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RNA seq
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It’s so easy, what could possibly go wrong!?



WWhat we expect:
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Uniform sampling of 4000 “reads” across a 200 bp “exon.”
Average 20 £ 4.7 per position, min = 9, max =33
l.e., as expected, we see = U £ 30 in 200 samples
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What we get: highly non-uniform coverage

E.g., assuming uniform, the 8 peaks above 100 are > +100 above mean
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What we get: highly non-uniform coverage
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The Good News: we can (partially) correct the bias
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Bias is.sequence-dependent
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and platform/sample-dependent

Fitting a model of the sequence surrounding read starts
lets us predict which positions have more reads.
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(a) sample foreground sequences
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e * ATCTAACTCTCCCTTGAGGGCCTAGT CCATAARAT @ ¢« ¢
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(b) sample (local) background sequences

c *ATCTAACGTCT CCCTTGAGGGCCTAGT CCATAAAT @ ¢« ¢

;
(C) train Bayesian network l.e., learn sequence
L =———— patterns associated w/
high / low read counts.
predict bias
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adjust read counts
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Modeling Sequence Bias

Want a probability distribution over k-mers, k = 40?
Some obvious choices:

Full joint distribution: 4%-1 parameters

PWM (0-th order Markov): (4-1)*k parameters
Something intermediate:

Directed Bayes network



Form of the models:

Directed Bayes nets

One “node” per nucleotide,
+20 bp of read start
‘Filled node means that
position is biased
*Arrow i = j means letter at
position i modifies bias at j
*For both, numeric
parameters say how much
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Result — Increased Uniformity

Kullback-Leibler Divergence
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Result — Increased Uniformity
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Fractional improvement > R2

in log-likelihood under

uniform model across % — | < 1023 hypothesis test:
1000 exons (R2=1-L/L) — p-value <1 “Is BN better than X?”

(1-sided Wilcoxon signed-rank test)




“First, do no harm”

Theorem: The probability of “false bias discovery,” i.e., of

learning a non-empty model from n reads sampled from
unbiased data, declines exponentially with n.
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If > 10,000 reads are used, the probability
of a non-empty model < 0.0004
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Median Goodness of Fit

... while accuracy and runtime rise with n (empirically)
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Figure 8: Median R? is plotted against training set size. Each point is additionally labeled with

the run time of the training procedure.



does it matter?

Possible objection to the approach:

Typical expts compare gene A in sample | to itself in
sample 2. Gene A’s sequence is unchanged,“so the
bias is the same” & correction is useless/dangerous

Responses:
Bias is sample-dependent, to an unknown degree

SNPs and/or alternative splicing might have a big effect, if
samples are genetically different and/or engender
changes in isoform usage

Atypical experiments, e.g., imprinting, allele specific
expression, xenografts, ribosome profiling, ChlPseq, RAPseq, ...

Strong control of “false bias discovery” = little risk
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Batch Effects? YES!
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Change in correlation
due to bias correction

A: Pairwise proportionality correlation between samples sequenced on 2
flowcells each at 5 sites. B:The absolute change in correlation induced by

enabling bias correction (where available). For clarity, BitSeq estimates of "MAY 2,

excluded; bias correction was extremely detrimental there.



Alternate Splicing



DiffSplice

Cuftdiff

Liu, et al. BMC
Bioinformatics
15.1 (2014): 364

DEXSeq 20



In Progress

Isolator
Soon to be the world’s best isoform quantitation tool

Bayesian hierarchical model + fast MCMC sampler
give mean and uncertainty in estimates
Can handle dozens of RNAseq samples per hour

When data is lacking, estimates are shrunk towards each other,
supressing suprious changes.

Experiment

——
Day 20 / 1 Year
1

2 3

%

1 read vs. 2 reads is probably not a 2-fold change in transcription!
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Scale 1 kb | hg19
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Method A B C D
Isolator 0.878 0.866 0.839 0.852
Cufflinks 0.870 0.856 0.799 0.841]
eXpress 0.870 0.855 0.829 0.840
Salmon 0.866 0.852 0.826 0.836
RSEM/ML 0.865 0.851 0.825 0.835
BitSeq 0.840 0.821 0.802 0.813
Kallisto 0.858 0.840 0.817 0.826
Sailfish 0.844 0.814 0.797 0.802
RSEM/PM  0.840 0.822 0.803 0.811

Table 2: Proportionality correlation between gene level quantification
of 18353 genes using PrimePCR gPCR and RNA-Seq quantification.



Method

cvs 0.75a + 0.25b dvs0.25a + 0.75b

Isolator
BitSeq
RSEM/PM
Sailfish
RSEM/ML
Salmon
Kallisto
eXpress
Cufflinks

0.975
0.967
0.963
0.932
0.922
0.916
0.907
0.903
0.870

0.975
0.967
0.967
0.925
0.919
0.914
0.902
0.899
0.916

Table 5: Proportionality correlation between gene-level estimates for the
mixed samples C and D and weighted averages of estimates for A and B,
corresponding to the mixture proportions for C and D.
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summary

RNAseq data shows strong technical biases
Of course, compare to appropriate control samples
But that’s not enough, due to:

batch effects

SNPs/genetic heterogeneity

alt splicing

all of which tend to differently bias sample/control

“All hight-throughput technologies are crap, initially,”
BUT careful modeling can help.
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