic effects in other b → u
transitions is currently available that satisfies FLAG requirements for controlled systematics.

138

2 1.033(95) 1.052(46) — —
2+1 1.081(25) — 0.906(4)(12) 0.316(12)(7)

Nf FB→D∗
(1) R(D)GB→D(1) GBs→Ds(1)
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FIG. 8. Result of the z-expansion fit of the lattice form-factor values without (left) and with (right)

the kinematic constraint f+(q2 = 0) = f0(q2 = 0). The expansion is truncated after the cubic term.

The solid error band is for f+, while the slashed band is for f0. Without imposing the constraint,

we find that it is nonetheless satisfied to a high accuracy.

TABLE VIII. Coefficients of the z expansion for fits to the lattice form factors including the

kinematic constraint f+(q2 = 0) = f0(q2 = 0). For completeness, the inferred value and error in

a0,0 is quoted. We also show the zero-recoil form factor G(1). The results for different truncations
N are virtually identical. The unusually low (augmented) χ2

comes about because these fits

essentially behave like solves. This happens because the kinematic constraint is so nearly perfectly

satisfied already at the quadratic level, N = 2. Higher-order terms with N = 3 and 4 provide no

further improvement and, hence, no change.

N = 2 N = 3 N = 4

a+,0 0.01262(10) 0.01262(10) 0.01262(10)

a+,1 −0.097(3) −0.097(3) −0.097(3)

a+,2 0.50(14) 0.50(17) 0.50(17)

a+,3 − −0.06(90) −0.06(90)

a+,4 − − −0.0(1.0)

a0,0 0.01142(14) 0.01142(14) 0.01142(10)

a0,1 −0.060(3) −0.060(3) −0.060(3)

a0,2 0.31(15) 0.31(15) 0.31(15)

a0,3 − 0.06(91) 0.06(91)

a0,4 − − 0.0(1.0)

G(1) 1.0541(83) 1.0541(83) 1.0541(83)

χ2/df 0.1/1 0.0/1 0.0/1
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8

We find it useful to make one more modification of the

z-parametrization of lattice form factors. In order to ac-

commodate the uncertainty coming from the truncation

of the current matchings at O(αs,ΛQCD/M,αs/(aM)),

we introduce new fit parameters, m� and m⊥, with cen-

tral value zero and width δm�,⊥,

f�, f⊥ → (1 +m�)f�, (1 +m⊥)f⊥. (36)

The prior widths δm� and δm⊥ correspond to our best

estimates for higher order matching errors for V0 and Vk

respectively. With the modification of (36), our extrap-

olation results coming from the modified z-expansion fit

will then include the matching truncation errors auto-

matically. To get an estimate of higher order matching

uncertainties and fix δm�,⊥, we have looked at the size

of the known first order matching corrections. In other

words we have gone through the correlator fits of the pre-

vious section once using the fully corrected expression on

the RHS of (12) and then a second time using just the

lowest order �J (0)
µ �. We find that the first order matching

contributions are only a ∼ 2% effect on fine and a ∼ 4%

effect on coarse lattices, significantly smaller than a naive

1×O(α) ≈ 25− 30% estimate. In this work we take the

higher order uncertainties to be the same as the average

of the full first order corrections on fine and coarse lat-

tices, that is we set the prior central values and widths

of the fit parameters m�,⊥ to be 0.0 ± 0.03. We have

checked that using 0.0 ± 0.02 or 0.0 ± 0.04 everywhere,

or 0.0 ± 0.02 for fine and 0.0 ± 0.04 for coarse lattices

has minimal effect (see tests No.13, No.14, No.15 below).

After the modified z-expansion fits and extrapolation to

the physical limit, these matching uncertainties for f�
and f⊥ will translate into matching errors for f+ and f0
with correlations between the two form factors taken into

account.

In Fig. 9 we show our fit results for f+ and f0 plot-

ted versus z. We plot both the simulation data and the

extrapolated physical band. These are results of what

we call our “standard extrapolation” which uses the fit

ansatz discussed above and a z-expansion that includes

terms through O(z3). We have carried out further tests

of the standard extrapolation by modifying the fit ansatz

in the following ways:

1. stop at O(z2) in the z-expansion;

2. stop at O(z4) in the z-expansion;

3. add light quark mass dependence to dk1 (see Eq. (30)

of [10]);

4. add bottom quark mass dependence to dk1 (see

Eq. (30) of [10]);

5. omit (amc)
4
term;

6. add (amc)
6
term;

7. omit (aED/π)4 term;
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FIG. 9. The standard fit results with the continuum extrap-
olated bands. The short horizontal bars on the upper plot
show the fit results at non-zero lattice spacings.

8. add (aED/π)6 term;

9. omit xlog(x) term;

10. use chiral logs from HPChPT (see Appendix B);

11. add x2
π term;

12. omit all xi and xlog(x) terms;

13. use 2% uncertainty for higher order matching con-

tributions;

14. use 4% uncertainty for higher order matching con-

tributions;

[FNAL/MILC] [HPQCD]
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FIG. 8. Result of the z-expansion fit of the lattice form-factor values without (left) and with (right)

the kinematic constraint f+(q2 = 0) = f0(q2 = 0). The expansion is truncated after the cubic term.

The solid error band is for f+, while the slashed band is for f0. Without imposing the constraint,

we find that it is nonetheless satisfied to a high accuracy.

TABLE VIII. Coefficients of the z expansion for fits to the lattice form factors including the

kinematic constraint f+(q2 = 0) = f0(q2 = 0). For completeness, the inferred value and error in

a0,0 is quoted. We also show the zero-recoil form factor G(1). The results for different truncations
N are virtually identical. The unusually low (augmented) χ2

comes about because these fits

essentially behave like solves. This happens because the kinematic constraint is so nearly perfectly

satisfied already at the quadratic level, N = 2. Higher-order terms with N = 3 and 4 provide no

further improvement and, hence, no change.

N = 2 N = 3 N = 4

a+,0 0.01262(10) 0.01262(10) 0.01262(10)

a+,1 −0.097(3) −0.097(3) −0.097(3)

a+,2 0.50(14) 0.50(17) 0.50(17)

a+,3 − −0.06(90) −0.06(90)

a+,4 − − −0.0(1.0)

a0,0 0.01142(14) 0.01142(14) 0.01142(10)

a0,1 −0.060(3) −0.060(3) −0.060(3)

a0,2 0.31(15) 0.31(15) 0.31(15)

a0,3 − 0.06(91) 0.06(91)

a0,4 − − 0.0(1.0)

G(1) 1.0541(83) 1.0541(83) 1.0541(83)

χ2/df 0.1/1 0.0/1 0.0/1
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FNAL/MILC results for B→D

[Bailey et al, arXiv:1503.07237]

[De Divitiis, Molinaro, Petronzio, Tantalo, PLB 655 (2007) 45]
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FIG. 9. Comparison of lattice-QCD results for the B → D�ν form factor G(z) at nonzero recoil
from this work (curves with error bands) and Ref. [12] (points with error bars). Errors on the data
points from Ref. [12] include all uncertainties except for the unquantifiable error due to omitting
sea-quark effects.

Wγ and WZ box diagrams [46] and a further Coulomb correction for final-state interactions
in B0 decays. The BaBar collaboration reports that 37% of the decays in their data sample
were B0s, which results in a QED correction factor in the amplitude of 1 + 0.37α/(2π). We
have assigned an uncertainty of ±0.005 to this correction to account for omitted electromag-
netic effects at intermediate distances. When combined with the Sirlin factor ηEW = 1.00662
the net electroweak correction becomes η̄EW = 1.011(5). (We prefer to use G(w) to denote
the purely hadronic form factor, so in our notation η̄EW |Vcb|G(w) corresponds to the quan-
tity often reported as |Vcb|G(w), and the ratio of experimental to theoretical values must be
divided by η̄EW to get |Vcb|.)

Before performing a joint fit to the lattice and experimental data, we compare the values
of the shape parameters to check for consistency. The left panel of Fig. 10 plots the 1-σ
constraints on the curvature a+,2/a+,0 versus slope a+,1/a+,0 obtained from separate N = 3
z-expansion fits of the lattice data and the 2009 BaBar experimental data. The results are
consistent, but the lattice data constrains the shape much better: this is both because the
lattice points are very precise at low recoil, and because they are more correlated between
w values. Given this consistency, we now proceed with the determination of |Vcb| from a
combined fit of the two data sets.

Table X shows the series coefficients and goodness-of-fit obtained for combined fits of the
lattice and experimental data, imposing the kinematic constraint, for N = 2–4. Again, the
fit, and in particular the error on |Vcb|, stabilizes by quadratic order. We choose N = 3 for
our preferred fit, and plot the result in Fig. 11.

27

comparison to quenched results for G(w)

comparison with quenched results
[De Divitiis, Molinaro, Petronzio, Tantalo PLB 655 (2007) 45]
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FNAL/MILC results for B→D

joint fit with BaBar data

[Bailey et al, arXiv:1503.07237]
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FIG. 11. Result of the preferred joint fit of the BaBar experimental data together with the lattice
form factors. The plotted experimental points have been divided by our best-fit value of η̄EW|Vcb|

and converted to f+.

D. Comment on the CLN parameterization

The standard approach used by experimentalists to obtain |Vcb| is to use the Caprini, Lel-
louch, Neubert (CLN) parameterization [10] to extrapolate the experimental data to w = 1.
Caprini, Lellouch, and Neubert use heavy-quark symmetry to derive more stringent con-
straints on the coefficients of the z-parameterization through O(z3), resulting in a function
with only two free parameters, f+(0) and ρ21:

f+(z)

f+(0)
= 1− 8ρ21z + (51ρ21 − 10)z2 − (252ρ21 − 84)z3 . (5.6)

Use of the CLN parameterization in our analysis does not reduce the quoted errors in |Vcb|

despite the introduction of additional theoretical information.
The numerical values of the coefficients in Eq. (5.6) have theoretical uncertainties which

can be estimated from the information given in tables and plots from Ref. [10]. To the best
of our knowledge, however, CLN fits to experimental data do not incorporate the theoretical
uncertainties discussed in Ref. [10], and may therefore be underestimating the uncertainty
in |Vcb|. We have attempted to quantify the uncertainty from the use of the CLN form by
incorporating the theoretical uncertainties in the CLN parameters via Bayesian priors. We
did not find any difference in the error on |Vcb| obtained from fits with and without including
these theoretical uncertainties at the current level of precision. This is primarily because
the B → D�ν data displays little evidence of curvature in z within the present errors, and
does not constrain the coefficient of the z3 term. Nevertheless, we do not quote the results
of our CLN fits in this work because we are more confident in the errors obtained from the
model-independent z-parameterization, Eq. (5.2), which can be used to obtain |Vcb| even as
the experimental and lattice uncertainties become arbitrarily more precise.
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VI. DISCUSSION AND OUTLOOK

We obtain
|Vcb| = (39.6± 1.7QCD+exp ± 0.2QED)× 10−3 (6.1)

from our analysis of the exclusive decay B → Dlν at nonzero recoil, where the first error
combines systematic and statistical errors from both experiment and theory and the second
comes from the uncertainty in the correction for the final state Coulomb interaction in the
B0 decays. Because we provide the series coefficients of a z parameterization and their
correlations, the result for |Vcb| in Eq. (6.1) can be updated whenever new experimental
information becomes available.

The combined error from lattice and experiment in |Vcb| is about 4%. Because this error
is obtained from a joint z-fit, the theory and experimental errors cannot be strictly disen-
tangled, but they can be estimated as follows. In the right panel of Fig. 10 we plot the
determinations of f+ from separate z fits to the lattice form factors and to the experimental
data. Inspection of the error bands shows that the combined error, which determines the
uncertainty on |Vcb|, is smallest at about z ≈ 0.025 (w ≈ 1.2). At this point, the experi-
mental error is about 3.9% and the lattice error is about 1.4%. (Note that combining them
in quadrature yields a total that is close to the 4% lattice+experiment error on |Vcb| from
the joint fit.) Thus the experimental error currently limits the precision on |Vcb| from this
approach. The dominant uncertainty in the experimental data is the assumed 3.3% system-
atic error, which is used for all w values in the joint fit. Now that lattice-QCD results for
the B → D�ν form factors are available at nonzero recoil, however, it is clearly worthwhile
to study and improve the systematic errors in the experimental data at medium and large
recoil.

It is interesting to compare the above nonzero-recoil result with the result based on the
standard method that uses only the zero-recoil extrapolation of the experimental and theo-
retical form factors. The z expansion fit to lattice-only data gives G(1) = 1.054(4)stat(8)syst.
The BaBar collaboration quotes η̄EW |Vcb|G(1) = 0.0430(19)stat(14)syst [8] from its B-tagged
data, which gives |Vcb| = (40.8 ± 0.3QCD ± 2.2exp ± 0.2QED) × 10−3. The result is con-
sistent with the value from nonzero recoil, but the error is larger, as expected. Our
zero-recoil form factor is consistent with a previous, preliminary Fermilab/MILC result
of G(1) = 1.074(18)stat(16)syst [13], but with significantly smaller uncertainties due to the
use of a much larger data set with several lattice spacings and lighter pions. We also note
that the systematic error estimate for the earlier result did not include an estimate of the
heavy-quark discretization errors, one of the larger contributions to the error in our new
result.

We compare our result for |Vcb| with other published determinations from inclusive and
exclusive decays in Fig. 12. Our result is consistent with the determination from our compan-
ion analysis of B → D∗�ν at zero recoil, |Vcb| = (39.04±0.53QCD±0.49exp±0.19QED)×10−3

[5]. The errors on |Vcb| from the current work are larger, however, because of the larger errors
in the experimental data. Our result is 1.5σ lower than a recent inclusive (non-lattice) de-
termination, |Vcb| = (42.4±0.9thy+exp)×10−3 [6], which is also based on several experiments
and employs data at nonzero recoil.

We also plot the result for |Vcb| in Fig. 12 determined from only our zero-recoil lattice
data, but using the best experimental knowledge of the extrapolated quantity η̄EW |Vcb|G(1).
The HFAG average value η̄EW |Vcb|G(1) is 0.04264(72)stat(135)syst [3], which combines five
experimental measurements from ALEPH [47], Belle [48], BaBar [8, 49], and CLEO [50].
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FIG. 13. Form factors using both lattice and BaBar [24]
inputs, together with the experimental data points.

TABLE V. Error budget table for |Vcb|. The first three rows
are from experiments, and the rest are from lattice simula-
tions.

Type Partial errors [%]

experimental statistics 1.55

experimental systematic 3.3

meson masses 0.01

lattice statistics 1.22

chiral extrapolation 1.14

discretization 2.59

kinematic 0.96

matching 2.11

electro-weak 0.48

finite size effect 0.1

total 5.34

|Vcb| has been reported from multiple lattice and non-
lattice calculations. We compare the different determi-
nations in Fig. 14. Our result agrees with other exclusive
calculations, particularly with the most accurate result
from B → D∗lν, but it is also compatible within errors
with the inclusive determination. Since the discretization
error is one of the dominant errors in our calculation,
lattice errors can be reduced in the future by working on
more ensembles with finer lattice spacings.

VII. THE R(D) RATIO

The experimental data used in the previous section
to extract |Vcb| were for semileptonic decays with light

0.035 0.04 0.045 0.05
|Vcb|

this work+BaBar 2010
Fermilab/MILC (exclusive B to D)
Fermilab/MILC (exclusive B to D*)
Inclusive (PRL 114, 061802)

FIG. 14. |Vcb| comparisons between inclusive and exclusive
determinations.

leptons in the final state. BaBar has also studied decays
involving the much heavier τ lepton, B → Dτντ , and
measured the ratio,

R(D) =
B(B → Dτντ )

B(B → Dlν)
, (46)

where l is either an electron or a muon. They find

R(D)|exp. = 0.440(58)(42), (47)

where the first error is the statistical and the second is
the systematic error [26].

Here we present a Standard Model prediction for R(D)
based on our new form factors. Fig. 15 compares differ-
ential branching fractions of Eq. (44) for B → Dτντ and
for B → Dlν. Although only f+(q2) contributes to the
lν case, both f+(q2) and f0(q2) are involved in the τντ
branching fraction. Integrating over q2 we obtain,

R(D)|SM = 0.300(8). (48)

Table VI shows a detailed error budget for R(D). Fig. 16
gives a comparison plot for different determinations of
R(D). All Standard Model based calculations are in good
agreement with each other. The difference between our
result and experiment is at the 2σ level. We note that
we do not use any experimental results to extract R(D).
Our result gives the most accurate pure Standard Model
prediction to date for R(D).

VIII. SUMMARY AND FUTURE PROSPECTS

In this paper we have presented a new lattice QCD
calculation of the B → Dlν semileptonic decay form fac-

|Vcb| = 40.2(17)(13)× 10−3|Vcb| = 39.6(1.7)QCD+exp(0.2)QED × 10−3
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FIG. 8. Result of the z-expansion fit of the lattice form-factor values without (left) and with (right)

the kinematic constraint f+(q2 = 0) = f0(q2 = 0). The expansion is truncated after the cubic term.

The solid error band is for f+, while the slashed band is for f0. Without imposing the constraint,

we find that it is nonetheless satisfied to a high accuracy.

TABLE VIII. Coefficients of the z expansion for fits to the lattice form factors including the

kinematic constraint f+(q2 = 0) = f0(q2 = 0). For completeness, the inferred value and error in

a0,0 is quoted. We also show the zero-recoil form factor G(1). The results for different truncations
N are virtually identical. The unusually low (augmented) χ2

comes about because these fits

essentially behave like solves. This happens because the kinematic constraint is so nearly perfectly

satisfied already at the quadratic level, N = 2. Higher-order terms with N = 3 and 4 provide no

further improvement and, hence, no change.

N = 2 N = 3 N = 4

a+,0 0.01262(10) 0.01262(10) 0.01262(10)

a+,1 −0.097(3) −0.097(3) −0.097(3)

a+,2 0.50(14) 0.50(17) 0.50(17)

a+,3 − −0.06(90) −0.06(90)

a+,4 − − −0.0(1.0)

a0,0 0.01142(14) 0.01142(14) 0.01142(10)

a0,1 −0.060(3) −0.060(3) −0.060(3)

a0,2 0.31(15) 0.31(15) 0.31(15)

a0,3 − 0.06(91) 0.06(91)

a0,4 − − 0.0(1.0)

G(1) 1.0541(83) 1.0541(83) 1.0541(83)

χ2/df 0.1/1 0.0/1 0.0/1
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We find it useful to make one more modification of the

z-parametrization of lattice form factors. In order to ac-

commodate the uncertainty coming from the truncation

of the current matchings at O(αs,ΛQCD/M,αs/(aM)),

we introduce new fit parameters, m� and m⊥, with cen-

tral value zero and width δm�,⊥,

f�, f⊥ → (1 +m�)f�, (1 +m⊥)f⊥. (36)

The prior widths δm� and δm⊥ correspond to our best

estimates for higher order matching errors for V0 and Vk

respectively. With the modification of (36), our extrap-

olation results coming from the modified z-expansion fit

will then include the matching truncation errors auto-

matically. To get an estimate of higher order matching

uncertainties and fix δm�,⊥, we have looked at the size

of the known first order matching corrections. In other

words we have gone through the correlator fits of the pre-

vious section once using the fully corrected expression on

the RHS of (12) and then a second time using just the

lowest order �J (0)
µ �. We find that the first order matching

contributions are only a ∼ 2% effect on fine and a ∼ 4%

effect on coarse lattices, significantly smaller than a naive

1×O(α) ≈ 25− 30% estimate. In this work we take the

higher order uncertainties to be the same as the average

of the full first order corrections on fine and coarse lat-

tices, that is we set the prior central values and widths

of the fit parameters m�,⊥ to be 0.0 ± 0.03. We have

checked that using 0.0 ± 0.02 or 0.0 ± 0.04 everywhere,

or 0.0 ± 0.02 for fine and 0.0 ± 0.04 for coarse lattices

has minimal effect (see tests No.13, No.14, No.15 below).

After the modified z-expansion fits and extrapolation to

the physical limit, these matching uncertainties for f�
and f⊥ will translate into matching errors for f+ and f0
with correlations between the two form factors taken into

account.

In Fig. 9 we show our fit results for f+ and f0 plot-

ted versus z. We plot both the simulation data and the

extrapolated physical band. These are results of what

we call our “standard extrapolation” which uses the fit

ansatz discussed above and a z-expansion that includes

terms through O(z3). We have carried out further tests

of the standard extrapolation by modifying the fit ansatz

in the following ways:

1. stop at O(z2) in the z-expansion;

2. stop at O(z4) in the z-expansion;

3. add light quark mass dependence to dk1 (see Eq. (30)

of [10]);

4. add bottom quark mass dependence to dk1 (see

Eq. (30) of [10]);

5. omit (amc)
4
term;

6. add (amc)
6
term;

7. omit (aED/π)4 term;
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FIG. 9. The standard fit results with the continuum extrap-
olated bands. The short horizontal bars on the upper plot
show the fit results at non-zero lattice spacings.

8. add (aED/π)6 term;

9. omit xlog(x) term;

10. use chiral logs from HPChPT (see Appendix B);

11. add x2
π term;

12. omit all xi and xlog(x) terms;

13. use 2% uncertainty for higher order matching con-

tributions;

14. use 4% uncertainty for higher order matching con-

tributions;

R(D) =
B(B → Dτν)

B(B → D�ν)
= 0.299(11) 0.300(8)

[FNAL/MILC] [HPQCD]
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TABLE X. Previous measurements of R(D(∗)).

Measurement R(D) R(D∗)

Belle 2007 [13] — 0.44 ± 0.08 ± 0.08

BABAR 2008 [14] 0.42 ± 0.12 ± 0.05 0.30 ± 0.06 ± 0.02

Belle 2009 [15] 0.59 ± 0.14 ± 0.08 0.47 ± 0.08 ± 0.06

Belle 2010 [16] 0.34 ± 0.10 ± 0.06 0.43 ± 0.06 ± 0.06

0.2 0.4 0.6 0.80.2 0.4 0.6 0.8 0.3 0.4 0.5 0.60.3 0.4 0.5 0.6
R(D)R(D) R(D∗)R(D∗)

Belle 2007

BABAR 2008

Belle 2009

Belle 2010

BABAR 2012

FIG. 24. (Color online). Comparison of the previous mea-
surements of R(D(∗)) with statistical and total uncertainties
(Table X) with this measurement (BABAR 2012). The verti-
cal bands represent the average of the previous measurements
(light shading) and SM predictions (dark shading), separately
for R(D) and R(D∗). The widths of the bands represents the
uncertainties.

X. CONCLUSIONS

In summary, we have measured the ratios R(D(∗)) =
B(B → D(∗)τ−ντ )/B(B → D(∗)#−ν") based on the full
BABAR data sample, resulting in

R(D) = 0.440± 0.058± 0.042,

R(D∗) = 0.332± 0.024± 0.018,

where the first uncertainty is statistical and the second is
systematic. These results supersede the previous BABAR
measurements [14]. Improvements of the event selec-
tion have increased the reconstruction efficiency of signal
events by more than a factor of 3, and the overall statis-
tical uncertainty has been reduced by more than a factor
of 2.
Table X shows the results of previous B → D(∗)τ−ντ

analyses. In 2007 and 2010, the Belle collaboration mea-
sured the absolute B → D(∗)τ−ντ branching fractions
which we translate to R(D(∗)) with B(B− → D0#−ν") =
(2.26 ± 0.11)% [12] and B(B0 → D∗+#−ν") = (4.59 ±
0.26)% [48]. For the translation of R(D∗), we choose
Belle’s measurement of the branching fraction, instead
of the world average, because of the current large spread
of measured values. For Belle 2009, we average the re-
sults for B0 and B− decays.
The values measured in this analysis are compatible

with those measured by the Belle Collaboration, as illus-
trated in Fig. 24.
The results presented here exceed the SM predictions

ofR(D)SM = 0.297±0.017 and R(D∗)SM = 0.252±0.003

by 2.0σ and 2.7σ, respectively. The combined signifi-
cance of this disagreement, including the negative corre-
lation between R(D) and R(D∗), is 3.4σ. Together with
the measurements by the Belle Collaboration, which also
exceed the SM expectations, this could be an indication
of NP processes affecting B → D(∗)τ−ντ decays.

These results are not compatible with a charged Higgs
boson in the type II 2HDM, and, together with B → Xsγ
measurements, exclude this model in the full tanβ–mH+

parameter space. More general charged Higgs models, or
NP contributions with nonzero spin, are compatible with
the measurements presented here.

An analysis of the efficiency corrected q2 spectra of
B → Dτ−ντ and B → D∗τ−ντ decays shows good agree-
ment with the SM expectations, within the estimated un-
certainties. The combination of the measured values of
R(D(∗)) and the q2 spectra exclude a significant portion
of the type III 2HDM parameter space. Charged Higgs
contributions with small scalar terms, |SR + SL| < 1.4,
are compatible with the measured R(D(∗)) and q2 distri-
butions, but NP contributions with spin 1 are favored by
data.
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[BELLE2-NOTE-PH-2015-002, retrieved from B2TiP]

VII. SUMMARY OF THE SENSITIVITY FOR SELECTED OBSERVABLES

TABLE XXXVIII: Expected errors on several selected observables with an integrated
luminosity of 5 ab−1 and 50 ab−1 of Belle II data. The current results (from Belle) are also
given. Ls denotes the approximate integrated luminosity at which the statistical precision
of a given observable will match its systematic uncertainty. Errors given in % represent

relative errors.

Observables Belle Belle II Ls

(2014) 5 ab−1 50 ab−1 [ab−1]

sin 2β 0.667± 0.023± 0.012 ±0.012 ±0.008 6

α ±2◦ ±1◦

γ ±14◦ ±6◦ ±1.5◦

S(B → φK0) 0.90
+0.09
−0.19 ±0.053 ±0.018 >50

S(B → η�K0) 0.68± 0.07± 0.03 ±0.028 ±0.011 >50

S(B → K0
SK0

SK0
S) 0.30± 0.32± 0.08 ±0.100 ±0.033 44

|Vcb| incl. ±2.4% ±1.0% < 1

|Vcb| excl. ±3.6% ±1.8% ±1.4% < 1

|Vub| incl. ±6.5% ±3.4% ±3.0% 2

|Vub| excl. (had. tag.) ±10.8% ±4.7% ±2.4% 20

|Vub| excl. (untag.) ±9.4% ±4.2% ±2.2% 3

B(B → τν) [10−6] 96± 26 ±10% ±5% 46

B(B → µν) [10−6] < 1.7 5σ >> 5σ >50

R(B → Dτν) ±16.5% ±5.6% ±3.4% 4

R(B → D∗τν) ±9.0% ±3.2% ±2.1% 3

B(B → K∗+νν) [10−6] < 40 ±30% >50

B(B → K+νν) [10−6] < 55 ±30% >50

B(B → Xsγ) [10−6] ±13% ±7% ±6% < 1

ACP (B → Xsγ) ±0.01 ±0.005 8

S(B → K0
Sπ0γ) −0.10± 0.31± 0.07 ±0.11 ±0.035 > 50

S(B → ργ) −0.83± 0.65± 0.18 ±0.23 ±0.07 > 50

C7/C9 (B → Xs��) ∼20% 10% 5%

B(Bs → γγ) [10−6] < 8.7 ±0.3

B(Bs → τ+τ−) [10−3] < 2

52

TABLE XXXIX: Continued from previous page.

Observables Belle Belle II Ls

(2014) 5 ab−1 50 ab−1 [ab−1]

B(Ds → µν) 5.31× 10−3(1± 0.053± 0.038) ±2.9% ±(0.9%-1.3%) > 50

B(Ds → τν) 5.70× 10−3(1± 0.037± 0.054) ±(3.5%-4.3%) ±(2.3%-3.6%) 3-5

yCP [10−2] 1.11± 0.22± 0.11 ±(0.11-0.13) ±(0.05-0.08) 5-8

AΓ [10−2] −0.03± 0.20± 0.08 ±0.10 ±(0.03-0.05) 7 - 9

AK+K−
CP [10−2] −0.32± 0.21± 0.09 ±0.11 ±0.06 15

Aπ+π−
CP [10−2] 0.55± 0.36± 0.09 ±0.17 ± 0.06 > 50

Aφγ
CP [10−2] ± 5.6 ±2.5 ±0.8 > 50

xKSπ+π− [10−2] 0.56± 0.19± 0.07
0.13 ±0.14 ±0.11 3

yKSπ+π− [10−2] 0.30± 0.15± 0.05
0.08 ±0.08 ±0.05 15

|q/p|KSπ+π− 0.90± 0.16
0.15 ±

0.08
0.06 ±0.10 ±0.07 5-6

φKSπ+π− [◦] −6± 11± 4
5 ±6 ±4 10

Aπ0π0

CP [10−2] −0.03± 0.64± 0.10 ±0.29 ±0.09 > 50

A
K0

Sπ0

CP [10−2] −0.10± 0.16± 0.09 ±0.08 ±0.03 > 50

Br(D0 → γγ) [10−6] < 1.5 ±30% ±25% 2

τ → µγ [10−9] < 45 < 14.7 < 4.7

τ → eγ [10−9] < 120 < 39 < 12

τ → µµµ [10−9] < 21.0 < 3.0 < 0.3
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q2 spectrum and |Vub| 

6 

ISGW2 quark 
model excluded 

Fit BCL parameterization of f+(q2) to data: 

P = 3%  

Data in agreement with form factor shapes from LQCD and LCSR large phase space ⇒ accurate description of q2 dependence over a 
significant region crucial for a precise CKM determination

easily accessible kinematics on 
the lattice (not-too-fast pions)

[HFAG]



[FLAG 2013, Eur J Phys C74 (2014) 2890, arXiv:1310.8555v2]

FLAG-2 on B → πlν

Figure 19: Integrated width of the decay B → π"ν divided by |Vub|2 [values in Table 28 and
Eq. (141)].
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Figure 20: The form factors (1 − q2/m2
B∗)f+(q2) versus z. The filled symbols denote data

points included in the fit, while the open symbols show points that are not included in the fit
(either because of unknown correlations or strong correlations). The grey band displays our
preferred three-parameter BCL fit to the plotted data with errors.
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Figure 22: Lattice and experimental data for (1 − q2/m2
B∗)f+(q2) versus z. The filled green

symbols denote lattice-QCD points included in the fit, while the open green symbols show
those that are not included in the fit (either because of unknown correlations or strong
correlations). The blue stars show the experimental data divided by the value of |Vub| obtained
from the fit. The grey band in the left (right) plots shows the preferred three-parameter BCL
fit to the lattice-QCD and Belle (Babar) data with errors.

8.6 Determination of |Vcb|

We now interpret the lattice-QCD results for the B → D(∗)!ν form factors as determinations
of the CKM matrix element |Vcb| in the Standard Model.

For the experimental branching fractions at zero recoil, we use the latest experimental
averages from the Heavy Flavour Averaging Group [125]:35

FB→D∗
(1)ηEW|Vcb| = 35.90(45) , GB→D(1)ηEW |Vcb| = 42.64(1.53) . (161)

For FB→D∗
(1), there is only a single Nf = 2 + 1 lattice-QCD calculation that satisfies the

FLAG criteria, while there is currently no such calculation of GB→D(1). Using the result
given in Eq. (157), we obtain our preferred value for |Vcb|:

B → D∗!ν : |Vcb| = 39.36(56)(50) × 10−3 , Nf = 2 + 1 (162)

where the errors shown are from the lattice calculation and experiment (plus non-lattice
theory), respectively. Table 31 compares the determination of |Vcb| from exclusive B → D∗!ν
decays to that from inclusive B → Xc!ν decays, where Xc denotes all possible charmed
hadronic final states. The results, also shown in Fig. 23, differ by approximately 2.7σ. The
exclusive determination of |Vcb| will improve significantly over the next year or two with new
lattice-QCD calculations of the B → D(∗)!ν form factors at nonzero recoil.

35We note that HFAG currently averages results for neutral and charged B meson decays without first
removing the correction due to the Coulomb attraction between the charged final-state particles for the neutral
B meson decays.
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|Vub| = 3.37(21)× 10−3 |Vub| = 3.47(22)× 10−3
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(left y axis). The corresponding error can be read off from the right y axis.
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V. z EXPANSION AND DETERMINATION OF |Vub|

The chiral-continuum extrapolation described in the previous sections yields the form

factors in the range 17 GeV2 ≤ q2 ≤ 26 GeV2. In this section, we extrapolate them to the
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show the synthetic data points with statistical (inner) and statistical ⊕ systematic (outer) error bars. The curves with colored
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allows us to perform the K = 4 fit shown in the right-hand plot. In the right-hand plot, we do not show the K = 2 combined
fit because of the poor fit quality.

the heavy-quark constraint improves the determinations
of the slopes and curvatures, and leads to a reduction in
the absolute error on fBπ

+ (0) by about a factor of 2 for
B → π�ν for K = 3. The improvement in the error on
fBsK
+ (0) is smaller but non-negligible, about 25%.
After implementing the heavy-quark constraint, we are

able to include an additional parameter in our fits and
can consider expansions with K = 4. This enables us
to study the stability of the central values and errors of
the parameters with truncation K, and thus assess the
systematic uncertainty associated with truncating the z-
expansion. The central values and errors for the normal-
izations and slopes are stable when increasing the trunca-
tion fromK = 3 toK = 4, in most cases changing only in
the last decimal place (except for the slope of fBsK

0 (q2),
for which the results are still consistent within uncer-
tainties). The combined fits of f+ and f0 imposing the
kinematic and heavy-quark constraints are shown versus
the truncation K in the right-hand plots of Fig. 11 for

B → π�ν (upper) and Bs → K�ν (lower). The central
fit curves for K = 3 and K = 4 lie almost on top of
each other, while the widths of the error bands and the
uncertainties in f+(0) increase only slightly in going to
K = 4. Thus we conclude that the K = 3 constrained
fit includes the systematic uncertainty due to truncating
the series in z.
We therefore take as our preferred fits for B → π�ν

and Bs → K�ν the results from the fit with K = 3
for both f+ and f0 including the kinematic and heavy-
quark constraints. This is the highest truncation K for
which we still have more data points than fit parameters,
and the uncertainties are comparable to the K = 4 fits.
Figure 12 shows our preferred fits for B → π�ν (upper
plots) and Bs → K�ν (lower plots) plotted versus z (left)
and versus q2 right.

As a cross-check, we compare our preferred fit using
the BCL parametrization to the analogous fit (also im-
posing the kinematic and heavy-quark constraints, and
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fit because of the poor fit quality.

the heavy-quark constraint improves the determinations
of the slopes and curvatures, and leads to a reduction in
the absolute error on fBπ

+ (0) by about a factor of 2 for
B → π�ν for K = 3. The improvement in the error on
fBsK
+ (0) is smaller but non-negligible, about 25%.
After implementing the heavy-quark constraint, we are

able to include an additional parameter in our fits and
can consider expansions with K = 4. This enables us
to study the stability of the central values and errors of
the parameters with truncation K, and thus assess the
systematic uncertainty associated with truncating the z-
expansion. The central values and errors for the normal-
izations and slopes are stable when increasing the trunca-
tion fromK = 3 toK = 4, in most cases changing only in
the last decimal place (except for the slope of fBsK

0 (q2),
for which the results are still consistent within uncer-
tainties). The combined fits of f+ and f0 imposing the
kinematic and heavy-quark constraints are shown versus
the truncation K in the right-hand plots of Fig. 11 for

B → π�ν (upper) and Bs → K�ν (lower). The central
fit curves for K = 3 and K = 4 lie almost on top of
each other, while the widths of the error bands and the
uncertainties in f+(0) increase only slightly in going to
K = 4. Thus we conclude that the K = 3 constrained
fit includes the systematic uncertainty due to truncating
the series in z.
We therefore take as our preferred fits for B → π�ν

and Bs → K�ν the results from the fit with K = 3
for both f+ and f0 including the kinematic and heavy-
quark constraints. This is the highest truncation K for
which we still have more data points than fit parameters,
and the uncertainties are comparable to the K = 4 fits.
Figure 12 shows our preferred fits for B → π�ν (upper
plots) and Bs → K�ν (lower plots) plotted versus z (left)
and versus q2 right.

As a cross-check, we compare our preferred fit using
the BCL parametrization to the analogous fit (also im-
posing the kinematic and heavy-quark constraints, and
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FIG. 16. Model-independent determination of |Vub| from a combined fit of experimental measurements of the B → π�ν
branching fraction [2–5] and our lattice result for the B → π�ν form factor f+(q

2) to the BCL z parametrization, Eqs. (44)
and (45), with K = 3. The left plot shows (1− q2/m2

B∗)f+(q
2) vs. z (where the experimental data have been rescaled by the

value of |Vub| determined in the fit), while the right plot shows ∆B/∆q2 vs. q2 (where the lattice points have been rescaled by
|Vub|). In both plots, the filled black circles show the lattice data, while the open colored symbols show the experimental data.
The black curve with gray error band shows the fit result.

TABLE XIII. Determinations of |Vub| from a comparison
of the measured B → π�ν partial branching fractions with
the normalized partial decay rate ∆ζBπ(16 GeV2, q2max) =
1.77(34) calculated from our preferred BCL paramterization
of the vector form factor fBπ

+ (q2).

∆B(16 GeV2, q2max)× 107 |Vub|× 103

All 368(19) 3.69(37)
BaBar 2010 [2] 319(34) 3.44(38)
BaBar 2012 [4] 369(32) 3.70(39)
Belle 2010 [3] 398(30) 3.84(40)
Belle 2013 [5] 386(51) 3.78(44)

on the normalization of the form factor b0 in Table XI is
9.4%, while the error on the normalization of the experi-
mental branching fraction from theK = 3 fit to all exper-
imental data b0|Vub| is 2.2%. Adding these in quadrature
leads to a total error of 9.7%. Thus we conclude that
the combined z-fit of all lattice and experimental data is
indeed the best approach for minimizing the uncertainty
on |Vub|.

B. Standard-Model predictions for B → π�ν and
Bs → K�ν observables

The Standard-Model differential decay rate for B(s) →
P �ν is given in Eq. (1). Using the experimentally mea-
sured lepton and meson masses [10], we obtain predic-
tions for the differential decay rate divided by |Vub|2.
These are plotted for the muon and τ -lepton final states

in Fig. 17, where we use “muon” to denote decays to ei-
ther of the light charged leptons (� = µ, e) throughout
this section. Integrating the differential decay rates over
the kinematically-allowed q2 range gives2

Γ(B → πµν)/|Vub|2 = 6.2(2.5) ps−1 , (59)

Γ(B → πτν)/|Vub|2 = 4.3(1.2) ps−1 , (60)

Γ(Bs → Kµν)/|Vub|2 = 4.55(1.08) ps−1 , (61)

Γ(Bs → Kτν)/|Vub|2 = 3.52(0.60) ps−1 , (62)

with errors of about 25–40% and 15–30% for the µ and τ
final states, respectively. We also use the determination
of |Vub| from our calculation of the B → π�ν form factors
(Eq. (55)) to make predictions for the Bs → K�ν differ-
ential branching fractions for � = µ, τ . These are plotted
in Fig. 18. For comparison, we also show the prediction
for dB/dq2 using the determination of |Vub| from inclu-
sive B → Xu�ν decay [66]. The form-factor uncertainties
are sufficiently small for q2 ∼> 13 GeV2 that, given an
experimental measurement of the branching fraction in
this region with commensurate precision, one can distin-
guish between the curves corresponding to |Vub|excl. and
|Vub|incl.. Thus we anticipate that Bs → K�ν semilep-
tonic decay will eventually play an important role in ad-
dressing the current “|Vub| puzzle.”

Semileptonic decays to τ leptons may be particularly
sensitive to new physics associated with electroweak sym-

2 In practice, the full kinematic range may not be accessible ex-
perimentally, in which case the limits of integration here and
throughout this section will need to be changed accordingly.

|Vub| = 3.61(32)× 10−3
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�1/2 to f+ using

|Vub| from the combined fit. The lattice-only fit result(cyan band) and the combined-fit result (red

band) in the right plot is converted from the form factor with the same |Vub|.

VI. RESULTS AND CONCLUSION

Our final result for |Vub|, obtained from our preferred z fit combining our lattice-QCD cal-

culation of the B → π�ν form factor with experimental measurements of the corresponding

decay rate, is

|Vub| = (3.72± 0.16)× 10−3. (6.1)

The error includes all experimental and lattice-QCD uncertainties. The contribution from

lattice QCD to the total error is now comparable to that from experiment. The error reported

here, following HFAG [6], does not apply the PDG prescription for discrepant data; that

prescription [65] would scale the error by a factor of
�

χ2/dof = 1.2. As can be seen from

Table XVII and Fig. 26, the low fit quality is due to the tension between the BaBar11 data

set and the others. An inspection of all the experimental data in Fig. 27 shows that the

point near z = −0.1 in the BaBar11 data set is lower than the others and a bit more precise

than one might have anticipated, but does not suggest that this or any of the data sets have

any systematic problems.
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FIG. 11. Fits of the B → π�ν (upper plots) and Bs → K�ν (lower plots) lattice form factors to the z-expansion versus
truncation K without constraints (left) and with the kinematic and heavy-quark constraints (right). The black open symbols
show the synthetic data points with statistical (inner) and statistical ⊕ systematic (outer) error bars. The curves with colored
bands show the fit results with errors for different truncations K. We do not show unconstrained fits with K = 4 in the
left-hand plot because we only have three synthetic data points; the inclusion of the kinematic and heavy-quark constraints
allows us to perform the K = 4 fit shown in the right-hand plot. In the right-hand plot, we do not show the K = 2 combined
fit because of the poor fit quality.

the heavy-quark constraint improves the determinations
of the slopes and curvatures, and leads to a reduction in
the absolute error on fBπ

+ (0) by about a factor of 2 for
B → π�ν for K = 3. The improvement in the error on
fBsK
+ (0) is smaller but non-negligible, about 25%.
After implementing the heavy-quark constraint, we are

able to include an additional parameter in our fits and
can consider expansions with K = 4. This enables us
to study the stability of the central values and errors of
the parameters with truncation K, and thus assess the
systematic uncertainty associated with truncating the z-
expansion. The central values and errors for the normal-
izations and slopes are stable when increasing the trunca-
tion fromK = 3 toK = 4, in most cases changing only in
the last decimal place (except for the slope of fBsK

0 (q2),
for which the results are still consistent within uncer-
tainties). The combined fits of f+ and f0 imposing the
kinematic and heavy-quark constraints are shown versus
the truncation K in the right-hand plots of Fig. 11 for

B → π�ν (upper) and Bs → K�ν (lower). The central
fit curves for K = 3 and K = 4 lie almost on top of
each other, while the widths of the error bands and the
uncertainties in f+(0) increase only slightly in going to
K = 4. Thus we conclude that the K = 3 constrained
fit includes the systematic uncertainty due to truncating
the series in z.
We therefore take as our preferred fits for B → π�ν

and Bs → K�ν the results from the fit with K = 3
for both f+ and f0 including the kinematic and heavy-
quark constraints. This is the highest truncation K for
which we still have more data points than fit parameters,
and the uncertainties are comparable to the K = 4 fits.
Figure 12 shows our preferred fits for B → π�ν (upper
plots) and Bs → K�ν (lower plots) plotted versus z (left)
and versus q2 right.

As a cross-check, we compare our preferred fit using
the BCL parametrization to the analogous fit (also im-
posing the kinematic and heavy-quark constraints, and
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allows us to perform the K = 4 fit shown in the right-hand plot. In the right-hand plot, we do not show the K = 2 combined
fit because of the poor fit quality.
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the absolute error on fBπ

+ (0) by about a factor of 2 for
B → π�ν for K = 3. The improvement in the error on
fBsK
+ (0) is smaller but non-negligible, about 25%.
After implementing the heavy-quark constraint, we are

able to include an additional parameter in our fits and
can consider expansions with K = 4. This enables us
to study the stability of the central values and errors of
the parameters with truncation K, and thus assess the
systematic uncertainty associated with truncating the z-
expansion. The central values and errors for the normal-
izations and slopes are stable when increasing the trunca-
tion fromK = 3 toK = 4, in most cases changing only in
the last decimal place (except for the slope of fBsK
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for which the results are still consistent within uncer-
tainties). The combined fits of f+ and f0 imposing the
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the truncation K in the right-hand plots of Fig. 11 for

B → π�ν (upper) and Bs → K�ν (lower). The central
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each other, while the widths of the error bands and the
uncertainties in f+(0) increase only slightly in going to
K = 4. Thus we conclude that the K = 3 constrained
fit includes the systematic uncertainty due to truncating
the series in z.
We therefore take as our preferred fits for B → π�ν

and Bs → K�ν the results from the fit with K = 3
for both f+ and f0 including the kinematic and heavy-
quark constraints. This is the highest truncation K for
which we still have more data points than fit parameters,
and the uncertainties are comparable to the K = 4 fits.
Figure 12 shows our preferred fits for B → π�ν (upper
plots) and Bs → K�ν (lower plots) plotted versus z (left)
and versus q2 right.

As a cross-check, we compare our preferred fit using
the BCL parametrization to the analogous fit (also im-
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and (bottom) relative to fine ensemble data (F1 and F2).

(2) Truncate the z expansion at O(z4).

(3) Truncate the z expansion at O(z5).

(4) Drop O(aEK)4 momentum-dependent and O(a4)
momentum-independent discretization terms in
Eq. (25).

(5) Drop the amb-dependent discretization terms in
Eq. (30).

(6) Drop the light-quark mass-dependent discretization
terms in Eq. (30).

(7) Add the following next-to-next-to-leading-order
(NNLO) chiral analytic terms to Dk as defined in

Eq. (25):

c(k)4 x2
π + c(k)5

�1
2
δxπ + δxK

�2
+ c(k)6 δx2

ηs

+ c(k)7 xπ

�1
2
δxπ + δxK

�
+ c(k)8 xπδxηs (34)

+ c(k)9

�1
2
δxπ + δxK

�
δxηs + c(k)10 xπ(a/r1)

2

+ c(k)11

�1
2
δxπ + δxK

�
(a/r1)

2 + c(k)12 δxηs(a/r1)
2.

(8) Drop the sea- and valence-quark mass difference
term

�
1
2δxπ + δxK

�
from Eq. (25).

(9) Drop the strange quark mistuning term δxηs from
Eq. (25).

(10) Drop finite volume effects, i.e. set δFV = 0 in
Eq. (26).

The stability of the Bs → K fit results to these modi-
fications is shown in Fig. 5, where results are shown at
the extrapolated q2 = 0 point. This point is furthest
from the data region where simulations are performed
and therefore is particularly sensitive to changes in the
fit function. In Fig. 5 our final fit result, as defined by
Eqs. (22) and (24) with K = 3 and by Eqs. (25)–(30), is
indicated by the dashed line and gray band.
Modifications 1, 2, and 3 vary the order of the trunca-

tion in z and demonstrate that by O(z3) fit results have
stabilized and errors have saturated. We therefore con-
clude that the error of the O(z3) fit adequately accounts
for the systematic error due to truncating the z expan-
sion.
Momentum-dependent and momentum-independent

discretization effects proportional to a4 are removed in
modification 4. This results in a modest increase in χ2

and a negligible shift in the fit result. This suggests our fi-
nal fit, which includes the a4 effects, adequately accounts
for all discretization effects observed in the data.

In modifications 5 and 6 we remove heavy- and light-
quark mass-dependent discretization effects with essen-
tially no impact on the fit. That our results are indepen-
dent of light-quark mass dependent discretization effects
suggests that staggered taste violating effects are accom-
modated for by a generic a2 dependence.

Modification 7 tests the truncation of chiral analytic
terms after next-to-leading-order (NLO) by adding the
NNLO terms listed in Eq. (34). This results in a slight
decrease in χ2 but has no noticeable effect on the fit
central value or error. From this we conclude that er-
rors associated with omitted higher order chiral terms
are negligible.

Differences in sea and valence quark masses, due in
part to our use of HISQ valence- and asqtad sea-quarks,
are neglected in modification 8. This results in a small
increase in χ2 and negligible change in the fit results. We
account for these small mass differences in our final fit,
though this test suggests they are unimportant in the fit.

Effects due to strange quark mass mistuning on the
ensembles are omitted in modification 9, resulting in a
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FIG. 17. Standard-Model predictions for the differential decay rate divided by |Vub|2 for B(s) → P �ν decays to muon (left) and
τ -lepton (right) final states using our form-factor determinations in Tables XI and XII.
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FIG. 18. Standard-Model predictions for the differential branching fraction for Bs → Kµν (left) and Bs → Kτν (right)
using our determinations of the Bs → K�ν form factors in Table XII. Each plot shows predictions for dB/dq2 using our
determination of |Vub| in Eq. (55) from exclusive B → π�ν decay as well as using the determination of |Vub| from inclusive
B → Xu�ν decay [66]. In these plots, the outer error band denotes the total uncertainty in dB/dq2, while the inner error band
removes the error contribution from |Vub|.

metry breaking due to the large τ mass, or more gener-
ally sensitive to any Standard-Model extensions with new
scalar currents. Moreover, the ratio of µ/τ differential
decay rates [67]

Rτ/µ
P (q2)≡

dΓ(B(s) → P τν)/dq2

dΓ(B(s) → Pµν)/dq2
(63)

provides a precise test of the Standard Model that is in-
dependent of the CKM matrix element |Vub|. Figure 19
shows the predictions for the ratios of differential branch-
ing fractions using our determinations of the B → π�ν

and Bs → K�ν form factors in Tables XI and XII. In-
tegrating over the kinematically allowed ranges, we ob-

tain the following Standard-Model predictions forRτ/µ
P ≡

Γ(B(s) → P τν)/Γ(B(s) → Pµν):

Rτ/µ
π = 0.69(19) , (64)

Rτ/µ
K = 0.77(12) . (65)

The three-body final state in B(s) → P �ν decay also
enables one to construct and study observables that de-
pend on the kinematics of the decay products. Such
angular observables are particularly sensitive to possi-
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metry breaking due to the large τ mass, or more gener-
ally sensitive to any Standard-Model extensions with new
scalar currents. Moreover, the ratio of µ/τ differential
decay rates [67]

Rτ/µ
P (q2)≡

dΓ(B(s) → P τν)/dq2

dΓ(B(s) → Pµν)/dq2
(63)

provides a precise test of the Standard Model that is in-
dependent of the CKM matrix element |Vub|. Figure 19
shows the predictions for the ratios of differential branch-
ing fractions using our determinations of the B → π�ν

and Bs → K�ν form factors in Tables XI and XII. In-
tegrating over the kinematically allowed ranges, we ob-

tain the following Standard-Model predictions forRτ/µ
P ≡

Γ(B(s) → P τν)/Γ(B(s) → Pµν):

Rτ/µ
π = 0.69(19) , (64)

Rτ/µ
K = 0.77(12) . (65)

The three-body final state in B(s) → P �ν decay also
enables one to construct and study observables that de-
pend on the kinematics of the decay products. Such
angular observables are particularly sensitive to possi-
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FIG. 10: (color online). Predicted differential branching
fractions for the (top) Bs → Kµν and (bottom)

Bs → Kτν decays using inclusive and exclusive

semileptonic determinations of |Vub|. In each band, the

light outer band includes all sources of error and the

dark interior band neglects the uncertainty in |Vub|.

Normalizing the forward-backward asymmetry by the

differential decay rate removes |Vub| ambiguity and most

hadronic uncertainties,

Ā�
FB(q

2
low, q

2
high) =

� q2high
q2low

dq2 A�
FB(q

2
)

� q2high
q2low

dq2 dΓ/dq2
, (53)

and represents the probability the lepton will have a mo-

mentum component, in this frame, in the direction of mo-

tion of the parent Bs meson. Integrating over q2 yields

Āµ
FB(m

2
µ, q

2
max) = 0.0066(10), (54)

Āτ
FB(m

2
τ , q

2
max) = 0.284(17), (55)

with central values equal to those obtained by taking

the ratio of results from Eqs. (51) and (52) with those

q
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FIG. 11: (color online). Predicted differential branching
fraction ratio.

from Eqs. (42) and (43). The errors, however, are ∼ 3×
smaller when correlations are accounted for. The normal-

ized standard model asymmetries are plotted in Fig. 13

as a function of q2.
The production of right-handed final state leptons is

helicity-suppressed in the standard model, providing a

probe of new physics via helicity-violating interactions.

The standard model differential decay rates for left-

handed (LH) and right handed (RH) polarized final state

leptons in Bs → K�ν decays is [27]

dΓ(LH)

dq2
=

G2
F |Vub|2|pK |3

24π3

�
1− m2

�

q2

�2
f2
+ ,

dΓ(RH)

dq2
=

G2
F |Vub|2|pK |

24π3

m2
�

q2

�
1− m2

�

q2

�2
(56)

×
�
3

8

(M2
Bs

−M2
K)

2

M2
Bs

f2
0 +

1

2
|pK |2f2

+

�
,

and the �-polarization distribution is given by the differ-
ence

A�
pol(q

2
) =

dΓ(LH)

dq2
− dΓ(RH)

dq2
. (57)

We plot the τ -polarization distribution, again using the

inclusive and exclusive values of |Vub| from Eqs. (44)

and (45), in Fig. 14. Because of their relatively small

mass, muons produced in the decay are predominantly

left-handed and the plot of Aµ
pol is equivalent to the to-

tal differential decay rate. Integrating the �-polarization
distributions over q2 gives

� q2max

m2
µ

dq2 Aµ
pol(q

2
)/|Vub|2 = 7.61(1.60) ps−1, (58)

� q2max

m2
τ

dq2 Aτ
pol(q

2
)/|Vub|2 = 0.52(32) ps−1. (59)



Λb

p

b

u

u

d

νl
W+

l+

Λb

b

u

d

νl
W+

l+

c

Λc

and       from SL baryon decay|Vub| |Vcb|

new exclusive determination of               from LHCb measurement + 
LQCD computation of form factors

|Vcb|/|Vub|

Kenneth G. Wilson Award for Excellence in Lattice 
Field Theory 2015: S Meinel



Λb

p

b

u

u

d

νl
W+

l+
Λb decays

Flavor physics
Test SM paradigm of quark flavor mixing and CP violation and look for new physics

Unitary CKM matrix

V

u

b W

ub

d s b

→ V =

u

c

t





1 − λ
2 λ Aλ3(ρ − iη)

−λ 1 − λ
2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1




+O(λ4)
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⇒ unitarity triangle

In experiment, must account for confining QCD interactions

d
u

b
W+

B0

π−

νl

l+

∼ |Vub|× �π−|b̄γµu|B0�

→ lattice QCD (or LCSR)

Laurent Lellouch DESY Zeuthen, 12 December 2011

Λb

p/Λcd

u/cu

2

and quark models [17–28]. Nonperturbative QCD calculations of the Λb → p and Λb → Λc form factors can be
performed using lattice gauge theory. The first lattice QCD calculation of Λb → p form factors, published in Ref. [29],
employed static b quarks (i.e., leading-order heavy-quark effective theory) to simplify the analysis. The static limit
reduces the number of independent Λb → p form factors to two [30–32], but introduces systematic uncertainties of
order ΛQCD/mb and |p�|/mb in the Λb → p µ−ν̄µ differential decay rate (where p� is the momentum of the proton in
the Λb rest frame). Here we present a new lattice calculation which improves upon Ref. [29] by replacing the static b
quarks by relativistic b quarks, eliminating this systematic uncertainty. In addition to the six form factors describing
the hadronic part of the decay Λb → p µ−ν̄µ in fully relativistic QCD, we also compute the six analogous form factors
for Λb → Λc µ−ν̄µ (note that early lattice studies of Λb → Λc form factors in the quenched approximation can be
found in Refs. [33, 34]). Preliminary results from the present work were shown in Ref. [35].

In Sec. II we provide the definitions of the form factors employed here. The lattice actions and parameters, as well
as the matching of the b → u and b → c currents from the lattice renormalization scheme to the continuum MS scheme
are discussed in Sec. III. This calculation is based on the same lattice gauge-field ensembles as Ref. [29]; the ensembles
include 2+1 flavor of dynamical domain-wall fermions and were generated by the RBC and UKQCD Collaborations
[36]. Section IV explains our method for extracting the form factors from ratios of three-point and two-point correlation
functions and removing excited-state contamination by extrapolating to infinite source-sink separation. Our fits of
the quark-mass, lattice-spacing, and momentum-dependence of the form factors are discussed in Sec. V. The form
factors in the physical limit are presented in terms of z-expansion [37] parameters and their correlation matrices. Two
different sets of parameters, referred to as the “nominal parameters” and the “higher-order parameters” are given.
The nominal parameters are used to obtain the central values and statistical uncertainties of the form factors (and
of derived quantities), while the higher-order parameters are used to calculate systematic uncertainties. In Sec. VI
we then present predictions for the Λb → p �−ν̄� and Λb → Λc �−ν̄� differential and integrated decay rates using our
form factors. Combined with experimental data, our results for the Λb → p µ ν̄µ and Λb → Λc µ ν̄µ decay rates in the
high-q2 region will allow determinations of |Vub| and |Vcb| with theory uncertainties of 5.0% and 2.2%, respectively.

II. DEFINITIONS OF THE FORM FACTORS

Allowing for possible right-handed currents beyond the Standard Model, the effective weak Hamiltonian for b →
q �− ν̄� transitions (where q = u, c) can be written as

Heff =
GF√
2
V L
qb

�
(1 + �Rq )q̄γ

µb− (1− �Rq ) q̄γ
µγ5b

�
�̄γµ(1− γ5)ν (2)

(in the Standard Model, �Rq = 0 and V L
qb = Vqb). To calculate the differential decay rate and other observables, we

therefore need the hadronic matrix elements of the vector and axial vector currents, q̄γµb and q̄γµγ5b. In the following,
we denote the final-state baryon by X (X = p,Λc). Lorentz and discrete symmetries imply that the matrix elements
�X|q γµ b|Λb� and �X|q γµγ5 b|Λb� can each be decomposed into three form factors. In this work we primarily use a
helicity-based definition of the Λb → X form factors, which was introduced in Ref. [38] and is given by

�X(p�, s�)|q γµ b|Λb(p, s)� = uX(p�, s�)

�
f0(q

2) (mΛb −mX)
qµ

q2

+ f+(q
2)
mΛb +mX

s+

�
pµ + p�µ − (m2

Λb
−m2

X)
qµ

q2

�

+ f⊥(q
2)

�
γµ − 2mX

s+
pµ − 2mΛb

s+
p�µ

��
uΛb(p, s), (3)

�X(p�, s�)|q γµγ5 b|Λb(p, s)� = −uX(p�, s�) γ5

�
g0(q

2) (mΛb +mX)
qµ

q2

+ g+(q
2)
mΛb −mX

s−

�
pµ + p�µ − (m2

Λb
−m2

X)
qµ

q2

�

+ g⊥(q
2)

�
γµ +

2mX

s−
pµ − 2mΛb

s−
p�µ

��
uΛb(p, s). (4)

In these expressions, q = p− p� is the four-momentum transfer (whereas q̄ is the ū or c̄ quark field), and s± is defined
as

s± = (mΛb ±mX)2 − q2. (5)

“helicity-based” FF parametrisation

[Feldmann, Yip, PRD 85 (2012) 014035]

helicity-based parametrisation: [Feldmann, Yip PRD 85 (2012) 014035]
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[cf. Detmold, Lin, Meitnel, Wingate PRD 88 (2013) 014512]
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FIG. 6. Λb → p vector form factors: lattice results and extrapolation to the physical limit (nominal fit). The bands indicate
the 1σ statistical uncertainty.
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the statistical uncertainty and the outer bands show the total uncertainty, calculated using Eq. (83).
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LHCb measurement of B(Λ0
b → pµ−ν̄µ)

B(Λ0
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Figure 2: Corrected mass fit used for de-
termining signal yields. Fits are made to
(top) Λ0

b → pµ−νµ and (bottom) Λ0
b → (Λ+

c →
pK−π+)µ−νµ candidates. The statistical uncer-
tainties arising from the finite size of the simulation
samples used to model the mass shapes are indi-
cated by open boxes while the data are represented
by the black points. The different signal and back-
ground components appear in the same order in the
fits and the legends. There are no data above the
nominal Λ0

b mass due to the removal of unphysical
q2 solutions.

Λ0
b→ pµ−νµ candidates, many sources of back-

ground are accounted for. The largest of
these is the cross-feed from Λ0

b → Λ+
c µ

−νµ

decays, where the Λ+
c decays into a pro-

ton and other particles that are not recon-

structed. The amount of background arising
from these decay modes is estimated by fully
reconstructing two Λ+

c decays in the data. The
background where the additional particles in-
clude charged particles originating directly from
the Λ+

c decay is estimated by reconstructing
Λ0

b→ (Λ+
c → pK−π+)µ−νµ decays, whereas the

background where only neutral particles come
directly from the Λ+

c decay is estimated by
reconstructing Λ0

b → (Λ+
c → pK0

S )µ
−νµ decays.

These two background categories are separated
because the isolation BDT significantly reduces
the charged component but has no effect on
the neutral case. For the rest of the Λ+

c de-
cay modes, the relative branching fraction be-
tween the decay and either the Λ+

c → pK−π+

or Λ+
c → pK0

S decay modes, as appropriate, is
taken from Ref. [14]. For some neutral decay
modes, where only the corresponding mode with
charged decay particles is measured, assump-
tions based on isospin symmetry are used. In
these decays, an uncertainty corresponding to
100% of the branching fraction is allowed for
in the fit. Background from Λ0

b → D0pµ−νµ

decays is controlled in a similar way to the Λ+
c

charged decay modes, with the normalisation
done relative to Λ0

b → D0(→ K−π+)pµ−νµ de-
cays reconstructed in the data.

Any background with a Λ+
c baryon may

also arise from decays of the type Λ0
b →

(Λ∗+
c → Λ+

c ππ)µ
−νµ, where Λ∗+

c represents the
Λc(2595)+ or Λc(2625)+ resonances as well as
non-resonant contributions. The proportions
between the Λ0

b → (Λ∗+
c → Λ+

c ππ)µ
−νµ and the

Λ0
b→ Λ+

c µ
−νµ backgrounds are determined from

the fit to the Λ0
b → (Λ+

c → pK−π+)µ−νµ mcorr

distribution and then used in the Λ0
b → pµ−νµ

fit.
The decays Λ0

b → N∗µ−νµ, where the N∗

baryon decays into a proton and other non-
reconstructed particles, are very similar to the
signal decay and have poorly known branch-
ing fractions. The N∗ resonance represents any

4

Table 1: Summary of systematic uncertainties.
The table shows the relative systematic uncertainty

on the ratio of the Λ0
b→ pµ−νµ and Λ0

b→ Λ+
c µ

−νµ
branching fractions broken into its individual con-

tributions. The total is obtained by adding them in

quadrature. Uncertainties on the background levels

are not listed here as they are incorporated into the

fits.

Source Relative uncertainty (%)

B(Λ+
c → pK+π−) +4.7

−5.3

Trigger 3.2
Tracking 3.0
Λ+

c selection efficiency 3.0
Λ0

b → N∗µ−νµ shapes 2.3
Λ0

b lifetime 1.5
Isolation 1.4
Form factor 1.0
Λ0

b kinematics 0.5
q2 migration 0.4
PID 0.2

Total +7.8
−8.2

uncertainties means that the measured ratio of
branching fractions can safely be considered in-
dependent of the theoretical input at the current
level of precision.

From the ratio of yields and their determined
efficiencies, the ratio of branching fractions be-
tween Λ0

b → pµ−νµ and Λ0
b → Λ+

c µ
−νµ in the

selected q2 regions is

B(Λ0
b→ pµ−νµ)q2>15GeV/c2

B(Λ0
b→ Λ+

c µ
−νµ)q2>7GeV/c2

=

(1.00± 0.04± 0.08)× 10−2 ,

where the first uncertainty is statistical and
the second is systematic. Using Eq. 1 with
RFF = 0.68 ± 0.07, computed in Ref. [19]
for the restricted q2 regions, the measurement
|Vub|/|Vcb| = 0.083 ± 0.004 ± 0.004 is obtained.
The first uncertainty arises from the experimen-
tal measurement and second is due to the uncer-
tainty in the LQCD prediction. Finally, using

R!
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combined

Figure 3: Experimental constraints on the
left-handed coupling, |V L

ub| and the fractional
right-handed coupling, �R. While the overlap

of the 68% confidence level bands for the inclusive

and exclusive world averages of past measurements

suggested a right handed coupling of significant

magnitude, the inclusion of the LHCb |Vub| mea-

surement does not support this.

the world average |Vcb| = (39.5 ± 0.8) × 10−3

measured using exclusive decays [14], |Vub| is
measured as

|Vub| = (3.27± 0.15± 0.17± 0.06)× 10−3 ,

where the first uncertainty is due to the exper-
imental measurement, the second arises from
the uncertainty in the LQCD prediction and the
third from the normalisation to |Vcb|. The exper-
imental uncertainty is dominated by systematic
effects, most of which will be improved with ad-
ditional data by a reduction of the statistical
uncertainty of the control samples.

The measured ratio of branching frac-
tions can be extrapolated to the full q2 re-
gion using |Vcb| and the form factor pre-
dictions [19], resulting in a measurement of
B(Λ0

b→ pµ−νµ) = (3.9± 0.8)× 10−4, where the
uncertainty is dominated by knowledge of the
form factors at low q2.

The determination of |Vub| from the mea-
sured ratio of branching fractions depends on

6

|Vcb| from PDG
+ LQCD FFs



,      |Vub| |Vcb|

Figure 23: Comparison of the results for |Vub| and |Vcb| obtained from lattice methods with
non-lattice determinations based on inclusive semileptonic B decays. In the left plot, the
results denoted by squares are from leptonic decays, while those denoted by triangles are
from semileptonic decays. The grey band indicates our Nf = 2 + 1 average.
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•methods: where we stand (brief!)
- ensembles used in HQ physics, reach
- HQ approaches

• brief overview of
- leptonic charm and B decay
- B mixing

• charm and B semileptonic decays (+ CKM 2nd and 3rd rows)

• the % precision target

• conclusions and outlook

plan



the % semileptonic precision target
• in order to achieve few % precision there are common issues with 

other quantities ...
- limitations of HQ approaches
- (related:) reliance on perturbation theory
- mixed-action aspects
- correct treatment of resonances
- QED (also inclusive determinations), isospin, OPE corrections

• ... and some specific questions
- contamination from excited states
- matching of currents / four-quark operators
- chiPT for form factors
- momentum dependence of form factors



q2 dependence of form factors

[from H Ma’s talk on behalf of BESIII at CHARM 2015]

!"

Extracted Parameters of Form Factors

D0 K-e+v D0 -e+v

fK
+(0)|Vcs| 0.7209 0.0022 0.0033 f +(0)|Vcd| 0.1475 0.0014 0.0005

Simple Pole
Mpole 1.9207 0.0103 0.0069 Mpole 1.9114 0.0118 0.0038

fK
+(0)|Vcs| 0.7163 0.0024 0.0034 f +(0)|Vcd| 0.1437 0.0017 0.0008

Mod. Pole
0.3088 0.0195 0.0129 0.2794 0.0345 0.0113

fK
+(0)|Vcs| 0.7139 0.0023 0.0034 f +(0)|Vcd| 0.1415 0.0016 0.0006

ISGW2
rISGW2 1.6000 0.0141 0.0091 rISGW2 2.0688 0.0394 0.0124

fK
+(0)|Vcs| 0.7172 0.0025 0.0035 f +(0)|Vcd| 0.1435 0.0018 0.0009

Series.2.Par
r1 -2.2278 0.0864 0.0575 r1 -2.0365 0.0807 0.0260

fK
+(0)|Vcs| 0.7196 0.0035 0.0041 f +(0)|Vcd| 0.1420 0.0024 0.0010

r1 -2.3331 0.1587 0.0804 r1 -1.8434 0.2212 0.0690Series.3.Par

r2 3.4223 3.9090 2.4092 r2 -1.3871 1.4615 0.4677

D0 -e+vD0 K-e+v



various parametrisations based on pole dominance: Bećirević-Kaidalov, 
Ball-Zwicky, Hill, ... difficult to systematically improve precision

z-parametrisations proposed to solve this issue (almost) rigourously by 
exploiting unitarity and crossing symmetry

[Bećirević, Kaidalov PLB 478 (2000) 417]
[Ball, Zwicky PRD 71 (2005) 014015]

[Hill PRD 73 (2006) 014012]

[Okubo PRD 3 (1971) 2807, 4 (1971) 725]
[Bourrely, Machet, de Rafael NPB 189 (1981) 157]

[Boyd, Grinstein, Lebed PRL 74 (1995) 4603]
[Lellouch NPB 479 (1996) 353]

[Bourrely, Caprini, Micu EJPC 27 (2003) 439]
[Arnesen, Grinstein, Rothstein, Stewart PRL 95 (2005) 071802]

[Becher, Hill PLB 633 (2006) 61]
[Flynn, Nieves PRD 75 (2007) 013008]

[Bourrely, Caprini, Lellouch PRD 79 (2009) 013008]

a benchmark case: f+(B → πlν)



q2

t− t+
*
t∗

z

t−t+ t0 0
*
t∗

B

π

qµ

B π

qµ

z =

�
t+ − q2 −

√
t+ − t0�

t+ − q2 +
√
t+ − t0

t+ = (mB +mπ)
2 , t0 < t+

⇒
f+(q

2) =
1

B(q2)φ(q2, t0)

�

n≥0

anz(q
2, t0)

n

unitarity bound:

a benchmark case: f+(B → πlν)

�

m,n

B(φ)
mnaman ≤ 1



f+(q
2) =

1

B(q2)φ(q2, t0)

�

n≥0

anz(q
2, t0)

n

BGL: complicated outer function φ −→
�

n≥0

|an|2 � 1

[Boyd, Grinstein, Lebed PRL 74 (1995) 4603]

[Bourrely, Caprini, Lellouch PRD 79 (2009) 013008]

BCL: f+(q2) =
1

1− q2/m2
B∗

�

n≥0

anz
n −→

�

m,n≥0

Bmnaman � 1

B(q2) = z(q2,m2
B∗)

crucial for optimal use:
- all sub-threshold poles included in Blaschke factor
- fixed kinematics (coefficients implicitly depend on quark masses)

a benchmark case: f+(B → πlν)

(recommended by FLAG)



does the unitarity bound apply?
• using a z-parametrisation as part of a global fit including a, mq, ...

(modified z-expansion) tricky
- poles can cross threshold as quark masses change
- complicated entanglement of (mq,a) dependence (complete form 

factor vs. z-parametrisation coefficient)

• pole structure not always well-known (scalar channels, D decay), 
or complicated (Λb decay)

•missing sub-threshold poles may imply convergence breakdown 
(proton charge radius analysis by Hill, Paz et al, D semileptonic 
decay data by Bećirević et al)

[Hill, Paz PRD 82 (2010) 113005]
[Bhattacharya, Hill, Paz PRD 84 (2011) 073006]

[Epstein, Paz, Roy PRD 90 (2014) 074027]
[cf talk by J Zanotti]

[Bećirević et al arXiv:1407.1019]



is your z-parametrisation well-behaved?

convergence properties can actually be tested

Figure 21. Bootstrap sample distribution defined in Eq. (5.5) for the z expansion coefficients of f+

(left) and f0 (right), compared with the heavy-quark scaling estimate 0.013 (red vertical line in the

left plot) and the unitarity bound (red vertical line in the right plot). The 1000 samples of fits use

only the kinematic constraint and Nz = 4.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

-0.3 -0.2 -0.1  0  0.1  0.2  0.3

(1
-q

2
/M

B
*2

)f
+

z

Nz=3, p=0.02
Nz=4, p=0.63
Nz=5, p=0.49

Figure 22. Effects of truncating the z expansion for f+. The areas indicated by the hatched band,

colored shaded band, and the lines are results with 1σ errors for Nz = 3, 4, 5 z fits, respectively.

that the fit central values do not change significantly when we change Nz from 4 to 5, in

contrast to the case from 3 to 4, as is shown in Fig. 22 and Table XIII.

We perform several additional checks to confirm the stability of our results against various

45

[FNAL/MILC arXiv:1503.07839]



matching/renormalisation
perturbative convergence known to be poor at b scaleMatching 33

Fig. 3.1 CPS estimated in perturbation theory. For B-physics we have ΛMS/Mb ≈ 0.04. Figure

from (Heitger et al., 2004).

An interesting application is the asymptotics of the decay constant of a heavy-light
pseudo-scalar (e.g. B):6

FPS
M→∞∼

[ln(M/Λ)]γ0/2b0

√
mPS

ΦRGI × [1 + O([ln(M/Λ)]−1] . (3.34)

At leading order in 1/m the conversion function CPS contains the full (logarithmic)
mass-dependence. The non-perturbative effective theory matrix elements, ΦRGI, are
mass independent numbers. Conversion functions such as CPS are universal for all (low
energy) matrix elements of their associated operator. For example

CQCD
AA,R(x0)

x0�1/m∼ [CPS(
M

ΛMS
)Zstat

A,RGI]
2 �Astat

0 (x)†Astat
0 (0)�� �� �

Cstat
AA (x0) (bare)

+O( 1
m ) , (3.35)

is a straight forward generalization of eq. (3.9).
Analogous expressions for the conversion functions are valid for the time compo-

nent of the axial current replaced by other composite fields, for example the space
components of the vector current. Based on the work of (Broadhurst and Grozin,
1991, Shifman and Voloshin, 1987, Politzer and Wise, 1988) and recent efforts their
perturbative expansion is known including the 3-loop anomalous dimension γmatch ob-
tained from the 3-loop anomalous dimension γ (Chetyrkin and Grozin, 2003) in the
MS-scheme and the 2-loop matching function Cmatch (Ji and Musolf, 1991,Broadhurst
and Grozin, 1995,Gimenez, 1992).

Figure 3.1 seems to indicate that the remaining O(ḡ6(mb)) errors in CPS are rel-
atively small. However, as discussed in more detail in App. A.2, such a conclusion is
premature. By now ratios of conversion functions for different currents are known to
even one more order in perturbation theory (Bekavac et al., 2010). We show an exam-
ple in the first column of Fig. 3.2, where the x-axis is approximately proportional to
g2�(M/Λ) and for B-physics one needs 1/ ln(ΛMS/Mb) ≈ 0.3. For a quark mass around

6
Note the slow, logarithmic, decrease of the corrections in eq. (3.34). We will see below, in the

discussion of Figs. 3.1,3.2, that the perturbative evaluation of CPS(Mb/Λ) is somewhat problematic.

34 Mass dependence at leading order in 1/m: Matching

Fig. 3.2 The ratio CPS/CV, evaluated in the first column as described here. In columns two

and three the expansion in g� is generalized to an expansion in ḡ(m�/s), see App. A.2.2. The last

column contains the conventionally used ĈPS
match(mQ,mQ,mQ)/ĈV

match(mQ,mQ,mQ), see App. A.2.

For B-physics we have ΛMS/Mb ≈ 0.04 and 1/ ln(ΛMS/Mb) ≈ 0.3. The loop order changes from

one-loop (long-dashes) up to 4-loop (full line) anomalous dimension.

the mass of the b-quark and lower, the higher order contributions in perturbation

theory do not decrease significantly and perturbation theory is not trustworthy. It

seems impossible to estimate a realistic error of the perturbative expansion. Only for

somewhat higher masses the expansion looks reasonable.

Moreover, using the freedom to choose the scale µ in eq. (3.10), the l’th order

coefficients (as far as they are known) can be brought down in magnitude below about

(4π)−l, which means there is a fast decrease of terms in the perturbative series once

α(µ) � 1/3. This is shown in columns two and three of the figure. Unfortunately, the

required scale µ is around a factor 4 or more below the mass of the quark. For the

b-quark, α is rather large at that scale and the series is again unreliable. Only for even

larger masses, say m� > 15GeV, the asymptotic convergence of the series is noticeably

better after adjusting the scale. More details are found in App. A.2. Unfortunately we

see no way out of the conclusion that for B-physics with a trustworthy error budget

aiming at the few percent level, one needs a non-perturbative matching, even in the
static approximation.

We return to the full set of heavy-light flavor currents of Sect. 2.5. The bare fields

satisfy the symmetry relations eq. (2.33). The same is then true for the RGI fields in

static approximation. It follows that in static approximation the effective currents are

given by

[R Sommer, Les Houches Lectures arXiv:1008.0710]

extensive one-loop input for matchings/renormalisation needed in 
RHQ actions and operators (even tree-level, e.g. B→D transition 
amplitudes at non-zero recoil)

e.g. systematics due to using perturbative running in HQET may well 
be O(4%) for B decay constant [cf. P Fritzsch’s talk]



matching/renormalisation

non-perturbative current normalisations for RHQ actions significantly  
large, huge cutoff dependence; expected effect of RG trajectory 
tuning? 6
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FIG. 1. Numerical results for the ratio R
Z

(cc)
V

(t, t�) at t/a = 20 for the C54 data set (left) and at t/a = 24 for the F43 data set

(right). The horizontal lines indicate the extracted values of Z(cc)
V .

Parameter coarse fine

Z(bb)
V 10.037(34) 5.270(13)

Z(cc)
V 1.35725(23) 1.18321(14)

Z(uu)
V 0.71651(46) 0.74475(12)

TABLE IV. Nonperturbative renormalization factors of the flavor-conserving temporal vector currents. For Z(uu)
V , we use the

results in the chiral limit from Ref. [36]. For Z(bb)
V , we use the results obtained in Ref. [59] on the coarse am(sea)

u,d = 0.005 and

fine am(sea)
u,d = 0.004 ensembles.

R
Z(cc)

V
(t, t�), along with fits in the plateau region giving Z(cc)

V , are shown in Fig. 1 for the ensembles used in this

calculation.

IV. EXTRACTION OF THE FORM FACTORS FROM CORRELATION FUNCTIONS

In this section we explain how we extract the form factors at the different lattice spacings and quark masses from
nonperturbative Euclidean correlation functions. The extrapolations of these results to the physical limit will be
discussed in Sec. V.

We use the following interpolating fields for the Λb, Λc, and the proton,

Λbα = �abc (Cγ5)βγ d̃aβ ũb
γ b̃cα, (26)

Λcα = �abc (Cγ5)βγ d̃aβ ũb
γ c̃cα, (27)

Nα = �abc (Cγ5)βγ ũa
β d̃bγ ũc

α, (28)

where C is the charge-conjugation matrix, a, b, c are color indices, and α, β, γ are spinor indices (the symbol N is used
for the proton to avoid confusion with the Λb-momentum p). The tilde on the quark fields indicates gauge-covariant
Gaussian smearing. For the u and d quarks, the smearing parameters are the same as in Ref. [60]. In the notation of
Ref. [60], for the charm quarks we used (σ, nS) = (3.0, 70) at the coarse lattice spacing and (σ, nS) = (4.0, 70) at the
fine lattice spacing, and for the bottom quarks (σ, nS) = (2.0, 10) at the coarse lattice spacing and (σ, nS) = (2.67, 10)
at the fine lattice spacing. The smearing of both the charm and bottom quark fields was done using Stout-smeared
gauge links [61] with ten iterations and staple weight ρ = 0.08 in the spatial directions.

In the following, we denote the final-state interpolating field by Xα (= Nα,Λcα) and the renormalized currents as
JΓ, where

Jγµ = Vµ, (29)

Jγµγ5 = Aµ, (30)

with Vµ and Aµ given by Eqs. (18-21). We set the Λb three-momentum p to zero, and compute “forward” and

6

FIG. 1. Numerical results for the ratio R
Z

(cc)
V

(t, t�) at t/a = 20 for the C54 data set (left) and at t/a = 24 for the F43 data set

(right). The horizontal lines indicate the extracted values of Z(cc)
V .

Parameter coarse fine

Z(bb)
V 10.037(34) 5.270(13)

Z(cc)
V 1.35725(23) 1.18321(14)

Z(uu)
V 0.71651(46) 0.74475(12)

TABLE IV. Nonperturbative renormalization factors of the flavor-conserving temporal vector currents. For Z(uu)
V , we use the

results in the chiral limit from Ref. [36]. For Z(bb)
V , we use the results obtained in Ref. [59] on the coarse am(sea)

u,d = 0.005 and

fine am(sea)
u,d = 0.004 ensembles.

R
Z(cc)

V
(t, t�), along with fits in the plateau region giving Z(cc)

V , are shown in Fig. 1 for the ensembles used in this

calculation.

IV. EXTRACTION OF THE FORM FACTORS FROM CORRELATION FUNCTIONS

In this section we explain how we extract the form factors at the different lattice spacings and quark masses from
nonperturbative Euclidean correlation functions. The extrapolations of these results to the physical limit will be
discussed in Sec. V.

We use the following interpolating fields for the Λb, Λc, and the proton,

Λbα = �abc (Cγ5)βγ d̃aβ ũb
γ b̃cα, (26)

Λcα = �abc (Cγ5)βγ d̃aβ ũb
γ c̃cα, (27)

Nα = �abc (Cγ5)βγ ũa
β d̃bγ ũc

α, (28)

where C is the charge-conjugation matrix, a, b, c are color indices, and α, β, γ are spinor indices (the symbol N is used
for the proton to avoid confusion with the Λb-momentum p). The tilde on the quark fields indicates gauge-covariant
Gaussian smearing. For the u and d quarks, the smearing parameters are the same as in Ref. [60]. In the notation of
Ref. [60], for the charm quarks we used (σ, nS) = (3.0, 70) at the coarse lattice spacing and (σ, nS) = (4.0, 70) at the
fine lattice spacing, and for the bottom quarks (σ, nS) = (2.0, 10) at the coarse lattice spacing and (σ, nS) = (2.67, 10)
at the fine lattice spacing. The smearing of both the charm and bottom quark fields was done using Stout-smeared
gauge links [61] with ten iterations and staple weight ρ = 0.08 in the spatial directions.

In the following, we denote the final-state interpolating field by Xα (= Nα,Λcα) and the renormalized currents as
JΓ, where

Jγµ = Vµ, (29)

Jγµγ5 = Aµ, (30)

with Vµ and Aµ given by Eqs. (18-21). We set the Λb three-momentum p to zero, and compute “forward” and

[Detmold, Lehner, Meinel arXiv:1503.01421]



matching/renormalisation

[Papinutto, CP, Preti arXiv:1412.1742]

Non-perturbative renormalization of !F = 2 four-fermion operators Mauro Papinutto

100 101 102 1031.05

1.1

1.15

1.2

1.25

1.3

µ/"

[ĉ
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Figure 3: First row: elements 22, 23, 32 of Ũ(µ). Second row: elements 44, 45, 54 of Ũ(µ).

If operators mix, the RG-evolution is formally obtained by using

U(µ2,µ1) = Texp
{

∫ ḡ(µ2)

ḡ(µ1)

#(g)
$ (g)

dg
}

. (3.2)

We write the RG-evolution by separating the LO part and defining the function W (µ) which can
be thought as containing contributions beyond LO:

U(µ2,µ1)≡ [W (µ2)]
−1U(µ2,µ1)LOW (µ1) , U(µ2,µ1)LO =

[

ḡ2(µ2)
ḡ2(µ1)

]

#0
2$0

, (3.3)

whereW (µ) satisfies a new RG-equation and is regular in the UV: limµ→%W (µ) = 1
The RGI operators are easily defined using the above form:

Q
RGI ≡ Ũ(µ)(Q(µ))R =

[

ḡ2(µ)
4&

]−
#0
2$0
W (µ)(Q(µ))R . (3.4)

This formula is still valid non-perturbatively. One can use it to perform the matching at µpt
with the NLO perturbative evolution:

Q
RGI =

[

ḡ2(µ)
4&

]−
#0
2$0
W (µpt)U(µpt,µhad)(Q(µhad))R , (3.5)

by expandingW (µ) in perturbation theoryW (µ)$ 1+ ḡ2(µ)J(µ)+O(ḡ4). J depends on the ADM
at the NLO #1 and satisfies:

'
'µ

J(µ) = 0 , J−
[

#0
2$0

,J
]

=
$1
2$ 20

#0−
1
2$0

#1 . (3.6)

6



• issues in fitting FF light quark mass dependence:
- how reliable HQchiPT is?
- uncertainties from
- explored range in momentum transfer goes well beyond slow pion 

kinematics

• extension of chiPT to hard pions being rapidly incorporated into 
analyses

• recent efforts aimed at improving precision on

• (HQchiPT systematic dependence should become less relevant as 
physical pion points enter analyses — H Leutwyler allowing)

chiPT for SL form factors

gH∗HP

[cf. A Jüttner’s talk]

[Bijnens, Jemos NPB 840 (2010) 54, 844(2011) 182]

[RBC/UKQCD arXiv:1311.1251]
[ALPHA PLB 740 (2015) 278]

gH∗HP

[A Gérardin, Fri 17:30]



chiPT for SL form factors
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Figure 14. Variations in the chiral-continuum extrapolation from different fit Ansätze. The shaded

area shows the fit error from the NNLO SU(2) fit without heavy-quark discretization terms. The

other curves show the systematic deviations from the NNLO SU(2) fit under the variations discussed

in the text.

fit excluding data with p = (2π/L)(1, 1, 1). As shown in Fig. 14, the form factors f+ and

f0 from the low-momentum fit agree very well with those from the preferred full-data fit

for the region q2 > 20 GeV
2
. The systematic difference increases for small q2, where the

highest-momentum data provide important information.

Figure 14 summarizes the effects of all these variations. Comparing the deviations be-

tween the central values of the alternate and preferred fits to the statistical error of the

preferred fit, we find that the deviations are almost always smaller than the statistical error

of our preferred fit. This confirms that fit errors of our preferred fits adequately account

for the systematic effects associated with these variations. We therefore do not quote any

additional systematic error due to these sources.

We include heavy-quark discretization effects in our chiral-continuum extrapolation. As

a consistency check, we compare our result with a power counting estimate obtained by

evaluating δfHQ

J
in Eq. (3.15) at the a ≈ 0.045 fm lattice spacing, setting the coefficients

zi = 1 and taking Λ = 500 MeV for the heavy-quark scale. We find δfHQ

J
� 1.5%. Figure

15 shows that the NNLO fit error (without the heavy-quark discretization effects) added

to the 1.5% power-counting estimate in quadrature yields a similar error to that of the full

fit. Thus, again, it is not necessary to add an additional error to that of the preferred

chiral-continuum fit.
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FNAL/MILC analysis of hard-pion chiPT impact in
[arXiv:1503.07839]

B → π



conclusions and outlook

• HQ physics making great progress, remarkably in semileptonics 

• still much way to go to meet the new era precision requirements
- crosscheck HQ approaches as much as possible
- full incorporation of available ensembles to HQ physics
- many systematics to be improved: use of perturbation theory, 

momentum dependence of FFs, incorporation of QED effects, 
resonances ...

• decrease the lattice spacing and get direct access to the b region

• FLAG-3 review foreseen for early 2016: keep tuned
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Flavour Lattice Averaging Group

[FLAG 2013, Eur J Phys C74 (2014) 2890, arXiv:1310.8555v2]

FLAG-2 review published in 2014, includes results up to ≲ end 2013

advisory board: S Aoki, C Bernard, C Sachrajda
editorial board: G Colangelo, H Leutwyler, A Vladikas, U Wenger
working groups:

quark masses T Blum, L Lellouch, V Lubicz
A Jüttner, T Kaneko, S Simula

LECs S Dürr, H Fukaya, S Necco
J Laiho, S Sharpe, H Wittig

R Horsley, T Onogi, R Sommer
Y Aoki, M Della Morte, A El-Khadra

SL, rare E Lunghi, CP, R Van de Water

Vud , Vus

BK

αs

fDq , fBq , BBq



FLAG-3

expected publication early 2016, no preliminary averages yet :-(

AB: S Aoki, C Bernard, H Leutwyler, C Sachrajda
EB: G Colangelo, S Hashimoto, A Jüttner, S Sharpe, A Vladikas, U Wenger
WGs:

quark masses (+HQ) T Blum, L Lellouch, V Lubicz
P Boyle, T Kaneko, S Simula

LECs S Dürr, H Fukaya, U Heller
      (+BSM) P Dimopoulos, R Mawhinney, H Wittig

R Horsley, T Onogi, R Sommer
Y Aoki, D Lin, M Della Morte

SL, rare D Bećirević, S Gottlieb, E Lunghi, CP

Vud , Vus

BK

αs

fDq , fBq , BBq



bounds on neutron EDM

[H Shimizu, FPCP15]

confined ultracold atoms ⇒ |dn| ∼ 10−27—10−28 e · cm

(slow neutron sources at Oak Ridge, J-PARC, PSI, TRIUMF, Lund)

2

1950 1960 1970 1980 1990 2000 2010
1E-27

1E-26

1E-25

1E-24

1E-23

1E-22

1E-21

1E-20

1E-19

Left-Right
 symmetric

Minimal
 SUSY

Electro-
 magnetic

Weinberg
 multi-Higgs

    Participating institutions:
 ORNL-Harvard
 BNL-MIT
 ORNL-ILL...
 ILL-Sussex-RAL...
 LNPI St Petersburg

Ne
ut

ro
n 

ED
M

 U
pp

er
 L

im
it 

(e
.c

m
)

Year of Publication

FIG. 1: Sensitivity of neutron EDM experiments over time. On the left of the graph are some theoretical predictions of the
magnitude of the neutron EDM.

A. Modelling the neutron EDM

It is appropriate to ask what size of EDM one might expect, depending upon the nature of the T -violating forces
that underlie it. From dimensional arguments, one can write [10]

EDM = charge (e) × a length (l) × a T -violation parameter f .

If the strong force were P - and T -violating, one might expect lf to be a reasonable fraction of the diameter of the
neutron, or perhaps of its Compton wavelength !/Mc, giving an EDM of the order 10−14 e cm in size. This is not the
case, however, and we expect to have to bring in the weak interaction to accommodate parity violation. A “natural”
length scale that suggests itself is then l = GM , where G = 10−5/M2 is the weak-interaction coupling constant, thus
giving dn ∼ 10−19fe cm. Studies of neutral kaon decays [11] suggest that CP- (and hence T-) violating forces are a
thousand times weaker than the weak force, thus implying that f <

∼ 10−3 and leading to an expected upper limit of
dn ∼ 10−22 e cm.

[P Harris, arXiv:0709.3100]



bounds on charged lepton flavour violation

Charged lepton flavor violation

• SM predicted lepton flavor conservation with mν = 0

Given mν �= 0, no reason to impose it as a symmetry

• If new TeV-scale particles carry lepton number
(e.g., sleptons), then they have their own mixing
matrices ⇒ charged lepton flavor violation [Passemar]

• Many interesting processes:
µ → eγ, µ → eee, µ+N → e+N (�), µ+e− → µ−e+

τ → µγ, τ → eγ, τ → µµµ, τ → eee, τ → µµe

τ → µee, τ → µπ, τ → eπ, τ → µKS, eN → τN

B(µ → eγ) ∼ α
m4

ν

m4
W

∼ 10−52

1940 1950 1960 1970 1980 1990 2000 2010 2020 2030
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• Next 10–20 years: 102–105 improvement; any signal would trigger broad program

Z L – p. 9

LFV not present in the SM for mν≠0, no reason to impose it

[plot from Z Ligeti’s review talk at FPCP 2015]



c and b quark masses

almost no new results after F Sanfilippo’s review at Lattice 2014

see also talk on JLQCD results from moments method
[K Nakayama, Wed 16:50]



FLAG-2 on charm decay constants

[FLAG 2013, Eur J Phys C74 (2014) 2890, arXiv:1310.8555v2]
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fD fDs fDs/fD

ETM 13F [154] 2+1+1 C ◦ ◦ ◦ ! " 202(8) 242(8) 1.199(25)

FNAL/MILC 13∇ [328] 2+1+1 C ! ! ! ! " 212.3(0.3)(1.0) 248.7(0.2)(1.0) 1.1714(10)(25)

FNAL/MILC 12B [329] 2+1+1 C ! ! ! ! " 209.2(3.0)(3.6) 246.4(0.5)(3.6) 1.175(16)(11)

HPQCD 12A [330] 2+1 A ◦ ◦ ! ! " 208.3(1.0)(3.3) 246.0(0.7)(3.5) 1.187(4)(12)

FNAL/MILC 11 [331] 2+1 A ◦ ◦ ! ◦ " 218.9(11.3) 260.1(10.8) 1.188(25)

PACS-CS 11 [332] 2+1 A # ! # ◦ " 226(6)(1)(5) 257(2)(1)(5) 1.14(3)

HPQCD 10A [94] 2+1 A ! ◦ ! ! " 213(4)∗ 248.0(2.5)

HPQCD/UKQCD 07 [164] 2+1 A ! ◦ ! ! " 207(4) 241 (3) 1.164(11)

FNAL/MILC 05 [333] 2+1 A ◦ ◦ ! ◦ " 201(3)(17) 249(3)(16) 1.24(1)(7)

ETM 13B! [334] 2 P ! ◦ ! ! " 208(7) 250(7) 1.20(2)

ETM 11A [335] 2 A ! ◦ ! ! " 212(8) 248(6) 1.17(5)

ETM 09 [168] 2 A ◦ ◦ ! ! " 197(9) 244(8) 1.24(3)

∇ Update of FNAL/MILC 12B.
∗ This result is obtained by using the central value for fDs/fD from HPQCD/UKQCD 07 and increasing the
error to account for the effects from the change in the physical value of r1.
! Update of ETM 11A and ETM 09.

Table 20: Decay constants of the D and Ds mesons (in MeV) and their ratio.

tree-level improved Symanzik gauge action. In this setup the decay constants can be ex-
tracted from an absolutely normalized current and they are automatically O(a) improved.
In ETM 09 three lattice spacings between 0.1 and 0.07 fm are considered with pion masses
down to 270 MeV. Heavy meson χPT formulae plus terms linear in a2 have been used for the
continuum/chiral extrapolations, which have been performed in two different ways in order to

estimate sytematic effects. In the first approach fDs

√
mDs and

fDs
√
mDs

fD
√
mD

are fitted, whereas

in the second case the ratios
fDs

√
mDs

fK
and

fDs
√
mDs

fK
× fπ

fD
√
mD

are analysed. As expected,

the pion-mass dependence of fDs

√
mDs turns out to be very mild. In addition the double

ratio
fDs

√
mDs

fK
× fπ

fD
√
mD

shows little dependence on the pion mass as well as on the lattice

spacing. Cutoff effects on the contrary are rather large on the decay constants, with the
difference between the physical-mass result at the finest lattice spacing and in the continuum
being approximately 5%. ETM 11A contains an update of the results in ETM 09 obtained by
enlarging the statistics on some of the ensembles and by including a finer lattice resolution
with a ≈ 0.054 fm, which implies a reduction of cutoff effects by a factor two. Moreover
in ETM 11A the continuum extrapolations are performed after interpolating the results at
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new results for fD(s)

TWQCD ΕTMC phys χQCD FNAL/MILC ΕTMC

202.3(2.2)(2.6) 216.7(2.3)(4.2) ― 209.2(3.3)
258.7(1.1)(2.9) 255.9(0.5)(5.0) 254(2)(4) 248.6(2.7)

1.279(26) 1.206(23) ― 1.187(12)
ensembles TWQCD ETMC RBC/UKQCD MILC ETMC

2 2 2+1 2+1+1 2+1+1
1/0.06 1/0.09 2/0.085, 0.111 4/0.06 – 0.15 3/0.062 – 0.089
259 132 320 130 210
2 3.0 4.3 3.2 3.1

sea DW tmQCD DW HISQ tmQCD
valence DW tmQCD/OS overlap HISQ tmQCD/OS
reference [1404.3648] [priv. comm.] [1410.3343] [1407.3772] [1411.7908]

Nf

fD [MeV]

fDs [MeV]

fDs/fD

a (fm)

Mmin
π [MeV]

Mmin
π L

1.1712(10)(+29

−32
)

212.6(0.4)(+1.2

−1.0
)

249.0(0.3)(+1.1

−1.5
)

+ report of work in progress by RBC/UKQCD [T Tsang, Thu 10:40]



FLAG-2 on B decay constants

[FLAG 2013, Eur J Phys C74 (2014) 2890, arXiv:1310.8555v2]

A number of different heavy-quark formulations are being used to obtain results for Bq

meson decay constants from numerical simulations withNf = 2, Nf = 2+1, and Nf = 2+1+1
sea quarks. They are summarized in Tables 24 and 25 and in Figure 16. Additional details
about the underlying simulations and systematic error estimates are given in Appendix B.6.1.
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fB+ fB0 fB fBs

ETM 13E [398] 2+1+1 C ◦ ◦ ◦ ◦ ! − − 196(9) 235(9)

HPQCD 13 [399] 2+1+1 A " " " ◦ ! 184(4) 188(4) 186(4) 224(5)

RBC/UKQCD 13A [400] 2+1 C ◦ ◦ " ◦ ! − − 191(6)!stat 233(5)!stat
HPQCD 12 [401] 2+1 A ◦ ◦ " ◦ ! − − 191(9) 228(10)

HPQCD 12 [401] 2+1 A ◦ ◦ " ◦ ! − − 189(4)" −
HPQCD 11A [365] 2+1 A " ◦ " " ! − − − 225(4)∇

FNAL/MILC 11 [331] 2+1 A ◦ ◦ " ◦ ! 197(9) − − 242(10)

HPQCD 09 [402] 2+1 A ◦ ◦ " ◦ ! − − 190(13)• 231(15)•

ALPHA 13 [403] 2 C " " " " ! − − 187(12)(2) 224(13)

ETM 13B, 13C [334, 404] 2 P† " ◦ " ◦ ! − − 189(8) 228(8)

ALPHA 12A [369] 2 C " " " " ! − − 193(9)(4) 219(12)

ETM 12B [392] 2 C " ◦ " ◦ ! − − 197(10) 234(6)

ALPHA 11 [364] 2 C " ◦ " " ! − − 174(11)(2) −
ETM 11A [335] 2 A ◦ ◦ " ◦ ! − − 195(12) 232(10)

ETM 09D [391] 2 A ◦ ◦ ◦ ◦ ! − − 194(16) 235(12)

!Statistical errors only.
"Obtained by combining fBs from HPQCD 11A with fBs/fB calculated in this work.
∇This result uses one ensemble per lattice spacing with light to strange sea-quark mass ratio m!/ms ≈ 0.2.
•This result uses an old determination of r1 = 0.321(5) fm from Ref. [379] that has since been superseded.
†Update of ETM 11A and 12B.

Table 24: Decay constants of the B, B+, B0 and Bs mesons (in MeV). Here fB stands
for the mean value of fB+ and fB0 , extrapolated (or interpolated) in the mass of the light
valence-quark to the physical value of mud.

The ETM collaboration has presented a series of calculations of the B-meson decay con-
stants based on simulations with Nf = 2 sea quarks [334, 335, 391, 392, 404]. Three lattice
spacings in the range a ≈ 0.067−0.098 fm are used in ETM 09D [391]. In ETM 11A, ETM 12B,
and ETM 13B, 13C [334, 335, 392, 404] additional ensembles at a ≈ 0.054 fm are included.
The valence and sea quarks are simulated with two different versions of the twisted-mass
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new results for fBq

ALPHA (def) RBC/UKQCD RBC/UKQCDstat ETMC

186(13) 196(15)/200(13)* 219(31) 194(5)(3)
224(14) 235(12) 264(37) 229(4)(3)

1.203(65) 1.223(71)/1.197(50)* 1.193(48) 1.179(18)(18)
ensembles CLS RBC/UKQCD RBC/UKQCD ETMC

2 2+1 2+1 2+1+1
3/0.0483 – 0.0749 2/0.085, 0.111 2/0.085, 0.111 3/0.062 – 0.089

190 289 289 210
4.0 4.0 4.0 3.1

l quarks NP O(a) improved DW DW tmQCD
b quark npHQET RHQ (Columbia) static tmQCD/OS
reference [1404.3590] [1404.4670] [1406.6192] [priv. comm.]

Nf

a (fm)

Mmin
π [MeV]

Mmin
π L

fB [MeV]

fBs [MeV]

fBs/fB

* fB+/fB0

+ report of work in progress by RBC/UKQCD, FNAL/MILC [T Ishikawa, Thu 8:30]
[C DeTar, Thu 8:50]



FLAG-2 on B-mixing

where Q1 is defined in Eq. (114) and where

Qq
2 =

[
b̄(1− γ5)q

] [
b̄(1− γ5)q

]
, Qq

3 =
[
b̄α(1− γ5)q

β
] [

b̄β(1− γ5)q
α
]
,

Qq
4 =

[
b̄(1− γ5)q

] [
b̄(1 + γ5)q

]
, Qq

5 =
[
b̄α(1− γ5)q

β
] [

b̄β(1 + γ5)q
α
]
, (123)

with the superscripts α,β denoting colour indices, which are shown only when they are
contracted across the two bilinears. The short-distance Wilson coefficients Ci depend on
the underlying theory and can be calculated perturbatively. In the Standard Model only
matrix elements of Qq

1 contribute to ∆mq, and combinations of matrix elements of Qq
1, Q

q
2,

and Qq
3 contribute to the width difference ∆Γq [409, 410]. Matrix elements of Qq

4 and Qq
5

are needed for calculating the contributions to Bq-meson mixing from beyond the Standard
Model theories.

In this section we report on results from lattice-QCD calculations for the neutral B-meson

mixing parameters B̂Bd , B̂Bs , fBd

√
B̂Bd , fBs

√
B̂Bs and the SU(3) breaking ratios BBs/BBd

and ξ defined in Eqs. (118), (119), and (121). The results are summarized in Tables 26 and 27
and in Figures 17 and 18. Additional details about the underlying simulations and systematic
error estimates are given in Appendix B.6.2. Some collaborations do not provide the RGI
quantities B̂Bq but quote instead BB(µ)MS,NDR. In such cases we convert the results to the
RGI quantities quoted in Table 26 using Eq. (119). More details on the conversion factors are
provided below in the descriptions of the individual results. One group also reports results
for B-meson matrix elements of the other operators Q2−5 in Ref. [411], which is a conference
proceedings.
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fBd

√

B̂Bd fBd

√

B̂Bs B̂Bd B̂Bs

FNAL/MILC 11A [411] 2+1 C ! ◦ ! ◦ " 250(23)† 291(18)† − −
HPQCD 09 [402] 2+1 A ◦ ◦∇ ! ◦ " 216(15)∗ 266(18)∗ 1.27(10)∗ 1.33(6)∗

HPQCD 06A [412] 2+1 A # # ! ◦ " − 281(21) − 1.17(17)

ETM 13B [334] 2 P ! ◦ ! ! " 216(6)(8) 262(6)(8) 1.30(5)(3) 1.32(5)(2)

ETM 12A, 12B [392, 413] 2 C ! ◦ ! ! " − − 1.32(8)# 1.36(8)#

† Reported f2
BB at µ = mb is converted to RGI by multiplying the two-loop factor 1.517.

∇Wrong-spin contributions are not included in the rSχPT fits.
∗This result uses an old determination of r1 = 0.321(5) fm from Ref. [379] that has since been superseded.
# Reported B at µ = mb = 4.35 GeV is converted to RGI by multiplying the two-loop factor 1.521.

Table 26: Neutral B and Bs meson mixing matrix elements (in MeV) and bag parameters.

120

Figure 17: Neutral B and Bs meson mixing matrix elements and bag parameters [values in
Table 26 and Eqs. (124), (125)].

The ETM collaboration has presented their first results for B-mixing quantities with
Nf = 2 sea quarks in Refs. [392, 413] (ETM 12A, 12B) using ensembles at three lattice spacings
in the range a ≈ 0.065−0.098 fm with a minimum pion mass of 270 MeV. Additional ensembles
at a ≈ 0.054 fm are included in ETM 13B [334]. The valence and sea quarks are simulated with
two different versions of the twisted-mass Wilson fermion action. The heavy-quark masses are
in the charm region and above while keeping amh<∼ 0.6 for ETM 12A and 12B. Larger masses
up to amh<∼ 0.85 are used for ETM 13B. In this series of calculations the ratio method first
developed for B-meson decay constants (see Appendix A.1.3 and Section 8.1) is extended
to B-meson mixing quantities. ETM again constructs ratios of B-mixing matrix elements
(now called ωd(s)) that are equal to unity in the static limit, including also an analogous
ratio for ξ. The renormalization of the four-quark operator is calculated nonperturbatively in
the RI’/MOM scheme. As an intermediate step for the interpolation to the physical b-quark
mass, these ratios include perturbative matching factors to match the four-quark operator
from QCD to HQET; these include tree-level and leading log contributions in ETM 12A and
12B, and additionally next-to-leading-log contributions in ETM 13B. Similar to their decay
constant analysis, ETM analyses the SU(3) breaking ratio of ratios, ωs/ω!, and combines it
with ωs to obtain BBd . The data are interpolated to a fixed set of heavy-quark reference
masses on all ensembles, and subsequently extrapolated to the continuum and to the physical
light-quark masses in a combined fit. The interpolation to the physical b-quark mass is
linear or quadratic in the inverse of the heavy-quark mass. While ETM 13B reports RGI
bag parameters, ETM 12A and 12B report only BB(mb)MS,NDR at mb = 4.35 GeV. Taking

αs(MZ) = 0.1184 [97], we apply an RGI conversion factor of B̂B/BB(mb)MS,NDR = 1.521 to
obtain the B̂B values quoted in Table 26. The observed discretization effects (as measured
by the percentage difference between the lattice data at the smallest lattice spacing and the
continuum extrapolated results) are <∼ 1% over the range of heavy-quark masses used in their
simulations. As a result, the dominant error on the bag parameters and on the ratio of bag
parameters is the combined statistical uncertainty, whereas the dominant error on the SU(3)
breaking ratio ξ is due to the chiral extrapolation. Because these studies appear either in

121
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FLAG-2 on B-mixing
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ξ BBs/BBd

FNAL/MILC 12 [414] 2+1 A ◦ ◦ ! ◦ " 1.268(63) 1.06(11)

RBC/UKQCD 10C [405] 2+1 A # # ! ◦ " 1.13(12) −
HPQCD 09 [402] 2+1 A ◦ ◦∇ ! ◦ " 1.258(33) 1.05(7)

ETM 13B [334] 2 P ! ◦ ! ! " 1.225(16)(14)(22) 1.007(15)(14)
ETM 12A, 12B [392, 413] 2 C ! ◦ ! ! " 1.21(6) 1.03(2)

∇Wrong-spin contributions are not included in the rSχPT fits.

Table 27: Results for SU(3) breaking ratios of neutral Bd and Bs meson mixing matrix
elements and bag parameters.

conference proceedings or preprint only, the results do not enter our averages.
For the Nf = 2 + 1 case there are three collaborations that have presented results for

B − B̄ mixing matrix elements: HPQCD, RBC/UKQCD, and FNAL/MILC. The first pub-
lished results are by the HPQCD collaboration [402, 412] and use NRQCD b quarks and
Asqtad light valence quarks on Nf = 2 + 1 MILC Asqtad ensembles. In HPQCD 06A [412]
results are presented for Bs-mixing quantities only, using one lattice spacing and two light
sea-quark masses with a minimum RMS pion mass of 510 MeV. The observed sea-quark mass
dependence is much smaller than the rather large statistical errors. This calculation uses
one-loop mean-field improved lattice perturbation theory for the operator renormalization.
Discretization errors cannot be estimated from the data with only one lattice spacing, but are
estimated using power counting arguments to be smaller than the dominant statistical and
renormalization errors. With only one lattice spacing and given the rather large minimum
RMS pion mass, this result does not enter our averages. These shortcomings are removed
in HPQCD 09 [402] with two lattice spacings, (a ≈ 0.09, 0.12 fm) and four or two sea-quark
masses per lattice spacing with a minimum RMS pion mass of about 400 MeV. The calcula-
tion is also extended to include both Bd and Bs mixing quantities and thus also the SU(3)
breaking ratios. A combined chiral and continuum extrapolation of the data is performed,
using NLO HMrSχPT, supplemented by NNLO analytic and generic discretization terms of
O(αsa2, a4). The dominant systematic error is due to using one-loop mean-field improved
lattice perturbation theory for the operator renormalization and matching, the same as in
HPQCD 06. It is estimated as 4% and 2.5%, respectively, consistent with power counting.
The statistical, chiral, and continuum extrapolation uncertainties are also prominent sources
of uncertainty, followed by heavy-quark truncation and scale setting errors. The dominant
error on ξ is due to statistics and chiral extrapolation. Finally, we note that this work uses
an old determination of r1 = 0.321(5) fm from Ref. [379] to set the scale, that has since been
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Figure 18: The SU(3) breaking quantities ξ and BBs/BBd [values in Table 27 and Eq. (126)].

superseded, and that differs from the new value by about two standard deviations. Dimen-
sionless quantities are, of course, affected by a change in r1 only through the inputs, which
are a subdominant source of uncertainty. The scale uncertainty itself is also subdominant in
the error budget, and this change therefore does not affect HPQCD 09’s results for fBq

√
BBq

outside of the total error.
The RBC/UKQCD collaboration has presented a result for the SU(3) breaking ratio ξ

in Ref. [405] using a static-limit action on Nf = 2 + 1 domain wall ensembles at a single
lattice spacing a ≈ 0.11 fm with a minimum pion mass of approximately 430 MeV. They use
both HYP and APE smearing for the static-limit action and one-loop mean field improved
lattice perturbation theory to renormalize the static-limit four-quark operators. Effects of
O(1/mh) are not included in the static-limit action and operators, but Ref. [405] includes
an estimate of this effect via power counting as O ((ms −md)/mb) in the error budget. The
statistical errors in this work are significant (∼ 5− 6%), as are the chiral extrapolation errors
(∼ 7%, estimated from the difference between fits using NLO SU(2) HMχPT and a linear fit
function), due to the rather large pion masses used in this in this work. With data at only one
lattice spacing, discretization errors cannot be estimated from the data, but a power counting
estimate of this error of 4% is included in the systematic error budget. With only one lattice
spacing this result does not enter our averages. The RBC/UKQCD collaboration reported
at Lattice 2013 [407] that they are extending this study, using HYP and HYP2 smearings
for the static-limit action, smaller pion masses, larger volumes and two lattice spacings. The
conference proceedings [407], however, did not appear until after the closing deadline and is
therefore not included in this review.

Another calculation of the SU(3) breaking ratio ξ is presented by the Fermilab Lattice
and MILC collaborations in Ref. [414] (FNAL/MILC 12). The calculation uses the Fermi-
lab method for the b quarks together with Asqtad light and strange valence quarks on a
subset of the MILC Asqtad Nf = 2 + 1 ensembles, including lattice spacings in the range
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new results for B-mixing
[Y Aoki et al, PRD 91 (2014) 114505, arXiv:1406.6192]

ensembles RBC/UKQCD

2+1

2/0.085, 0.111

320

4.3

l quarks DWF

b quark static

Nf

a (fm)

Mmin
π [MeV]

Mmin
π L

fBd

�
B̂Bd = 240(15)(33)

fBs

�
B̂Bs = 290(9)(40)

B̂Bs = 1.22(6)(19)

B̂Bd = 1.17(11)(24)

BBs/BBd = 1.028(60)(49)

ξ = 1.208(41)(52)

RBC/UKQCD static limit

preliminary FNAL/MILC Nf=2+1: ξ = 1.211(19)

+ work in progress by FNAL/MILC, RBC/UKQCD

[J Simone, Thu 9:10]
[A Khamseh, Thu 11:00]
[T Ishikawa, Thu 8:30]
[T Kawanai, Fri 16:30]
[O Witzel, Fri 17:10]
[P Korcyl, Tue 16:30]



FLAG-2 on charm semileptonic decay

[FLAG 2013, Eur J Phys C74 (2014) 2890, arXiv:1310.8555v2]
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+ (0) fDK

+ (0)

HPQCD 11 [337] 2+1 A ◦ ◦ ! ! " 0.666(29)

HPQCD 10B [341] 2+1 A ◦ ◦ ! ! " 0.747(19)

FNAL/MILC 04 [356] 2+1 A # # ! ◦ " 0.64(3)(6) 0.73(3)(7)

ETM 11B [344] 2 C ◦ ◦ ! ! " 0.65(6)(6) 0.76(5)(5)

† No information on systematic error estimates provided in preprint, so ratings are based on simulation
parameters only.

Table 21: D → π"ν and D → K"ν semileptonic form factors at zero momentum transfer.

factors are by the HPQCD Collaboration. These analyses also use the Nf = 2 + 1 Asqtad-
improved staggered MILC configurations at two lattice spacings a ≈ 0.09 and 0.12 fm, but
use the HISQ action for the valence u, d, s, and c quarks. In these mixed-action calculations,
the HISQ valence light-quark masses are tuned so that the ratio ml/ms is approximately
the same as for the sea quarks; the minimum RMS sea-pion mass is ≈ 390 MeV. They
calculate the form factors at zero momentum transfer by relating them to the matrix element
of the scalar current, which is not renormalized. They use the “modified z-expansion” to
simultaneously extrapolate to the physical light-quark masses and continuum and interpolate
to q2 = 0, and allow the coefficients of the series expansion to vary with the light- and charm-
quark masses. The form of the light-quark dependence is inspired by χPT, and includes
logarithms of the form m2

πlog(m
2
π) as well as polynomials in the valence-, sea-, and charm-

quark masses. Polynomials in Eπ(K) are also included to parameterize momentum-dependent
discretization errors. The coefficients of each term are constrained using Gaussian priors with
widths inspired by χPT power counting for the light-quark mass terms and by HISQ power-
counting for the others. The number of terms is increased until the result for f+(0) stabilizes,
such that the quoted fit error for f+(0) includes both statistical uncertainties and those due
to most systematics. The largest uncertainties in these calculations are from statistics and
charm-quark discretization errors.

The HPQCD Collaboration is now extending their work on D-meson semileptonic form
factors to determining their shape over the full kinematic range [345], and recently obtained
results for the D → K"ν form factors f +(q2) and f0(q2) [346]. This analysis uses a subset of
the ensembles included in their earlier work, with two sea-quark masses at a ≈ 0.12 fm and
one sea-quark mass at a ≈ 0.09 fm, but with approximately three times more statistics on the
coarser ensembles and ten times more statistics on the finer ensemble. As above, the scalar
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new results for charm SL form factors
[P Lami, Wed 14:20] 
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new results for charm SL form factors
[FNAL/MILC arXiv:1411.1651]
[T Primer, Thu 11:40]
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3.2
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valence HISQ

Nf

a (fm)

Mmin
π [MeV]

Mmin
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- tbc to get precise form factor at q2=0
- tbc allow for fine momentum spacing
- no quotable numbers outside plots



new results for charm SL form factors
[T Suzuki, Thu 11:20] 

ensembles JLQCD

2+1

1/0.08 fm

300

3.9

sea mDWF

valence mDWF

Nf

a (fm)

Mmin
π [MeV]

Mmin
π L

- very preliminary
- results consistent with FLAG “average” 

and CLEO-c shape within large errors

Pion mass dependence of f+(0)

Lattice 2015 @ Kobe 14-18 July 2015 Takashi Suzuki

Our results look to be consistent with!
previous lattice results within our errors.

Form factors at q2=0

We will reduce errors by using data of smaller quark mass!
or other source points.

FLAG [arXiv:1310.8555]
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discussed in FLAG-2, unable to rate/average it due to incomplete 
information on systematics

3

normalised for the cγic and sγis cases by requiring that

Zf+(0) = 1. This is done in a calculation of the ma-

trix element between two identical pseudoscalar mesons

with the same non-zero momentum, achieved by giving

a ‘twist’ to the spectator quark [13]. Fig. 2 shows the re-

sults of doing this on coarse set 2 and fine set 3. We see

that the Z factor is the same, to within few % errors, for

the s and c cases and is independent of the meson used at

source and sink of the 3-point correlator. We have also

checked that results are independent of the momentum

of the spectator quark and the sea quark masses (com-

paring sets 1 and 2). We therefore take the Z factor for

the 1-link spatial cγis current to be that for the cγic case.
The local temporal vector cγ0s current is normalised by

matching to the result for f0(q2max) that we obtain from

the absolutely normalised scalar current. This is done

for Ds decay to the ss pseudoscalar denoted ηs (an un-

physical state because it is not allowed to decay in lattice

QCD). These Z factors are also shown in Fig. 2.

Both the local scalar and the 1-link vector are ‘taste-

less’ currents in staggered quark parlance and so the 3-

point correlator can be calculated between pseudoscalar

mesons created using the local γ5 (Goldstone) operator.

The local temporal vector current has spin-taste γ0 ⊗ γ0
and so, since tastes must cancel out in a 3-point corre-

lator, it is used in a 3-point function between a charmed

meson created with the local γ0γ5 operator and a Gold-

stone light meson. Using a different operator for the D(s)

produces negligible effect here because the mass differ-
ence induced by taste-changing effects is very small (less

than 4 MeV on coarse lattices and 1 MeV on fine) 1.

Results. Table II gives our raw results for f+ and f0
for D → K from combining (spatial) vector and scalar

matrix elements, after renormalising the vector. To de-

termine the functional shape of the form factors we trans-

form to z-space where:

z =

�
t+ − q2 −

√
t+ − t0�

t+ − q2 +
√
t+ − t0

, t± = (mD ±mK)
2. (7)

This maps the semi-leptonic region, 0 < q2 < t to the

interior of the unit circle, allowing for polynomial fits in

z. We then fit the form factors to

f(q2) =
1

P (q2)Φ(q2)

N�

n=0

bnz
n. (8)

To combine fits for f+ and f0 it is convenient for us to

take t0 = 0 (so that q2 = 0 maps to z = 0) and to take

the simplest form [17] for the product P (q2)Φ(q2), which

1 Taste-changing effects appear as an O(a2) effect in the square
of the mass for pseudoscalars. Differences in the mass itself are
then suppressed by the mass for charmed mesons [8].
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FIG. 3. Lattice results for f+ and f0 in (upper plot) z-space
and (lower plot) q2-space. Upper plot shows D → K f+ (plus

signs) and f0 (circles); set 1 (light blue), set 2 (black) and set

3 (dark blue). Our fit (in the a → 0 and ml → ml,phys limit)

is shown with solid and dashed lines. The lower plot shows f+
and f0 for D → K (crosses) and Ds → ηs (circles for 1-link

vector and diamonds for local temporal vector currents). The

results from the z-space fits are plotted with lines - blue for

D → K and pink for Ds → ηs.

is (1− q2/M2
X) where MX is the appropriate pole mass,

MD∗
s
for f+ and MD∗

s0
for f0.

Fig. 3 shows our results for PΦ×f in z-space, where it
is clear they have a very simple form. To obtain results

in the continuum and physical light quark mass limits,

we allow for dependence of the coefficients bn in Eq. 8 on

a and valence and sea ml (using chiral parameter δl =

0.25ml/ms,phys from Table I) as:

bn(a,ml) = An{1 +Bna
2
+ Cna

4
+Dnδl

+ En(δl ln[δl] + Fna
2δl)} (9)

Priors are taken as: A0: 0.750(75), An, n > 0: 0.0(2.0),

Bn: 0.0(3), Cn: 0.0(1.0), Dn: 0.0(5), En, Fn: 0.0(1.0).

We include coefficients up to n = 4, with a constraint

on the n = 4 value [17]. Coefficients are independent

for f0 and f+ except for the kinematic constraint that b0
should be the same for both. From the fits we extract

bn,phys = bn(a = 0,ml = ml,phys).

Our physical curve in z-space is converted back to q2

space giving the lower plot of Fig. 3. We integrate the fac-

tor p3|f+(q2)|2 from Eq. 2 over the experimental bins in

4

TABLE II. Results for form factors for D → K decay at 3 or 4 q2 values per set corresponding to different K momenta.

Set q2a2 f+(q
2
) f0(q

2
) q2a2 f+(q

2
) f0(q

2
) q2a2 f+(q

2
) f0(q

2
) q2a2 f0(q

2
)

1 0.010 0.755(13) 0.753(14) 0.43 1.090(8) 0.896(5) 0.69 1.027(2)

2 0.002 0.751(8) 0.751(9) 0.34 0.994(5) 0.862(3) 0.53 1.218(14) 0.932(3) 0.68 1.0186(15)

3 0.001 0.747(9) 0.746(9) 0.16 0.974(5) 0.847(5) 0.26 1.200(14) 0.948(6) 0.34 1.011(2)

0 0.4 0.8 1.2 1.6 0.4 0.8 1.2 1.6 1.8
q2 bins in GeV2

0.85

0.9

0.95

1

1.05

1.1

1.15

Ra
tio

 E
xp

t/L
at

tic
e:

 V
cs

2

CLEO
BaBar
Belle
BESIII

errors: experiment
lattice

0
Totalsq2

max

FIG. 4. Ratio of experimental to lattice results in each q2

bin for D0 → K−�+ν, using CLEO [7] and BaBar [4] data.

The last 3 bins are total rates for BaBar [4], Belle [5] and

BESIII [6]. Error bars from experiment and from lattice QCD

are marked separately on each point. The horizontal lines give

our fitted result for V 2
cs with its error.

q2 (the same for CLEO and BaBar) and can then make

a bin-by-bin comparison, including the correlations be-

tween bins for lattice QCD and experiment. This com-

parison is shown in Fig. 4 in which we plot the ratio of

experiment to lattice QCD for each bin, which is a value

for |Vcs|
2 from that bin. We also show the result of fitting

a weighted average over the bins to obtain a final value for

|Vcs|. We use CLEO [7] and BaBar [4] binned data and

BaBar, Belle [5] and BESIII [6] total rates for D0 → K−

to obtain |Vcs| = 0.963(5)expt(14)lattice. Different subsets
of experimental results give consistent values; the error

is smallest using all of them. For the binned data the

experimental results are most accurate at low q2, the lat-
tice QCD results, at high q2. The optimal bins for the

combination are 1 to 6 (q2 = 0-1.2 GeV
2
), see Fig. 4.

We can also compare the shape more accurately to ex-

periment using a common z-space expansion. We take

t0 = t+(1 − (1 − t−/t+0)1/2) in Eq. 8 and a specific

form for P (q2)Φ(q2) given in [7, 18]. Fig. 5 compares

our results at the physical point for b1/b0 and b2/b0 to

experiment for this case. The agreement is excellent.

Finally, we note that Fig. 3 shows both the D → K
and Ds → ηs form factors as a function of q2. The two

processes differ in their spectator quark - D → K has a

u/d spectator and Ds → ηs an s - but their form factors

agree to 2%. This was also found for B(s) → D(s) decays

in [20] and is likely to be a generic feature of heavy quark

decays. Model calculations give varying results [21, 22]

FIG. 5. 68% confidence limits on the shape parameter ratios

b1/b0 and b2/b0 from a 3-parameter z-space fit to f+ (Eq. 8

using PΦ and t0 from [7]), for lattice QCD and experiment [4,

6, 7, 19]. BaBar parameters shown are from our fit to the

binned correlated data. Our results are: b1/b0 = −2.01(23),
b2/b0 = 0.75(2.5) and correlation, ρ = −0.56.

with O(10%) effects possible.
Fig. 3 also demonstrates how small discretisation errors

are with results from coarse and fine lattices lying on top

of each other. A further check of this is a comparison of

the Ds → ηs form factors from 1-link spatial and local

temporal vector currents which also show no difference.
Conclusions. We have calculated the form factors for

D → K semileptonic decay from full lattice QCD, and

compared the shape of the vector form factor f+(q2)
to experiment across the full q2 range. We extract

Vcs for the first time using all q2 bins. Our result is

Vcs = 0.963(5)exp(14)lattice, which improves the accuracy

of our previous world’s best determination [2] of Vcs by

over 50%. At q2 = 0 we obtain f+(0) = 0.745(11).
Our result for Vcs agrees with that from CKM matrix

unitarity (0.97344(16) [23]) and gives separate tests of

the second row and column that agree with unitarity to

3%. Combining the Ds leptonic decay rate with lattice

QCD results for theDs decay constant [10] yields a higher

but consistent Vcs, for example 1.001(10)latt(26)expt using
recent Belle results [24].

We see no difference between form factors for a s or

u/d spectator quark to the c → s decay. This is also true

for c → d decays comparing D → π�ν and Ds → K�ν.
These results will be discussed elsewhere.

HPQCD arXiv:1305.1465 (         )D → K



new results forB → D(∗)lν

FNAL/MILC* FNAL/MILC HPQCD

process
kinematics
ensembles MILC MILC MILC

2+1 2+1 2+1
5/0.045 – 0.15 4/0.045 – 0.12 2/0.09, 0.12

260 220 260
3.8 3.8 3.8

l quarks asqtad asqtad asqtad
c quark RHQ (Fermilab) RHQ (Fermilab) HISQ
b quark RHQ (Fermilab) RHQ (Fermilab) NRQCD
reference [1403.0635] [1503.07237] [1505.03925]

Nf

a (fm)

Mmin
π [MeV]

Mmin
π L

B → D∗�ν

w = 1

B → Dlν B → Dlν

w ≥ 1 w ≥ 1

(* full publication of             results, no changes wrt proceedings value quoted in FLAG)B → D∗



new results forB → Dlν
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FIG. 8. Result of the z-expansion fit of the lattice form-factor values without (left) and with (right)

the kinematic constraint f+(q2 = 0) = f0(q2 = 0). The expansion is truncated after the cubic term.

The solid error band is for f+, while the slashed band is for f0. Without imposing the constraint,

we find that it is nonetheless satisfied to a high accuracy.

TABLE VIII. Coefficients of the z expansion for fits to the lattice form factors including the

kinematic constraint f+(q2 = 0) = f0(q2 = 0). For completeness, the inferred value and error in

a0,0 is quoted. We also show the zero-recoil form factor G(1). The results for different truncations
N are virtually identical. The unusually low (augmented) χ2

comes about because these fits

essentially behave like solves. This happens because the kinematic constraint is so nearly perfectly

satisfied already at the quadratic level, N = 2. Higher-order terms with N = 3 and 4 provide no

further improvement and, hence, no change.

N = 2 N = 3 N = 4

a+,0 0.01262(10) 0.01262(10) 0.01262(10)

a+,1 −0.097(3) −0.097(3) −0.097(3)

a+,2 0.50(14) 0.50(17) 0.50(17)

a+,3 − −0.06(90) −0.06(90)

a+,4 − − −0.0(1.0)

a0,0 0.01142(14) 0.01142(14) 0.01142(10)

a0,1 −0.060(3) −0.060(3) −0.060(3)

a0,2 0.31(15) 0.31(15) 0.31(15)

a0,3 − 0.06(91) 0.06(91)

a0,4 − − 0.0(1.0)

G(1) 1.0541(83) 1.0541(83) 1.0541(83)

χ2/df 0.1/1 0.0/1 0.0/1

25
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We find it useful to make one more modification of the

z-parametrization of lattice form factors. In order to ac-

commodate the uncertainty coming from the truncation

of the current matchings at O(αs,ΛQCD/M,αs/(aM)),

we introduce new fit parameters, m� and m⊥, with cen-

tral value zero and width δm�,⊥,

f�, f⊥ → (1 +m�)f�, (1 +m⊥)f⊥. (36)

The prior widths δm� and δm⊥ correspond to our best

estimates for higher order matching errors for V0 and Vk

respectively. With the modification of (36), our extrap-

olation results coming from the modified z-expansion fit

will then include the matching truncation errors auto-

matically. To get an estimate of higher order matching

uncertainties and fix δm�,⊥, we have looked at the size

of the known first order matching corrections. In other

words we have gone through the correlator fits of the pre-

vious section once using the fully corrected expression on

the RHS of (12) and then a second time using just the

lowest order �J (0)
µ �. We find that the first order matching

contributions are only a ∼ 2% effect on fine and a ∼ 4%

effect on coarse lattices, significantly smaller than a naive

1×O(α) ≈ 25− 30% estimate. In this work we take the

higher order uncertainties to be the same as the average

of the full first order corrections on fine and coarse lat-

tices, that is we set the prior central values and widths

of the fit parameters m�,⊥ to be 0.0 ± 0.03. We have

checked that using 0.0 ± 0.02 or 0.0 ± 0.04 everywhere,

or 0.0 ± 0.02 for fine and 0.0 ± 0.04 for coarse lattices

has minimal effect (see tests No.13, No.14, No.15 below).

After the modified z-expansion fits and extrapolation to

the physical limit, these matching uncertainties for f�
and f⊥ will translate into matching errors for f+ and f0
with correlations between the two form factors taken into

account.

In Fig. 9 we show our fit results for f+ and f0 plot-

ted versus z. We plot both the simulation data and the

extrapolated physical band. These are results of what

we call our “standard extrapolation” which uses the fit

ansatz discussed above and a z-expansion that includes

terms through O(z3). We have carried out further tests

of the standard extrapolation by modifying the fit ansatz

in the following ways:

1. stop at O(z2) in the z-expansion;

2. stop at O(z4) in the z-expansion;

3. add light quark mass dependence to dk1 (see Eq. (30)

of [10]);

4. add bottom quark mass dependence to dk1 (see

Eq. (30) of [10]);

5. omit (amc)
4
term;

6. add (amc)
6
term;

7. omit (aED/π)4 term;
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FIG. 9. The standard fit results with the continuum extrap-
olated bands. The short horizontal bars on the upper plot
show the fit results at non-zero lattice spacings.

8. add (aED/π)6 term;

9. omit xlog(x) term;

10. use chiral logs from HPChPT (see Appendix B);

11. add x2
π term;

12. omit all xi and xlog(x) terms;

13. use 2% uncertainty for higher order matching con-

tributions;

14. use 4% uncertainty for higher order matching con-

tributions;
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FIG. 6. Error budgets for f+ and f0 as a function of the recoil w. The colored bands show the

error contribution of each uncertainty source to the quadrature sum. The corresponding error is

provided on the right y-axis. Our lattice simulation results are for w ∈ [0, 1.16], i.e., to the left of

the vertical line.

IV. SYSTEMATIC ERRORS

In this section we discuss the sources of systematic error in the lattice determinations

of h+ and h− and their propagation to the form factors f+ and f0. As can be seen from

Fig. 4, the magnitude of h− is about 5% of h+ for the entire range of simulated w values.

Further, the contribution of h− to the vector form factor f+ is suppressed relative to the

contribution from h+ by the factor (1− r)/(1 + r) = 0.477, while the contribution of h− to

the scalar form factor f0 is exactly zero at w = 1 and grows linearly with recoil as (w − 1).

Thus even large percentage systematic errors in h− lead to only small uncertainties in f+
and f0. Figure 6 shows the momentum-dependence of the error contributions to f+(w) and
f0(w), while Table VI provides numerical values for a representative recoil w = 1.16.

A. Overview of systematic errors in f+ and f0

As can be seen from Fig. 6, the dominant uncertainty in both form factors arises from

the chiral-continuum fit, which includes contributions from statistics, matching factors, and

higher-order terms in the chiral expansion. Although we cannot strictly disentangle the

contributions to the error from these sources, we can estimate their sizes by repeating the

chiral-continuum fit omitting either the errors in the matching factors or the NNLO terms

in the chiral expansion, and take the quadrature difference of the resulting error estimates.

The contribution from “statistics” is defined to be the error in the NLO chiral-continuum

fit to data with no matching-factor uncertainties included. This imprecise scheme does not

guarantee that the individual errors sum to the total fit error, but, roughly speaking, we find

that the statistics, matching, and truncation uncertainties in the chiral-continuum expansion

contribute approximately equally to the error in the full NNLO fit. Despite our incomplete

knowledge of the matching factors, we find their contributions to the uncertainty in f+ and
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FIG. 12. Relative error components of f0 (lower plot) and
f+ (upper plot) for physical q2 region.

A popular way to extract ρ2 is to use the Caprini-

Lellouch-Neubert (CLN) parametrization [23],

G(w) = G(1)
�
1− 8ρ2z + (51ρ2 − 10)z2

−(252ρ2 − 84)z3
�
, (40)

with,

z =

√
w + 1−

√
2

√
w + 1 +

√
2
. (41)

This “z” is the same as the z-variable introduced in the

previous section, Eq. (27), with the same t0 = q2max.

Using Eq. (40), we extract

ρ2 = 1.119(71), G(1) = 1.035(40). (42)

Another useful reference point is the value of f+(0) =

f0(0). We find,

f+(0) = 0.664(34). (43)

In Appendix A we provide the z-expansion coefficients

including errors and correlations for the form factors of

Fig. 11.

VI. EXTRACTION OF |Vcb|

The differential branching fraction for B → Dlν decays

is given by,

dΓ

dq2
= ηEW

G2
F |Vcb|2

48π3M2
B

(1− m2
l

q2
)
2|�p| (44)

×
�
(1− m2

l

2q2
)
2M2

B |�p|2f2
+(q

2
) +

3m2
l

8q2
(M2

B +M2
D)

2f2
0 (q

2
)

�
,

where ml is the mass of the lepton, and ηEW is the

electro-weak correction. The main goal of the present

work is to combine experimental measurement of this

differential branching fraction with form factors of the

previous section to extract |Vcb|. The partial branching

fraction (the left hand side of Eq. 44) has been measured

by BaBar [24]. On the right hand side, we have form

factors from this lattice calculation, and all other factors

are known except the target quantity |Vcb|.

In order to include the higher order electro-weak ef-

fects, we apply the Sirlin factor [25], ηs = 1.00662. Fur-

thermore, there are final state electro-magnetic interac-

tions for the neutral channel, B̄0 → D+lν, which we

estimate to be a less than 0.5% effect using the signal

yield ratio of the charged and neutral decay channels.

Combining the two effects, we get ηEW = 1.011(5).

We perform another modified z-expansion fit explained

in Sec. IV together with the BaBar experiment data

with |Vcb| as a fit parameter. We have a good fit with

χ2/dof = 0.88, and this is shown in Fig. 13. We get |Vcb|
from this fit,

|Vcb| = 0.0402(17)(13), (45)

where the first error is from the fit including all lattice

errors and experimental statistical errors, and the sec-

ond error is the experimental systematic error. We quote

the experimental systematic errors as 3.3% of our fit re-

sult based on BaBar’s estimate of their systematic errors

in [24]. This is equivalent to imposing 3.3% systematic

errors on each experimental measurement bin with 100%

correlations.

A detailed error budget is shown in Table V. The

dominant errors are experimental systematic, lattice dis-

cretization, and operator matching errors. Thus, im-

provements in both experiments and lattice calculations

are required to obtain better precision on |Vcb| from our

method.
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Table 28: Results for the B → π"ν semileptonic form factor. The quantity ∆ζ is defined in
Eq. (128); the quoted values correspond to q1 = 4 GeV, q2 = qmax, and are given in ps−1.
The “cov. matrix” entry indicates whether or not the correlations, either between the lattice
form-factor data at different values of q2, or between the coefficients of a z-parameterization,
are provided. This information is needed to use the lattice results in a combined fit to obtain
|Vub|.

and errors) for the fit parameters are all very consistent irrespective of the treatment of
correlations.

We quote as our preferred result the outcome of the three-parameter O(z3) BCL fit
using a thinned FNAL/MILC dataset that includes every second data point starting at
q2 = 18.4 GeV2 in addition to the HPQCD point at q2 = 17.35 GeV2:

Nf = 2 + 1 : a0 = 0.453(33) , a1 = −0.43(33) , a2 = 0.9(3.9) ; (142)

cov(ai, aj) =




1.00 −0.55 −0.63

−0.55 1.00 0.59
−0.63 0.59 1.00



 ,

where the above uncertainties encompass both the lattice errors and the systematic error
due to truncating the series in z. This can be used as the averaged FLAG result for the
lattice-computed form factor f+(q2). The coefficient a3 can be obtained from the values for
a0–a2 using Eq. (139). We emphasize that future lattice-QCD calculations of semileptonic
form factors should publish their full statistical and systematic correlation matrices to enable
others to use the data fully.
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Figure 19: Integrated width of the decay B → π"ν divided by |Vub|2 [values in Table 28 and
Eq. (141)].
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Figure 20: The form factors (1 − q2/m2
B∗)f+(q2) versus z. The filled symbols denote data

points included in the fit, while the open symbols show points that are not included in the fit
(either because of unknown correlations or strong correlations). The grey band displays our
preferred three-parameter BCL fit to the plotted data with errors.
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due to truncating the series in z. This can be used as the averaged FLAG result for the
lattice-computed form factor f+(q2). The coefficient a3 can be obtained from the values for
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Figure 22: Lattice and experimental data for (1 − q2/m2
B∗)f+(q2) versus z. The filled green

symbols denote lattice-QCD points included in the fit, while the open green symbols show
those that are not included in the fit (either because of unknown correlations or strong
correlations). The blue stars show the experimental data divided by the value of |Vub| obtained
from the fit. The grey band in the left (right) plots shows the preferred three-parameter BCL
fit to the lattice-QCD and Belle (Babar) data with errors.

8.6 Determination of |Vcb|

We now interpret the lattice-QCD results for the B → D(∗)!ν form factors as determinations
of the CKM matrix element |Vcb| in the Standard Model.

For the experimental branching fractions at zero recoil, we use the latest experimental
averages from the Heavy Flavour Averaging Group [125]:35

FB→D∗
(1)ηEW|Vcb| = 35.90(45) , GB→D(1)ηEW |Vcb| = 42.64(1.53) . (161)

For FB→D∗
(1), there is only a single Nf = 2 + 1 lattice-QCD calculation that satisfies the

FLAG criteria, while there is currently no such calculation of GB→D(1). Using the result
given in Eq. (157), we obtain our preferred value for |Vcb|:

B → D∗!ν : |Vcb| = 39.36(56)(50) × 10−3 , Nf = 2 + 1 (162)

where the errors shown are from the lattice calculation and experiment (plus non-lattice
theory), respectively. Table 31 compares the determination of |Vcb| from exclusive B → D∗!ν
decays to that from inclusive B → Xc!ν decays, where Xc denotes all possible charmed
hadronic final states. The results, also shown in Fig. 23, differ by approximately 2.7σ. The
exclusive determination of |Vcb| will improve significantly over the next year or two with new
lattice-QCD calculations of the B → D(∗)!ν form factors at nonzero recoil.

35We note that HFAG currently averages results for neutral and charged B meson decays without first
removing the correction due to the Coulomb attraction between the charged final-state particles for the neutral
B meson decays.
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|Vub| = 3.37(21)× 10−3 |Vub| = 3.47(22)× 10−3
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strange sea-quark mass, so we cannot directly compute

the strange sea-quark mass dependence of f� and f⊥. We

therefore study the light sea-quark mass dependence and

use it to bound the strange sea-quark mass dependence.

We cannot resolve any light sea-quark mass dependence

within statistical uncertainties, and expect the strange

sea-quark mass dependence to be even smaller. Thus we

take the error due to mistuning the strange sea-quark

mass to be negligible.

3. Valence strange-quark mass uncertainty

The Bs → K form factors have explicit strange

valence-quark mass dependence. The strange-quark

masses employed in our simulations differ slightly from

the physical, tuned values a24m̃phys
s = 0.0379(11) and

a32m̃phys
s = 0.0280(7) [16]. To study the valence strange-

quark mass dependence, we calculated the Bs → K form

factors on the a ≈ 0.11 fm, aml = 0.005, ensemble with

two additional spectator-quark masses of a24m̃s = 0.033
and 0.043. Figure 10 shows the valence-quark mass

dependence of the Bs → K form factors; we observe

the largest slopes for f� at p = (0, 0, 0) and for f⊥ at

p = (1, 0, 0). Multiplication of these measured slopes

by the discrepancy between the simulated and tuned

strange-quark masses, ∆(ms) ≡ (m̃s − m̃phys
s ) = 0.004,

leads to estimates for the error due to mistuning the va-

lence strange-quark mass of about 0.1% for f+ and below

this for f0 (which we consider as negligible).

D. RHQ parameter uncertainty

We compute the semileptonic form factors using the

nonperturbatively tuned RHQ parameters obtained in
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strange sea-quark mass, so we cannot directly compute

the strange sea-quark mass dependence of f� and f⊥. We

therefore study the light sea-quark mass dependence and

use it to bound the strange sea-quark mass dependence.

We cannot resolve any light sea-quark mass dependence

within statistical uncertainties, and expect the strange

sea-quark mass dependence to be even smaller. Thus we

take the error due to mistuning the strange sea-quark

mass to be negligible.

3. Valence strange-quark mass uncertainty

The Bs → K form factors have explicit strange

valence-quark mass dependence. The strange-quark

masses employed in our simulations differ slightly from

the physical, tuned values a24m̃phys
s = 0.0379(11) and

a32m̃phys
s = 0.0280(7) [16]. To study the valence strange-

quark mass dependence, we calculated the Bs → K form

factors on the a ≈ 0.11 fm, aml = 0.005, ensemble with

two additional spectator-quark masses of a24m̃s = 0.033
and 0.043. Figure 10 shows the valence-quark mass

dependence of the Bs → K form factors; we observe

the largest slopes for f� at p = (0, 0, 0) and for f⊥ at

p = (1, 0, 0). Multiplication of these measured slopes

by the discrepancy between the simulated and tuned

strange-quark masses, ∆(ms) ≡ (m̃s − m̃phys
s ) = 0.004,

leads to estimates for the error due to mistuning the va-

lence strange-quark mass of about 0.1% for f+ and below

this for f0 (which we consider as negligible).

D. RHQ parameter uncertainty

We compute the semileptonic form factors using the
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Figure 16. Subdominant systematic errors over the range of simulated lattice momenta. Error

estimates are described in the text.

quark mass.) The errors on the physical ml ≡ (mu + md)/2 and ms are 3.5% and 3.0%,

respectively. We vary the light- and strange-quark masses at which the chiral-continuum fit

function is evaluated by plus and minus one standard deviation, and find that it produces

differences below 0.4% in both form factors.

C. Lattice scale r1

We convert the lattice form factors and pion energies to physical units using the relative

scale r1/a determined from the static-quark potential (see Table III) and the absolute scale

r1 = 0.3117(22) fm [35]. The statistical uncertainties on r1/a are negligible. We propagate

the uncertainty in r1 by shifting it ±1σ and repeating the chiral-continuum fit. We find

shifts of at most 0.5% in the range of simulated momenta.

D. Current renormalization

With the mostly nonperturbative renormalization procedure that we use for the heavy-

light currents, there are two sources of error. The first is due to the nonperturbatively

calculated flavor diagonal factors ZV 4
bb

and ZV 4
ll
. Their values and errors are given in Table VI.

We estimate the systematic error due to the uncertainties of ZV 4
bb

and ZV 4
ll

by varying their

values by one sigma and looking for the maximum deviations in the form factors f+ and f0.
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respectively. We vary the light- and strange-quark masses at which the chiral-continuum fit

function is evaluated by plus and minus one standard deviation, and find that it produces

differences below 0.4% in both form factors.
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We convert the lattice form factors and pion energies to physical units using the relative

scale r1/a determined from the static-quark potential (see Table III) and the absolute scale

r1 = 0.3117(22) fm [35]. The statistical uncertainties on r1/a are negligible. We propagate

the uncertainty in r1 by shifting it ±1σ and repeating the chiral-continuum fit. We find

shifts of at most 0.5% in the range of simulated momenta.

D. Current renormalization

With the mostly nonperturbative renormalization procedure that we use for the heavy-

light currents, there are two sources of error. The first is due to the nonperturbatively

calculated flavor diagonal factors ZV 4
bb

and ZV 4
ll
. Their values and errors are given in Table VI.

We estimate the systematic error due to the uncertainties of ZV 4
bb

and ZV 4
ll

by varying their

values by one sigma and looking for the maximum deviations in the form factors f+ and f0.
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FIG. 4: (color online). Bs → K form factor results from
a simultaneous chiral, continuum, and kinematic

extrapolation via the HPChPT z expansion are shown
(top) relative to coarse ensemble data (C1, C2, and C3)
and (bottom) relative to fine ensemble data (F1 and F2).

(2) Truncate the z expansion at O(z4).

(3) Truncate the z expansion at O(z5).

(4) Drop O(aEK)4 momentum-dependent and O(a4)
momentum-independent discretization terms in
Eq. (25).

(5) Drop the amb-dependent discretization terms in
Eq. (30).

(6) Drop the light-quark mass-dependent discretization
terms in Eq. (30).

(7) Add the following next-to-next-to-leading-order
(NNLO) chiral analytic terms to Dk as defined in

Eq. (25):

c(k)4 x2
π + c(k)5

�1
2
δxπ + δxK

�2
+ c(k)6 δx2

ηs

+ c(k)7 xπ

�1
2
δxπ + δxK

�
+ c(k)8 xπδxηs (34)

+ c(k)9

�1
2
δxπ + δxK

�
δxηs + c(k)10 xπ(a/r1)

2

+ c(k)11

�1
2
δxπ + δxK

�
(a/r1)

2 + c(k)12 δxηs(a/r1)
2.

(8) Drop the sea- and valence-quark mass difference
term

�
1
2δxπ + δxK

�
from Eq. (25).

(9) Drop the strange quark mistuning term δxηs from
Eq. (25).

(10) Drop finite volume effects, i.e. set δFV = 0 in
Eq. (26).

The stability of the Bs → K fit results to these modi-
fications is shown in Fig. 5, where results are shown at
the extrapolated q2 = 0 point. This point is furthest
from the data region where simulations are performed
and therefore is particularly sensitive to changes in the
fit function. In Fig. 5 our final fit result, as defined by
Eqs. (22) and (24) with K = 3 and by Eqs. (25)–(30), is
indicated by the dashed line and gray band.
Modifications 1, 2, and 3 vary the order of the trunca-

tion in z and demonstrate that by O(z3) fit results have
stabilized and errors have saturated. We therefore con-
clude that the error of the O(z3) fit adequately accounts
for the systematic error due to truncating the z expan-
sion.
Momentum-dependent and momentum-independent

discretization effects proportional to a4 are removed in
modification 4. This results in a modest increase in χ2

and a negligible shift in the fit result. This suggests our fi-
nal fit, which includes the a4 effects, adequately accounts
for all discretization effects observed in the data.

In modifications 5 and 6 we remove heavy- and light-
quark mass-dependent discretization effects with essen-
tially no impact on the fit. That our results are indepen-
dent of light-quark mass dependent discretization effects
suggests that staggered taste violating effects are accom-
modated for by a generic a2 dependence.

Modification 7 tests the truncation of chiral analytic
terms after next-to-leading-order (NLO) by adding the
NNLO terms listed in Eq. (34). This results in a slight
decrease in χ2 but has no noticeable effect on the fit
central value or error. From this we conclude that er-
rors associated with omitted higher order chiral terms
are negligible.

Differences in sea and valence quark masses, due in
part to our use of HISQ valence- and asqtad sea-quarks,
are neglected in modification 8. This results in a small
increase in χ2 and negligible change in the fit results. We
account for these small mass differences in our final fit,
though this test suggests they are unimportant in the fit.

Effects due to strange quark mass mistuning on the
ensembles are omitted in modification 9, resulting in a

show in fig. 2 (and 3) two sets of data points: the upper one corresponds to using
all terms in eq. (9), the lower one to dropping the term proportional to f�. Once we
include all O(1/mh) terms of HQET, this ambiguity will disappear. For both sets
we show a constant continuum extrapolation and one linear in a2. The latter has by
far the larger error and within this error is consistent with the result of the constant
extrapolation.

In fig. 3, we compare our results from the linear continuum extrapolation of f+(q2)
to recent results of HPQCD [13] (at their smallest a = 0.09 fm and mπ = 320MeV).
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4 Conclusion

We presented the current status of our computation of the form factor f+(q2) for the
semi-leptonic decay Bs → K�ν at a fixed value of q2 = 21.23GeV2 using HQET on
the lattice. We compare two different methods to extract the form factors, either
from the plateau value of a suitable ratio of correlators, or from a simultaneous fit to
the functional form of the correlators.

We also have performed a continuum extrapolation of our lattice data and find
small O(a2) effects. The preliminary results reported here are still computed in the
static approximation and an extrapolation to the physical pion mass has yet to be
performed. Our preliminary value of f+ at this stage is in rough agreement with the
results from other collaborations.

All O(1/mh) effects of HQET will be included in the analysis once the HQET
parameters are known non-perturbatively. We also plan to extend the computation
to B → π�ν decays, several values of q2, and Nf = 2 + 1 flavours of sea quarks.
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impact of fitting, systematics estimation

significant differences in estimates of fit and systematic uncertainties 
in otherwise very similar computations

well-known example from light-quark physics (both computations use 
MILC ensembles, relatively minor differences)

lattice QCD reach: data analysis

significant differences in estimates of systematics by different collaborations

MILC: fK±/fπ± |Nf=2+1+1 = 1.1947(26)(33)(17)(2)

HPQCD: fK±/fπ± |Nf=2+1+1 = 1.1916(15)(12)(1)(10)

[MILC 2013]

[HPQCD 2013]

stat      CL      FV     e.m.

stat      CL      FV     (misc)

ensembles very similar (HPQCD uses MILC ensembles without finest lattice 
spacing, has some additional masses)

strong effect of data analysis / fitting strategies

stat      CL        FV        e.m.

stat      CL        FV        (misc).

MILC 13

HPQCD 13


