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Thermodynamic stability of  
an RNA sequence 
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• length 
• dinucleotide content 



Thermodynamic stability of  
functional non-coding RNAs 
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Detection of segments with low Z-score  
in sliding window 
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window 

• RNAs have different complexities of a structure and sizes 
• Detection is sensitive to the length of scanning window 
• Combination of multiple windows is time-consuming and requires substantial post-processing 



Detection of segments with low Z-score  
locally-optimal 
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Property of MFE matrix 
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• Calculate MFEs for each subsequence  
• Use RNASlider with speed up techniques (sliding MFE recalculation, sparsification) 



From MFE matrix to Z-score matrix 
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• Dependence on sequence length 



From MFE matrix to Z-score matrix 
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• Dependence on sequence length 

• Dependence on dinucleotide content 





161

161 )|,..,(
lk

lkkl ffalff
i j 



From MFE matrix to Z-score matrix 
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• Estimation of regression parameters 
• 27 quadratic regressions were fitted for each selected length 
• 20’000 learning parameters were used to estimate parameters of 

each quadratic regression 
 

• High quality of approximation 
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segment 
length 

Soldatov RA, Vinogradova SV, Mironov AA. Bioinformatics. 2014 

RNASurface 



          ROC curve             Sensitivity versus PPV 
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Benchmark using Bacillus subtilis 



Applications 

• Preprocessing in detection of functional 
structured RNAs 

• Large-scale correlations with other genomic 
tracks (e.g. cds boundaries, ribosome profiling, 
RNA-seq etc) 
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RNASurface 
+  

Probing data 
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• Probing data increases quality of the RNA 
secondary structure prediction 

• Whether and how probing data contributes to 
the detection of structured RNAs? 



Outline of the approach 
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From reactivity to likelihood 
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      Reactivity distribution of paired/unpaired bases is inferred from 
high-confidence nucleotides according to partition function 



Energy model 

Li is the probing log-likelihood of being paired for 
position i in the RNA sequence 

free energy 
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How to estimate background of  
probing-directed MFE?  
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mRNAs as a set of sequences with low fraction of functional secondary structures  
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Probing-directed Z-score of mRNAs and ncRNAs  
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delta Z-score = Z-score - Probing Z-score 



Transcriptome-wide screen with PARS data 

Two runs:  
 
• 3587 elements in probing-constrained RNASurface run 

 
• 3201 elements in RNASurface run 

Z-score < -3 
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Wan Y et al. Nature. 2014 



Results with/without probing data are compared with  
Evofold prediction 

with probing 

without probing 
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predictions, ranked by Z-score 



Consistency of probing data with 
 evolutionary conserved RNA secondary structures 

probing-gained 
 predictions 

probing-lost 
 predictions 

12 4 17 
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with 
 probing 

without 
probing 

Intersection with Evofold 

probing-gained probing-lost 



Conclusions 

• Program RNASurface using a set of regressions 
efficiently detects locally-optimal segments with 
low Z-score in long sequences  
 

• Integration of RNA probing data with RNASurface 
allows increased prediction quality 

• Web-server 

http://bioinf.fbb.msu.ru/RNASurface/ 
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Our lab 



One-dimensional tracks 

Therm 
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Time requirement 

Calculations were performed on Intel Xeon Processor E5506 26 



Distribution of structured predictions along different types of regions  
in Bacillus subtilis 
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Detection of different ncRNA classes 
 in Bacillus subtilis 
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Prediction features 

• Robustness of predictions to variable window length.  

• Impact of the structure complexity on RNASurface and RNALfoldz performance 
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From reactivity to likelihood 

SHAPE reactivity 
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SHAPE reactivity 

PARS score 

Reactivity r 
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high-confidence bases 
from partition function 



Distribution across mRNAs 
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