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Emitters coupled to waveguides

Plasmonics: Strong confinement => emitters decay to wire
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Plasmonics: Strong confinement => emitters decay to wire
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Quantum information processing

Challenge: make gates between atoms
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Quantum information processing

Challenge: make gates between atoms
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Cavity:

Works in principle

Fidelity limited 1 — F !
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Waveguide:

Limited fidelity™ 1 — F o< /1 —f

“D. Dzsotjan,A.S. Sgrensen, and M. Fleischhauer, Phys. Rev. B 82, 075427 (2010)



Making use of imperfect coupling

Bad scaling can be overcome

Possible solutions:
- Probabilistic generation of entanglement!
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- Heralded quantum gates*
F'=1, P<l1
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Entangling superconducting
qubits coupled to molecules
N waveguides

Preliminary work
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Non-local entanglement generation

Waveguides: increase efficiency
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Superconducting qubit

Picture: Schoelkopf group

Highly advanced system for quantum computation

Can’t couple to light => not useful for communication
Proposals: Put atom nearby => mediate coupling to light
Problem: superconductors don’t like light

Send in light through waveguide => need very little light (one photon)



Molecules in waveguides

Experiments S. Faez,V. Sandoghdar: molecules in hollow core fiber

Can have good coupling” 8 = 10%

Low temperatures: transitions nearly radiatively limited

Only a single ground state => not useful as a qubit

*S. Faez, P Turschmann, H. R. Haakh, S. Gotzinger, and V. Sandoghdar, Phys. Rev. Lett. 1 13,213601 (2014)
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Coupling molecules and qubits

Transitions can have linear AC-Stark shift => couple to (charge) qubits

DA

Estimate: Dipole | D, distance 500 nm, Shift: 45 MHz >linewidth ~20MHz

Absorption

Can in principle give “strong coupling”
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Problem

1) Cooper pair on island
. . => Charge qubit
0> No Cooper pair on island

Qubit couple to molecular dipole and all other dipoles = charge noise

Noise suppressed by going to degeneracy Eo=Fi

New eigenstates: &) = NG

Tunnelling average out noise => coupling to dipole average out
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Solution

Add extra molecule

Nearby molecules: strong (optical) dipole-dipole interaction®

Tune into resonance => interaction don’t average out

Raman transition of coupled system

Molecule _o |, ¢ I_=>> Qubit

“C. Hettich, C. Schmitt, J. Zitzmann, S. Kiihn, |. Gerhardt, and V. Sandoghdar, Science 298, 385 (2002).
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Entangling two qubits

-

Send in blue

D d ph L (|+—=) x| —+))
=> — ) - | —
etect red photon NG

Good coupling 8> 10%

Qubits can be entangled by pulses containing 1-10 photons

*S. Das, S. Faez, ad AS in preparation
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Probabilistic generation of entanglement Quantum gates
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Scattering gates

One sided cavity:

N—. @ RS O

Scatter resonant photon off cavity

00) — |00)
01) — |01
Atoms in |0) block cavity / /
L 10) — |10)
Photon only enters cavity if atoms are |11)
11) — —|11)

Works in principle but sensitive to losses

Detect photon leaving cavity => high fidelity when detector clicks

“L.-M. Duan, B.Wang, and H.]. Kimble, Phys. Rev.A 72,032333 (2005)
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Auxiliary atom

Requires: single photon source and efficient in/output, detection

Solution: add auxiliary atom as
source and detector

Assume |g) to |/ transition closed

Any decay leaves the atom in | f)

Atom heralds succesful gate
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Two photon driving
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" ]. Borregaard, P. Komar, E. Kessler, AS, and M. D. Lukin, arXiv:1501.00956, Phys. Rev. Lett. in press



Two photon driving

10 \ \ I \;
o C=10 -
s o C=20 |
10 = x C=50 -
— B + C=100 -
£10°L E
CH :
107 |
- (b) -
-7/ |
10 2 \ [ 3
10 10
AE2/Y
Drive closed transition with two photon driving  => It works

Can make gate with F'=1 for ANY cavity

" ]. Borregaard, P. Komar, E. Kessler, AS, and M. D. Lukin, arXiv:1501.00956, Phys. Rev. Lett. in press



Two photon driving

10 \ \ I \;
o C=10 -
s o C=20 |
10 = x C=50 -
— B + C=100 -
£10°L E
CH :
107 |
- (b) -
-7/ |
10 2 \ [ 3
10 10
AE2/Y
Drive closed transition with two photon driving => |t works

Can make gate with F'=1 for ANY cavity

Probabilistic 1 - P « 1

VC

" ]. Borregaard, P. Komar, E. Kessler, AS, and M. D. Lukin, arXiv:1501.00956, Phys. Rev. Lett. in press



Two photon driving

10 =
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Drive closed transition with two photon driving => |t works
Can make gate with F'=1 for ANY cavity Realistic Ex: 3’Rb, C' = 100
F=1-103
e 1
Probabilistic 1 - P o — P=67%
v ’
T=10 s

" ]. Borregaard, P. Komar, E. Kessler, AS, and M. D. Lukin, arXiv:1501.00956, Phys. Rev. Lett. in press
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Application: quantum repeaters

Loss in optical fibers: exponential damping

Long distance communication requires repeaters

(%%%

Generate entanglement over short distance
Gates=> swap entanglement get swapped to long distance

Still works for probabilistic gates (scaling polynomial, not exponential)



Application: quantum repeaters

Distance 1000 km, optimize over “all” parameters

This gate
F~1
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Distance 1000 km, optimize over “all” parameters

This gate
F~1
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Deterministic gate
1-F~1/C

It is better to admit you don’t know what to do than to do something wrong

" ]. Borregaard, P. Komar, E. Kessler, AS, and M. D. Lukin, in preparation



Conclusion

Light matter interaction essential for quantum communication
Direct connections with light have a bad scaling

Bad scaling can be overcome

Examples:

Entangling superconducting qubits through nearby molecules in waveguides

Heralded gates in optical cavities F' =~ 1

1—P~1/V/C
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