# Stochastic interactions between ncRNAs and mRNAs inhibit translation and are selected against

Paul Gardner

July 28, 2015

#### The hard work of Sinan Uğur Umu



### mRNA levels are poorly correlated with protein levels across domains of life



de Sousa Abreu, Penalva, Marcotte & Vogel (2009) Global signatures of protein and mRNA expression levels.

#### Molecular BioSystems.

## Currently only two general models of translation inhibition exist

RNA structure



#### Codon usage



Tuller & Zur (2015) Multiple roles of the coding sequence 5' end in gene expression regulation. Nucl. Acids Res.

#### Non-coding RNAs are ubiquitous and abundant



Lindgreen et al. (2014) Robust Identification of Noncoding RNA from Transcriptomes Requires

Phylogenetically-Informed Sampling. PLOS Computational Biology.

#### Functionally characterising RUFs

- RUFs are some of the most abundant transcripts in the cell
- General approaches for functional characterisation are hard and has been largely unsuccessful, trying:
  - Comparative RNA-seq
  - Motif annotation with RMfam
  - Synteny information
  - Checking potential RNA:RNA interactions



#### Do ubiquitous and abundant RNAs influence translation?

- Given that ncRNAs like rRNA & tRNA, RNase P RNA, SRP RNA, tmRNA and 6S RNA are among the most abundant RNAs in the cell ([ncRNA] >> [mRNA])
- AND that RNAs are sticky (like to hybridise)
- THEN maybe stochastic interactions with mRNAs inhibit translation



#### How can this hypothesis be tested?

- An accurate hybridisation prediction method:
  - RNAup: nearest neighbour model, computes unfolding as well as hybridisation energy
- Focus on 6 RNA families & 114 proteins that are highly conserved. Test the 1<sup>st</sup> 21 nucleotides of CDS (critical region & saves LOTS of compute)
- We predict that: (1) there will is selection against ncRNA:mRNA interactions
- and (2) that ncRNA:mRNA interactions will influence [protein]:[mRNA] ratios





#### Are ncRNA:mRNA interactions selected against?



Paul Gardner ncRNA:mRNA avoidance



## Do ncRNA:mRNA interactions influence protein expression?



CAI:  $R_s = 0.29$ , P = 0.016; Sec. Struct.:  $R_s = 0.34$ , P = 0.006; Avoidance:  $R_s = 0.56$ ,  $P = 6.9 \times 10^{-6}$ 

### A specific case of ncRNA:mRNA interactions influencing protein expression

doi:10.1038/nature10965

### The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria

Gene-Wei Li1, Eugene Oh1 & Jonathan S. Weissman1



Li, Oh & Weissman (2012) The anti-ShineDalgarno sequence drives translational pausing and codon choice in bacteria. Nature.

- Can we detect negative selection against ncRNA:mRNA interactions over evolutionary time-scales?
  - Yes!
- Can we determine if ncRNA:mRNA interactions influence protein expression?
  - $\blacktriangleright$  Yes!  $\sim$  42% of variation in GFP expression, 0.8-1.2% in native data
- Further work:
  - Do ncRNA:mRNA interactions influence viral infection, hybridisation, HGT & transformation expts?
  - Do ncRNA:mRNA interactions influence Eukaryotic gene expression?
  - Are ncRNA:mRNA interactions a driver of compartmentalisation?

### Thanks & Plugs

- Sinan Uğur Umu
- Anthony Poole & Renwick Dobson
- Rfam/RNAcentral are hiring:
  - Project Leader
  - Software Developer
  - Database Biocurator



#### Effect sizes & scatter plots



Kudla, Murray, Tollervey, Plotkin (2009) Coding-sequence determinants of gene expression in Escherichia coli. Science.