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What is the statistical challenge in HEP?

* High Energy Physicists (HEP) have an hypothesis:

The Standard Model.

This model relies on the existence of the 2012 discovery of

the Higgs Boson

The minimal content of the S
includes the Higgs Boson , but ext
of the Model include other particles

which are yet to be discovered

The challenge of HEP is to generate tons of
data and to develop powertul analyses to

tell if the data indeed contains evidence for the ne
particle, and confirm if it is the expected Higgs Boson

(Mass, Spin, CP) or a member of a family of Scalar Bosons
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& The LHC is a very powerful accelerator which managed
| to hunt a Higgs with a 10-2 production probability

/5. = This is statistics of rare events!
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The Charge of the Lectures
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The Brazil Plot, what does it mean?

= | ! T T T T

o B ATLAS Preliminary 2011 + 2012 Data
Observed Limit © 10 —o0bs. \s=7TeV: |Ldt=4.6-4.81b" 3
S - Bxp Vs=8TeV: |Ldt=5.859f" ]
-*E - [+1o ]
Bands = [ [#2o ]
— B _

@)
X 1 -
Expected Limit S .
107 . —
- CLs Limits -
100 200 300 400 500 600
m, [GeV]
@ Eilam Gross, WIS, Statistics for PP 3/9/2015 /




e
What the - CLs?
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The pO discovery plot, how to read it?

p-value ATLAS Preliminary 2011 + 2012 Data
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The cyan band plot, what is it?

What is mu hat?
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Likelihoods Scans
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Towards a measurement
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Towards a measurement

2-D Likelihoods
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The Asimov Data Set
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The Statistical Challenge of HEP

70 T T T T T T T T T

The statistical challenge is obvious: 6ok

To tell in the most powerful way, and s b,
to the best of our current scientific
knowledge, if there is new physics,
beyond what is already known, in our
data

The complexity of the apparatus and

the background physics suffer from

large systematic errors that should be .

treated in an appropriate way.
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The Model

* The Higgs hypothesis is that of signal s(m,,)
s(m,)=L-0,(m,)-A-eff
For simplicity unless otherwise noted  s(m,)=L-o, (m,)
® In a counting experiment
n=u-s(m,)+b
L-o(m,)  o(my)

) L-og,(my) B O gy (M)

u

® [ is the strength of the signal (with respect to the expected
Standard Model one

e The hypotheses are therefore denoted by H,
® H, is the SM with a Higgs, H, is the background only model

i n:;% Eilam Gross, WIS, Statistics for PP 3/9/2015
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A Frequentist Tale of Two Hypotheses

® Test the Null hypothesis and try to reject it

ALTERNATE

* Fail to reject it OR reject it in favor of the Alternate hypothesis
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The Null Hypothesis

® The Standard Model without the Higgs is an hypothesis,
(BG only hypothesis) many times referred to as the null hypothesis
and is denoted by H,,
(remember that it is the null hypothesis ONLY if we aim at a

discovery)

® In the absence of an alternate hypothesis, one would like to test the
compatibility of the data with H,

® This is actually a goodness of fit test,
NOT an hypothesis vs another hypothesis test

, n:%]j Eilam Gross, WIS, Statistics for PP 3/9/2015 /
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A Tale of Two Hypotheses

NULL ALTERNATE

H,- SM with Higgs

® Test the Null hypothesis and try to reject it

* Fail to reject it OR reject it in favor of the Alternate hypothesis
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The Alternate Hypothesis?

y
® [ et s zoom on

H,- SM with Higgs

* Higgs with a specific mass my,

OR

® Higgs anywhere In a specific mass-range

— © The look elsewhere effect

.' Eilam Gross, WIS, Statistics for PP 3/9/2015 /
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A Tale of Two Hypotheses

NULL ALTERNATE

H,- SM w/o Higgs

® Reject H, in favor of H, — A DISCOVERY
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Swapping Hypotheses—>exclusion

NULL ALTERNATE

® Reject H, in favor of H,

H,- SM with Higgs

Excluding H, (m,;)=2Excluding the Higgs with a mass m,
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4 ™
Testing an Hypothesis (wikipedia...)

® The first step in any hypothesis testing is to state the relevant
null, 4, and alternative hypotheses, say, H,

® The next step is to define a test statistic, q, under the null

hypothesis
* Compute from the observations the observed value s Qf the test
statistic q.

® Decide (based on g, ) to either
fail to reject the null hypothesis or
reject it in favor of an alternative hypothesis

e next: How to construct a test statistic, how to decide?

P L Eilam Gross, WIS, Statistics for PP 31912015 Y,
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Test statistic and p-value
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e
PDF of a test statistic

Reject s+B Reject BG .
<

1200 I T I ! I ! I ! T | T I T I I T I T I T I T I | I I I I

S+B _

£(g15(my)+b)

1000:— B
_t f(qlb)

400 —

200 —

| 1 | | I | 1 | ]
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q

BG like — s+b like
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Test statistic

* The pdf fiq|b) or fq|s+b) (310
might be different
depended on the chosen

Reject BG .

N—

. . f(qb|S+b/
test statistic.

® Some might be powertul
than others in distinguishing

between the null and

alternate hypothesis
(s(m,,)+b vs b) i::::§>

/ "}/“
s+b like
@ Pl PRa Eilam Gross, WIS, Stati 3/9/2015




p-Value

Discovery.... A deviation from the SM -
from the background only hypothesis. ..

® The pdfofq....

0.35

When will one reject an hypothesis?

03}

W

p—Value = probablhty that result is
as or less compatible with the background
only hypothesis (->more signal like) 0

25}

0.15F

Define a-priori a control region O

For dlscovery it is a custom to choose

0.2p

01

f(qlb)

0=2.87x1077 %

If result falls within the critical region, i.e.

£< Ol the BG only hypothesm is rejected

dlscovery

Eilam Gross, WIS, Statistics for PP
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p-value - testing the signal hypothesis

® When testing the signal hypothesis,
the p-value is the probability that the
observation is less compatible with
the signal hypothesis (more
background like) than the observed

one
® We denote it by Dois

® It is custom to say that it p_,, <5%

the signal hypothesis is rejected
at the 95% Confidence Level (CL)

— Exclusion

g L%% Eilam Gross, WIS, Statistics for PP
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f(Qs+|b)

-

e
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From p-values to Gaussian significance

[t is a custom to eXpress
the p-value as the
significance associated
to it, had the pdf were
(Faussians
T e |
p=[ —e " Tdx=1-d(Z)
Z \2m
Z=d"'(1-p)

A significance of Z = 5 corresponds to p = 2.87 x 10~/
Beware of 1 vs 2-sided definitions!

Eilam Gross, WIS, Statistics for PP 3/9/2015 /
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1 sided vs 2 sided

Usually
1 sided is about and Upper pr Lower bound

2 sided is a result of a measurement
But it is all about a Confidence Interval

At some Confidence Level

by

p <0.05
one-tail critical region

p <0.05

. .
p <0.025 p <0.025

two-tail critical region(s)

To determine a 1 sided 95% CL,
we sometimes need to set the critical region to 10% 2 sided

Eilam Gross, WIS, Statistics for PP
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Basic Definitions: type |-l errors

® By defining & you determine your tolerance
towards mistakes. .. (accepted mistakes

frequency) ® The pdf of q....

* type-I error: the probability to reject the
tested (null) hypothesis (H,) when it is true

" a=Prob(rejectH,| H,)
o = typel error
* Type II: The probability to accept the null

hypothesis when it is wrong

B =Prob(accept H, | H,)
=Prob(reject H, | H,)

ﬂ = l)/p eI[ error -5:.0 -3:.0 -1:.0 / 30 50

ko
7.0 9.0

5 Eilam Gross, WIS, Statistics for PP a=significance 1-B
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Basic Definitions: POWER

o a=Prob(reject H,| H,)
The POWER of an hypothesis test is the probability to reject the

null hypothesis when the alternate analysis is true!

POWER = Prob(reject H | H,)
[ =Prob(reject H, | H,) =
1- B =Prob(accept H | H,) =
1- B =Prob(reject H, | H,) =
POWER=1-f3

® The power of a test increases as the rate of type Il error decreases

P L Eilam Gross, WIS, Statistics for PP 31912015 Y,
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Which Analysis is Better

e To find out which of two methods
is better plot the p-value vs the

power for each analysis method

® Given the p-value, the one with

the higher power is better

o p—valueNsignificance

. " " :
50 30 -10 / 30 50 |

o=p-value 1-B=power
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The Neyman-Pearson Lemma

L L)
L(H,)

e Define a test statistic

* When performing a hypothesis test

between two simple hypotheses, H,
and H,, the Likelihood Ratio test,

which rejects H,, in favor of H,,

1s the most powerful test

o=p-value
e Note: Likelihoods are functions of the
data,
even though we often not specify it
explicitly

BT ]n:m Eilam Gross, WIS, Statistics for PP
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Likelihood

e [ikelihood is a function of the L(H)=L(H|[x)= f(x)

data L(H|x)=P(x|H)
N GAE
L(H,|x)

Bayes Theorem

P(x|H)-P(H)

e Likelihood is not the probability P(H|x)=

2 P(x|H)P(H
of the hypothesis given the data n P | H)P(H)

P(H |x)= P(x| H)- P(H)

Prior

0’7 Eilam Gross, WIS, Statistics for PP 3/9/2015
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What is the Right Question

[s there a Higgs Boson? What do you mean?
Given the data , is there a Higgs Boson?

Can you really answer that without any a priori knowledge of the Higgs Boson?
Change your question: What is your degree of belief in the Higgs Boson given the
data... Need a prior degree of belief regarding the Higgs Boson itself. ..

P(Datas | Higgs)P(Higgs) L(Higgs)r(Higgs)

P(Higgs | Data) = = - 3 )
P(Data) J.L(Hzggs)n:(Hzggs)d(nggs)

Make sure that when you quote your answer you also quote your prior
assumption!

The most refined question is:

® Assuming there is a Higgs Boson with some mass m;;, how well the data agrees with
that?

* But even then the answer relies on the way you measured the data (i.e. measurement
uncertainties), and that might include some pre-assumptions, priors!

L(Higgs(m, ))= P(Datal Higgs)

(-

n%% Eilam Gross, WIS, Statistics for PP
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4 | | ™
Frequentist vs Bayesian

e The Bayesian infers from the data using priors
posterior P(H |x)= P(x|H) - P(H)

® Priors is a science on its own.

Are they objective? Are they subjective? gy \ﬁ:)’/)

® The Frequentist calculates the e i
probability of an hypothesis to f %qes\h“ »  18 ; uﬁ“‘q\
be inferred from the data based bl .. *M“lg

on a large set of hypothetical experiments
Ideally, the frequentist does not need priors, or any

degree of belief while the Baseian posterior based inference is a

“Degree of Belief”.

* However, NPs inject a Bayesian flavour to any Frequentist analysis

D:;ﬂ Eilam Gross, WIS, Statistics for PP 3/9/2015 /
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Confidence Interval and
Confidence Level (CL)
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" CL & CI - Wikipedia
u=1.1x0.3

1=[0.8,14] @ 68% CL
CI=[0.8,1 4]

what does it mean?
* A confidence interval (CI) is a particular kind of

interval estimate of a population parameter.

® Instead of estimating the parameter by a single value, an interval

likely to include the parameter is given.

e How likely the interval is to contain the parameter is determined by

the confidence level or confidence coefficient.

® Increasing the desired confidence level will widen the confidence

interval.

' D:;ﬂ Eilam Gross, WIS, Statistics for PP 3/9/2015 /
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Confidence Interval & Coverage

* Say you have a measurement U of U with U

being the

meas true

unknown true value of U

* Assume you know the probability distribution function
P( u meas | u )

® Given the measurement you deduce somehow
(based on your statistical model)
that there is a 95% Confidence interval [ U |, U ,].

(it is 95% likely that the ;. is in the quoted interval)

The correct statement:

* In an ensemble of experiments 95% of the obtained
confidence intervals will contain the true value of U .

: n%% Eilam Gross, WIS, Statistics for PP 3/9/2015
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Upper limit

® Given the measurement you deduce somehow (based on your
statistical model) that there is a 95% Confidence interval [0, U apl-

® This means: In an ensemble of experiments 95% of the obtained
confidence intervals will contain the true value of U,
including 4 =0 (no Higgs)

® We therefore deduce that U < U ap At the 95% Confidence Level
(CL)

e U ap is therefore an upper limit on U

O (my)<0 SM(mH)9
a SM Higgs with a mass m; is excluded at the 95% CL

, D:E‘Zla Eilam Gross, WIS, Statistics for PP 3/9/2015 /
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Confidence Interval & Coverage

Contidence Level: A CL of (e.g.) 95% means that in an ensemble of
experiments, each producing a confidence interval, 95% of the

confidence intervals will contain the true value of U

Normally, we make one experiment and try to estimate from this one

experiment the confidence interval at a specified CL

If in an ensemble of (MC) experiments our estimated Confidence Interval
fail to contain the true value of 4 95% of the cases (for every possible

U ) we claim that our method undercover

If in an ensemble of (MC) experiments our estimated Confidence Interval
contains the true value of {{ more than 95% of the cases (for every

possible U ) we claim that our method overcover (being conservative)

If in an ensemble of (MC) experiments the true value of U is covered

within the estimated confidence interval , we claim a coverage

Eilam Gross, WIS, Statistics for PP 3/9/2015
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How to deduce a CI?

® One can show that if the data is
distributed normal around the average

i.e. P(data| /4 )=normal S cantwt et
1 (z—p)?
fla | no) = et
o\ 2T

then one can construct a 68% CI around

the estimator of U to be
XTo

However, not all distributions are normal,
many distributions are even unknown and

coverage might be a real issue

Eilam Gross, WIS, Statistics for PP
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4 B\
How to deduce a CI? RN

® One can show that if the data is

distributed normal around the average

34% 34%
. — 3 2 1 0 1 2 3
1.€. P(data | u )_nOrmal Standard Deviations
1  (z—p)? ® One may construct many 68%
e 202

intervals.... (] = [‘LLL,‘LLU]

Hy
| Fx1iydx = 68%
My

the estimator of U to be ® Which one has a full coverage?

xto

flz| p,o) = s

then one can construct a 68% CI around

e How can we guarantee a coverage

® The QUESTION is NOT how to

construct a CI, it is

. . e HOW TO CONSTRUCT A CI
coverage might be a real issue WHICH HAS A COVERAGE

THE 68% CL
Eilam Gross, WIS, Statistics for PP @ 3/9/2015 /
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many distributions are even unknown and




The Frequentist Game a 'la
Feldman & Cousins

Or
How to ensure a Coverage
(iIf time permits)
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Neyman Construction

1%
=,
erval

fidence Int

[s),s,]

68% Con

o

[ g, 15,)ds, =¢

onfidence Belt

0, Need to speci{g where to start

¢ integration. ...

VA 1 1 C {

Vhich values ot s to inciude

in the integration

A rincil:)le should be ?eciﬁed
F&C : Calculate LR and collect

the higheqf terms until integral-‘-éc‘i%

[s);s,] 68% Confidence Interval

In 68% of the experiments the derived C.l. contains the unknown true value of s

¢

With Neyman Construction we guarantee a coverage via construction, i.e.
for any value of the unknown true s, the Construction Confidence Inte?&l015
will cover s with the correct rate.
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The Flip Flop Way of an Experiment

® The most intuitive way to analyze the results of an experiment would be

® (Construct a test statistics

e.g  Q()~ L(x|H,)/ L(x|Hy)

® If the significance of the measured Q(x_,,), is less than 3 sigma, derive an upper limit
(just looking at tables), if the result is >5 sigma (and some minimum number of
events is observed....), derive a discovery central confidence interval for the

measured parameter (cross section, mass....) .....

* This Flip Flopping policy leads to undercoverage:
Is that really a problem for Physicists?
Some physicists say, for each experiment quote always two results, an
upper limit, and a (central?) discovery confidence interval

(-
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Frequentist Paradise - F&C Unified with Full Coverage

* Frequentist Paradise is certainly made up of an interpretation by constructing a
confidence interval in brute force ensuring a coverage!

® This is the Neyman confidence interval adopted by F&C....

® The motivation:
® Ensures Coverage
® Avoid Flip—Flopping —an ordering rule determines the nature of the interval

(1-sided or 2-sided depending on your observed data)

® Ensures Physical Intervals

® Let the test statistics be 0~ L(s+b) ~ P(nls+b)
LG+b)  P(nls+b)

where § is the
physically allowed mean s that maximizes L(5§+b)
(protect a downward fluctuation of the background,n_ >b ; §>0 )

® Order by taking the 68% highest Qs

Eilam Gross, WIS, Statistics for PP 3/9/2015
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® A measurement

(2 sided)

Mean 1

6

[\

How to tell an Upper limit from a Measurement without Flin Flonping

v

Y

!
L
=

Cl

AN

IIII\III

0

Measured Mean x
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How to tell an Upper limit from a Measurement without Flin Flonping

6 IIIIIIIIIIIIIII

® An upper limit

(1 sided) 5 5_
= ;

[\

O-IIIIIIII L1 1°1

I/L/IJ Li | | L- _____ N {

-2 -1 0 1

Measu.‘ed Mean x
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How to tell an Upper limit from a Measurement without Flin Flonping

6

® Your observed

result will tell 5
you if it’s a
measurement or

an upper limit

Mean 1

[\

® But how to

deal with

systematics?

N

/*/

N\

AN

IIII\III

-1

0 1 2

Measurd Mean x
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Search and Discovery Statistics in HEP
Lecture 2: PL, Asymptotic Distributions

Exclusion & CLs

Eilam Gross, Weizmann Institute of Science

This Prescntation would have not been Possible without the tremendous hclp of
the Fo”owing People throughout many years

Louis Lyons, Alex Rea&, Glen Cowan ,Kgle (lrammerr |

Ofer Vitells & Bob Cousins

e )
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The Profile Likelihood
The choice of the LHC for

hypothesis inference in Higgs search

n=us+b

D

in max, L(us+b) _ o

L(,us+b )

max, , L(us +b)

L([Ls +b)

Eilam Gross, WIS, Statistics for PP
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e

For discovery we test the H,
null hypothesis and try to
reject it

L(b)
L([is+b)
For U ~0, g small

{1 ~1, g large

For exclusion we test the Signal

g,=—2In

hypothesis and try to reject it
Sl L( ‘lfS +b)
L(is+ D)
(L~ u, g small

i ~0,q large
ams

q,=

(-

The Profile Likelihood (“PL")

pdf of tested (null) hypothesis under null

pdf of tested
hypothesis

unc‘jy

]% Eilam Gross, WIS, Statistics for PP
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Wilks Theorem

S.S. Wilks, The large-sample distribution of th:
Ann. Math. Statist. 9 (1938) 60-2.

® Under a set of regularity
conditions and for a
sufficiently large data
sample, Wilks " theorem says
that the pdt of the statistic ¢

under the null hypothesis
approaches a chi-square PDF
for one degree of freedom

flq, | H)=x fla,|H)~x

pdf of tested (null) hypothesis under nul

il 1=

¢

’

S

alternate

Tested (null)

% Eilam Gross, WIS, Statistics for PP
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Nuisance Parameters

or Systematics

g J,_]L—’El Eilam Gross, WIS, Statistics for PP 3/9/2015 /




e
Nuisance Parameters (Systematics)

® There are two kinds of parameters:

® Parameters of interest (signal strength. .. cross

section... )
® Nuisance parameters (background (b), signal
efficiency, resolution, energy scale,...)
® The nuisance parameters carry systematic uncertainties
® There are two related issues:

o Classifying and estimating the systematic

uncertainties

o Implementing them in the analysis

n:x‘% Eilam Gross, WIS, Statistics for PP 3/9/2015
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4 ™
Implementation of Nuisance Parameters

® Implement by marginalizing (Bayesian) or profiling
(Frequentist)

® One can also use a frequentist test statistics (PL) while treating the NPs
via marginalization (Hybrid, Cousins & Highland way)

° Marginalization (Integrating))

* Integrate the Likelihood, L, over possible values of nuisance
parameters (weighted by their prior belief functions --

Gaussian,gamma, others...)

® (Consistent Bayesian interpretation of uncertainty on nuisance

parameters

00|l Eilam Gross, WIS, Statistics for PP 31912015 Y,
CERE P17




e

Integrating Out The Nuisance Parameters
(Marginalization)

Our degree of belief in p is the sum of our degree of belief

. . “ 14 .
in p given O(nuisance parameter), over ~all” possible values of 0

That’ s a Bayesian way

™~

p(ut]x)= | p(x| n.0)m(O)m(1)d6 = | L(n.0)n(u)7(6)d6

Credible Interval C7=[0,u, ]

Hp
0.95= | " p(u|x)du

,i D:ﬁ\% Eilam Gross, WIS, Statistics for PP
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4 I
Nuisance Parameters (Systematisc)

® Neyman Pearson (NP) Likelihood Ratio:

L(b(6
o LHO)
L(s+ b(0))
® Either Integrate the Nuisance parameters (The BAYESIAN way)

prior

[ L(s+b(6))m(6)d0

Cousins & Highland
QHybrld j (b(@))?l’(@)d@

® Or profile them
L(b(éo)) 6,= MLE,_, of L()(6))
9

L(s+ b(él))

g"" =-2In
MLE L of L(s+b(0))

f D:E% Eilam Gross, WIS, Statistics for PP 3/9/2015 /
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Nuisance Parameters and Subsidiary Measurements

° Usually the nuisance parameters are auxiliary parameters and their

values are constrained by auxiliary measurements

* Example

n~us(m,)+b  (n)=us+b

m=71Tb

L( U-s+ b(@)) = Poisson(n; U-s+ b(@)) : Poisson(m;fb(@))

N D:;ﬂ Eilam Gross, WIS, Statistics for PP 3/9/2015 /
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Mass shape as a discriminator
n: us(m,)+b

nbins

control region
T T

m~ Tb

L(u-s+b(0))= H Poisson(n,; - s, +b,(0))- Poisson(m;;th,(0))
i=1

35
30F
251

201

15+ }
101

events

S

events

20

40 60

80

100

My

signal region
T T

100

90
80
] 70t
=
] 60
50
a0t

301

20+

10F -

0
0

Eilam Gross, WIS, Statistics for PP
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Wilks theorem in the presence of NPs
® Given n parameters of interest and any number of NPs, then
Lice.0) o MLE of
A(al) — Al ? A] ~
L(OCi,Oj) 9]. MLE of 9].
g(oe,)=—-2InA(ex,) ~ %s 6. MLE of 0, fixing «;
, D:%ﬁj Eilam Gross, WIS, Statistics for PP 3/9/2015 /




Tossing Toys

Understandingthe Basic Concepts

7y Eilam Gross, WIS, Statistics for PP
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e
The Physics Model

e SM without Higgs Background
No signal < n)= b

35_‘"'l""l""l""l"'I

30

25}

20f

15:

10}

|

black dotted line = jis +b

PR T YN NN SR TR T WO AN TN AN ST SR (N WO ST SN N N S NN
0 20 40 60 80 100

mMass

Eilam Gross, WIS, Statistics for PP 3/9/2015 /




R e e

The Physics Model

e SM with a Higgs Boson with a
mass my, <n = S(mH)-|-b

|
.;b“‘—i

TR [N SN TN SN TN Y TR SN TR SO (NN N

|

Plavde o latten | Tinge

TR T N
20 40 60 80 100

Eilam Gross, WIS, Statistics for PP

25}
20}
15]

10f

35 T L N Y L T i
[ ", vae2logA = 51448 ]
30 1™ .

black dotted line = ;'{.'c 4 b

PN TR SN TN [N TN Y TN TN (NN TN TN TN SN [N SN TN SN TN NN SO SO N

1.245

0 20

40 60

80 100
mMass

3/9/2015

/




30

e
The Physics Model

n=us+>b
(ft) =0 under H,

35 s

25}
20f
15}

10}

vV—2logA =10

I

i )

|

i Black dotted line = jis + b
0 PR T YN NN SR TR T WO AN TN AN ST SR (N WO ST SN N N S NN
0 20 40 60 80 100

mMass

n%% Eilam Gross, WIS, Statistics for PP

MLE [
(ft) =1 under H,

35—

305
255
205
155

10f

black dotted line = s 4 h

0 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 ]
0 20 40 60 80 100

mMass
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4 N

The Profile Likelihood (“PL’)

The best signal 1=0.3 —>1.270

For discovery we test the H,

null hypothesis

L(b)
L({ls+b)

qg,=—2In

Median =

[~0, g small

f1~1,q, large
sina
In general: testing the H |
hypothesisi.e., a SM with a
signal of strength , o

L(w)

q”:_sz(ﬁ) . g,=1.6 > Z=+1.6=1.27
L, =+/4
obs 0,0bs

Eilam Gross, WIS, Statistics for PP 3/9/2015 /




PL: test t, under BG only ; f(gq | Ho)

15%06

) Profile Likelihood demo (C) Ofer Vitells 2009
File

L E e e A e T T T T 10' —
( ) [ Asimov=4.1575 . . g L Entries: 2
— L v =2log A = 0.6591¢ i
qO A 30 [ Entries: 0
(‘ ) i Medl
B Asimoy = 4.1575
20
v
15
i
10
Signal
« > L
5
i
Black dotted line = jis + b T
H 7 10° H
@ Bonly —
O ol L L1y Ly Ly AR T T ) I A I BT |
0 10 20 30 40 50 60 70 80 90 100 0 2 4 (_incar_Jg 10 12 14 16 18

= / qg =043 — 7Z=0.660
Zobs qO ,obs ’
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PL: test t, under BG only; f)(qo\ Hy)
-

) |Profile Likelihood demo (C) Ofer Vitells 2009

L(b) ] o e B S s e e ' -

I Asimov=14.1575 Entries: 3
- 2 ln r Asitmov = 4.1575 N i)

0 A 30— Entries: 0
L(s+ D) : o

[ Median =

B Asimoy = 4.1575

T b b b b by

20
A L 4
15
L
10
Signal
g L
5
[
10°
@ Bonly
Os8 0 P NI S T I ST R BT |
0 10 20 30 40 5 60 70 8 9 100 2 4 e Jg 10 12 1 16 18
[log scale ] —270gA

> | B statistics_ACAT2010 B} Statistical issues Krak... ot Ci\Documents and Se... ) Profie Likelihood dem. . EN &) 10:10
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PL: test t, under BG only; f)(qo\ Hy)
-

) |Profile Likelihood demo (C) Ofer Vitells 2009

[ e T T T T 107 —
(b) i ] ]
[ Asimov=4.1575 — g - Entries: 104
- I I L V=2logA =0 ] I
0 A 30— — Entries: 0
L([is +b) ' S
i ] Median =
25— — -
[ | Asimov =4.1575
20— —
B 10"
15— —
Asimov ] show chi2
(Lasinov ] L 4
10— —
Signal :
« > L u
51—
3
Black dotted line = jis + b :
@ Bonly — o
o ol L L 1 1 | R O N E B B
0 10 20 30 40 50 60 70 80 90 100 2 4 (_tineer_Jg 10 12 i 16 18
(log scale ) 709\

> | B statistics_ACAT2010 B} Statistical issues Krak... ot Ci\Documents and Se... ) Profie Likelihood dem. . EN &) 10:11
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PL: test t, under BG only ; f(qg | Ho)

) |Profile Likelihood demo (C) Ofer Vitells 2009
File

L(b)

30

Entries: 1216

Entries: 0

L Median =
25
L Asimov =4.1575

20

15
i
10
Signal i
« » L 4
5
i 9
: Black dotted line = jis + b ]: ]::
1
@ Bonly | o
Os® Y A T T I T I I I AR we, | bl = s o ]
0 10 20 30 40 50 60 70 80 90 100 0 2 4 @jJs 10 12 14 16 18
Je

and Se... ) Profile Likelihood dem. ..

[ ¢,=676->Z=260
Zobs o qO ,obs
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PL: test t, under BG only f(dq| Hp)

022%1 lo

) |Profile Likelihood demo (C) Ofer Vitells 2009

Entries: 1217

L(b) 35v‘||v‘|v|‘\|‘\
[ Aemev= 41878 V=20g X = 10017

30

Entries: 0

L Median =
25
L Asimov =4.1575

20

i

10
Signal

[ C
5

I

@ Bonly i

s Y el R R N N IRNPUN U BN B o L1

0 10 20 30 40 50 60 70 80 90 100

,
1
(R ] - —210, ,,\

Z s = [0 .ops 1.=12-2=110
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PL: test t, under BG only f(do | Ho)

11%040‘

) |Profile Likelihood demo (C) Ofer Vitells 2009
File

L( E ) B " — —
I Asimov=4.1575
o= A V=2logA = 0.46225

30

Entries: 1597

Entries: 0

L Median =
25
L Asimov =4.1575

20

10
Signal
[ A
5
i
@ Bonly g
o ol v 1111l L 1]
0 10 20 30 40 50 60 70 80 90 100

\ ,
1
(T - —210, ,,\

Z, = w/%,obs g,=0.16 > Z =040

Eilam Gross, WIS, Statistics for PP 3/9/2015 /




|

PL: test t, under BG only . 1(0g [ Ho)

031—>1

) Profile Likelihood demo (C) Ofer Vitells 2009
File

Entries: 1735

Lb e L e By B B B Sy B B
( ) r simov = 41575 Nesimm: 3508

30

Entries: 0

L Median =
25
L Asimov =4.1575

20

oy IR B NN B B R B
PN il O N RO I P IO IO T I
O 0 10 20 30 40 50 60 70 80 90 100

, ,
(T - —210, ,A

7 q,=1.8—>2Z=1350
obs \/ qO .obs
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PL: test t, under BG onI , 10 | Hp)

032%13 o

) Profile Likelihood demo (C) Ofer Vitells 2009
File

L E 35— T T
( ) r simov = 41575

30

Entries: 2002

Entries: 0

L Median =
25
L Asimov =4.1575

20

oy IR B NN B B R B
PN il O N RO I P IO IO T I
O 0 10 20 30 40 50 60 70 80 90 100

, ,
(T - —210, ,A

_ / q =19—>72=1.39%
Zobs o qO,obs 0
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PL: test t, under BG only f(q \H )

15%0

) Profile Likelihood demo (C) Ofer Vitells 2009
File

Entries: 2015

[ E 35— T 1 T 7 T L L
( ) I Asimov=4.1575 _ .
V=2T0g A = 0.6685

30

Entries: 0

L Median =
25
L Asimov =4.1575

20

I
10

Signal

TTE I
5

i

@ Bonly

O otd e 1 L1l 1y L]y | | |

0 10 20 30 40 50 60 70 80 90

Zobs — /q0,obs g,=0.43— Z =0.660
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" Confirm Wilks Theorem
L(b)

n—-:
L(us+b)

For the test statistic

L(b)

Asimov = 41575

—21n [ VR s
0 30—

Entries: 2016

Entries: 0

Median =

Asimov = 4.157

flg,|H)=x,

Asimov

2 2
g
2 3

A e b b b e b L

@ Bonly
Os+B

. |
0 2 4 (_incar_Jg 10 12 14 16 18
—2logA

HE
e

> | B statistics_ACAT2010 B} Statistical issues Krak... ot Ci\Documents and Se... ) Profie Likelihood dem. . EN &) 10:00
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™

The PDF of q, under s+b experiments (H,)

L(b)

g,=—2In

L(is+b) L(as+b|H)

L(b| H,)

14=1.04 ->430

) |Profile Likelihood demo (C) Ofer Vitells 2009

35 T
Entries: 15017:
30— Entries: 1
L Median = 4.3065
25—
L Asimov =4.1575
20—
v
10" -
Signal i
<« > u
3
Bonly ]: -
85‘5 olde 1 o L 1111y 1y Ly 1Ty 10"*|I\I|I;||\||—ir—lr—i——\l
0 10 20 30 40 50 60 70 80 90 100 0 2 4 6Ltnear =0 12 14 16 18 20
—2logA
‘5 sta

q,=185—>7Z=43c
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: The PDF of g, under s+b experiments (H,) A

L) _ . LOIH)

g =—2In— =— -
’ L(us+b) L(us+b|H))

01=0.83 —3.60

) |Profile Likelihood demo (C) Ofer Vitells 2009

Entries: 15017

Entries: 446

Median = 4.0747

Asimov =4.1575

only 4
ol L !y Ly Ly | PR T . 1
0 10 2 30 40 50 6 70 80 9% 100 25 30 35 40 45 50

n
: q5_linear
(T —2logA

g, =12.9 > 7Z=3.60
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: The PDF of g, under s+b experiments (H,) A

L) _ . LOIH)

g =—2In— =— -
’ L(us+b) L(us+b|H))

14=122—-500

) |Profile Likelihood demo (C) Ofer Vitells 2009

Entries: 15017

Entries: 1012

Median = 4.0679

Asimov =4.1575

median = 4060

v
Signal
>
O Bonly -
Sen ol L L 1 b L ] P IR - .S I I N B =
0 10 20 30 40 50 60 70 80 90 100 10 1e_fnesr |70 30 35 40 45 50
(log scale ] —aihg\
74 stal

q,=25—>2=5.00
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4 ™
Median sensitivity in a Click (Asimov)

Franchise (short story)

From Wikipedia, the free encyclopedia

I @ This article needs additional citations for verification. Please help impro 5. Unsourced

material may be challenged and removed. (December 2009)

ISAAC ASIMOV :
FI'anChise N "Franchise"

Isaac Asimc

Franchise is a science fiction short story by Isaac Asimov. It first appeared in the August 1955 issue of the
was reprinted in the collections Earth Is Room Enough (1957) and Robot Dreams (1986). It is one of a loosel

fictional computer called Multivac. It is the first story in which Asimov dealt with computers as computers a J ACREATIVE CLASSIC

. j k United State
Plot summary ‘ ' - [language Engiish
In the future, the United States has converted to an "electronic democracy" where the computer Multivac sel ‘ N
questions. Multivac will then use the answers and other data to determine what the results of an election wo science ficti
to be held. : _ blished in If
The story centers around Norman Muller, the man chosen as "Voter of the Year" in 2008. Although the law rdg blisher Quinn Publis
not sure that he wants the responsibility of representing the entire electorate, worrying that the result will be . edia type Magazine
However, after 'voting', he is very proud that the citizens of the United States had, through him, "exercised ol blication date August 195¢
a statement that is somewhat ironic as the citizens didn't actually get to vote. - receded by "Question”
The idea of a computer predicting whom the electorate would vote for instead of actually holding an election 2 = : X ollowed by "The Dead |

correct prediction of the result of the 1952 election.

Influence

The use of a single representative individual to stand in for the entire population can help in evaluating the sensitivity of a statistical method. Franchise was cited as the inspiration of the
data set”, where an ensemble of simulated experiments can be replaced by a single representative one. 1

References

1. A G. Cowan, K. Cranmer, E. Gross, and O. Vitells (2011). "Asymptotic formulae for likelihood-based tests of new physics™. Eur.Phys.J. C71:1554. DOI:10.1140/epjc/s10052-011-1554-0 g7,
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" The Median Sensitivity (via ASIMOV)

To estimate the median

sensitivity of an l& =1.00 —4.150

experiment

(before looking at
the data),

one can either perform

Entries: 15017
Entries: 1013
Asimov = 471575

lots of s+b experiments

and estimate the median MOV=4.150
t, g OF evaluate ty with |
respect to a
representative data set,
the ASIMOYV data set o
with U=1,i.e. x=s+b G
=1722—> 7 =4.15
) L(b|x=xA=S—|—b) L(b)qA A
qomed:qo(ll'l':#Azl):_ZIH ~ :_2111
, L(‘Lts-|—b|x:xA:S+b) L(1S+b)
@ o0 % Eilam Gross, WIS, Statistics for PP 3/9/2015
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Asymptotic Distributions

Tossing Monte Carlos to get the

test statistic distribution functions
(PDF) is sometimes beyong the
experiment technical capability.

T IIIIII|

Knowing both PDF

J (G ' H i)
f (Qnull H alternate) [

enables calculating both the

T II]III[

observed and expected

significance (or exclusion) without

L 1l linben o | o | oy ]

Entries: 15017

Entries: 1013

Median = 4.0687

Asimoy =4 1575

i |
a smgle toy.... 0 5 0 il | 25
—2logA

n%% Eilam Gross, WIS, Statistics for PP
J

30

35 40 45 50
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Asymptotic Distributions

CCGV

g % Eilam Gross, WIS, Statistics for PP

3/9/2015

14




4 ™

i
f(qnull | Hnull)

qobs = qnull ,obs

p = Jq , f(qnull l Hnull )dqnull
J (G 1 H 1)

| |
{q med<{ f(q,.., Halt)}} kx

Qs =9pun = =
f(qnull lHalt )dq,ml, =05 |

Dnull A

null alternate

/ ;_'S Eilam Gross, WIS, Statistics for PP 3/9/2015 /




e

qnull
f(qnull l Hnull)

qobs = qnull ,obs

f(qnull l Halt)

qA = qnull A =

p = Jq , f(qnull | Hnull )dqnull

191 med{f(q,, \ H,)}}

h—

f(qnull | Hnull )dqnull — 05 )

Dnull A

3

null

/ ;_'S Eilam Gross, WIS, Statistics for PP

qnull

alternate
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4 N

i f(Qnull Hnull)
S (G VH )

QObS = Qnull,obs f qnull | Halt)

p = J-q , f(qnull |Hnull )dqnull
J (G 1 H 1)

| |
{q med<{ f(q,.. Halt)}} &

s =90nna = =
Jq f(qnull | Hnull )dQnull — 05 J qnull
null ,A
null alternate I

X0 Eilam Gross, WIS, Statistics for PP 3/9/2015 /




4 N

qnull f (qnull l Hnull )
J (G V H )
qobs = qnull ,obs (qnull Halt)

p = Jq ) f(qnull | Hnull )dqnull

S GV H )
{q1med{ f(q,u H )} P

Qs = Dnuia = =
Jq A f(qnull | Hnull )dqnull = 05 / qObS qnull
null alternate I

o

‘ ;_'B Eilam Gross, WIS, Statistics for PP 3/9/2015 /




4 N

qnull f (qnull l Hnull )
J (G V H i)
qobs = qnull,obs (qm/tll Halt)

p = Jq ) f(qnull | Hnull )dqnull
J (G 1 H 1)

{q | med{ f(q,,, lHalt)}} \\

QA = qnull,A = o
Jq A f(qnull | Hnull )dqnull — 05 / qObS qnull
null alternate I

Z expected — \/ Qnull A qA o qnull A

‘ ;_'B Eilam Gross, WIS, Statistics for PP 3/9/2015 /
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/ Test

Pu E ' LR
Statistics rpose xperession
- 120 )
o discovery of positive signal | g, = 2In4(0) 'lf A0)= L(OA’QP)
0 pH<0 L(1,0)
L(u,6
1, 2-sided measurement t,=—2In A1) (u)= (,uA £ )
L(11,0)
L(“jeﬂ) [i>0
- 5 - 3 L(u,0)
t, avoid negative signal (FC) t,=—2In A1) A() =1 .
L(u,0 .
w9 4
L(0.6,)
. 2InA(u) H<H
q, exclusion q, =1 A
0 u>u
[ o1nd 1<
q, exclusion of positive signal | g, = 2InA(p) ‘lf H
0 H>U
WA 57D Eilam Gross, WIS, Statistics for PP 3/9/2015
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4 .
Resolving 1(q,,,, 1 H,)
_ ] —2InA(0) =0
9o 0 i1<0 (q% H_)
F(00l0) = 26(q0) + 3 —m=——e /2 |
q0 ~ 9 q0 9 \/%\/%
1
1@ 10~> 7" I -
f(g 1 1)~ | Aots| - G
0 !
m
qA = Qnull,A
@ Eilam Gross, WIS, Statistics for PP 3/9/2015 /




4 ™
Wald Theorem

* Consider a test of the strength parameter U , which here can either
be zero (for discovery) or nonzero (for an upper limit), and suppose

the data are distributed according to a strength parameter U ’

® The desired distribution f(g,!4") can be found using a result due to
Wald [1946], who showed that for the case of a single parameter of

Interest, A2
ol A() = W 02“) +O(1/VN)
L) ()=4
A(W) = £
(u) L(.0)

3/9/2015

/




4 ™
Wald Theorem

* Following the Wald Theorem we find that the 2-sided 7, = —2In A1)

distributes like a non-central chi squared L)

AU) = —
0= L 6)

1060 = g [0 (5 (v + V) ) e (-5 (v A

’

2 sided ClI , M is the tested hypothesis Whﬂ€< ,&> =U
A= (U—p)

62

under H ,,if ' = 1 1
" S () = €
we get Wilks theorem V21 /Uy

The rediscovery Wald theorem helped us to find the asymptotic distributions of all PL test
Statistics, including the Neyman Pearson one, calculate the CLs modified p-values
the expected sensitivity and save months if not years of computing

@ n:g% Eilam Gross, WIS, Statistics for PP 3/9/2015 j




f(qnull l Hnull)

f(quo)'”EZz\

1

f(quau,)“‘? \

e
Asymptotic Distribution for Discovery

(qvmll Halt )

i\

)

n

1 sided CI

f(qolp’) =

Eilam Gross, WIS, Statistics for PP~ @(2)=1- [

|

NpY

e Pdx 3/9/2015

4 ops i

qnull A
¥ null ‘ alternate I

(1 By (%,)) 0(qo) + %\/12—7“/1(]—06Xp [_% (\/q__ %/Y}
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4 ™
Asymptotic Distribution for Exclusion

f(qnull l Hnull)

1 1 1 1
Flauli) = 20(q.) + = e
Iz 9 \iH 227 \/Qu (Gl \H 4)
flup = [L + U(I)_l(l — Q)

) q q 4 ops i
1 sided Cl &
alternate

null
Wo—p 1 1 1 1< u—u’)2
S _ _Z _
- ) <q“)+2\/2w\/@eXp! 2 \Vin =

Eilam Gross, WIS, Statistics for PP 3/9/2015 j




e
Asymptotic Distribution for FC

Depends on the observation
one might get 1-sided or 2-sided ClI

Assuming the Wald approximation, the statistic ¢, as defined by Eq. (L1) can be written

3.4 Distribution of fp

t 40
# (n—)? i (40)
From this the pdf f(f,|x’) is found to be
- 11 1 - —u\?
FE) = 5=—=exp [—%( i+ ] (41)
N3
( 1 1 1 g ! 2
2VE o P —%( tu—"—;“—> ] ty < i /o”
I ~ N (42)
1 1(t“_ 2;2"’ ) 2/ 2
Var2pjo) P | T2 (/o) tu > p7/o
The special case ;1 =y’ is therefore
%\/lz_e—fpﬂ i, < p2/o?
- m
F(tule) = (43)
11 1 i/2 1 1 (tutp?/0?)? 2.2
2\ 2r \/Eje S V27 (2u/o) exp[ 2 #12#;0'? ] ty > 1 /U




e
How to determine o

® To estimate the uncertainty O there are a few possibilities

® Given the asymptotic formulae, fit the distribution of

f(qnull |Halt) — f(q’u “LL,) and extract O

® Implement the Wald formula to the Asimov data set and find

, _(u-py

O, q

A

where U is the tested (null) hypothesis and U’ is the alt hypothesis.

For discovery, {4 =0 while for exclusion U ’=0.

‘ n:gma Eilam Gross, WIS, Statistics for PP 3/9/2015
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Exclusion

Case Study:
Exclusion of a Higgs with mass m,,

g Jgu—"? Eilam Gross, WIS, Statistics for PP 3/9/2015
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e

We test hypothesis H u

We calculate the PL
(profile likelihood) ratio with

the one observed data

qu, obs

mﬁ% Eilam Gross, WIS, Statistics for PP
§ VLD

f(q,lH,)

qp, obs

3/9/2015
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e

* Find the p-value of the signal
hypothesis H u

P, = r flq,1H )dq,

Q/.L ,obs

® In principle it p , <5%,
H, hypothesis is excluded at the
95% CL

e Note that H s for a given

Higgs mass my,

N mﬁ% Eilam Gross, WIS, Statistics for PP
¢ A,

f(q,lH,)

qp, obs

Py

3/9/2015
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ClLs

® Suppose <n,>=100

® s(my;)=30

® Suppose n =102

e s+b=130

® Prob(n, <102]130)<5%, my is excluded at >95% CL

* Now suppose s(m,)=1, can we exclude m,?

* Suppose n =80, prob(n_, 80| 102)<5%, it looks like we can exclude m,...

but this is dangerous, because what we exclude is (s(m;;,)*b) and nots......
* With this logic we could also exclude b (expected b=100)

* To protect we calculate a modified p-value

Prob(nobs < 801101)
Prob(nobs < 801100)

® We cannot exclude my,,

P(n<n, ls+Db)
b

Eilam Gross, WIS, (Statlstlcg forl) 3/9/2015 /
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Cls

22 Eilam Gross, WIS, Statistics for PP
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4 ™
The Neyman-Pearson Lemma (iite version)

¢ When performing a hypothesis test between two simple
hypotheses, H; and H,, the Likelihood Ratio test, which
rejects H, in favor of H,, is the most powerful test .....

® Define a test statistic/0=-2In

® Then for a given & = Prob(reject H, | H,)
the probability Prob(reject H, | H,) = Prob(reject H, | H,)
is the highest, i.e. L(H)
The Likelihood Ratio € =—2In

is the most powerful test

® (The POWER of an hypothesis test is the probability to reject the
null hypothesis when the alternate hypothesis is true!)

NOTE: O = Q(11)

, n%% Eilam Gross, WIS, Statistics for PP 3/9/2015 /
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/Example: N

L(H,) _ L(s(m)+b)

Simulating BG Only Experiments [°™~ 7@, = e

« The likelihood ratio, -2InQ(my,) tells us how much the outcome of an experiment
is signal-like

« NOTE, here the s+b pdf is plotted to the left
(it's the null hypothesis)!

Background experiment 5 Test mass = 115 GeV
45 lqrnmlna’rnr -
> T rrrTrT T TTTT T Sl

(%) 1 = [ ]
240 2 E Rp22s | .
E N 4
= - .
g 35 [ E 0.2 F 1
5] - i
0175 |- .

30 ; ]

C 015 [ 3

25 | : ]

C 0.125 | .

20 | ; ]

L 0.1 n -

15 : 0075 —
10 | 005 [ —
5 i 0.025 — J/J’J/ J/J/ —

0 0 -. MRS R RS AR I v 1 W WINAG NV s |- ]
80 85 90 95 100 105 110 115 »on s A s 0 s ‘521n 2
Reconstructed mass -2InQ

-ZIng

@ Eilam Gross, WIS, Statistics for PP _ OIdl<
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/ Example: \

Simulating S(my,)+0 Experiments

Signal+bkg. Experiment 5 Test mass = 115 GeV

.0.25 T T T T
LA L B L B B L] F T T T T T T T T

N
wn

events/3 GeV
B
1)
T
E.p.
T
1

w
wn
LI e

0.175 |
0.15 |
0.125 [

0.1 |

: v by v by e b ey by e b b e by 0
0 80 85 90 95 100 105 110 115 -2InQ
Reconstructed mass

o
»

s+b like b-like

3/9/2015
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/ Example: \

Simulating S(mH)+b Experiments

Signal+bkg. Experiment 1 0.2

L LA ELALL NN ELALELEL IR 0.18

N
wn

events/3 GeV
B
1)
T

0.14

w
wn
LI e

0.12

PDF

0.1}

0.08

0.06

0.04

0.02

Lrelihood
0 = I8|0l - ISISI B I9|0| - I9|5| I l(lﬁl l(l)tS tll}iO 115
econstructed mass .
s+b like 1 b-like
Observed Likelihood

v

Eilam Gross, WIS, Statistics for PP 3/9/2015
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e
The Problem of Small Signal

® <N, ,~=s*b with s>0
leads. to the physmal pos ~CL., Py ~1-CL,
requirement that Nobs>b B

0.2
0.18}|

0.16 |

® A very small expecteds o4
might lead to an anomaly § ]
when N, tluctuates far ~ °
below the expected
background, b, while it’s " __ il
the background alone Likeliood
fluctuated in the absence

of a signal

Observed Likelihood
D s+b

Eilam Gross, WIS, Statistics for PP 3/9/2015 /




4 I
The CLs Method for Upper Limits

Py~ CL,., p, ~1-CL,

Penalize pg,,

Cl = CL,,, _ _Pssp
- CL, 1-p,

PDF

p S+b — 9 - - " Likelihood

Observed Likelihood
D s+b

n:v_% Eilam Gross, WIS, Statistics for PP 3/9/2015 /
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a I
The Modified CLs with the PL test statistic

® The CLs method means that the signal hypothesis p-value

Py is modified to
f(q,lH,)

P, P, =

P — / F(Guli)dd,

4y.,0bs )

O
Pb = I — [ f(QMlo)qu ID}JMCLs+b

qu,0bs

0’7 Eilam Gross, WIS, Statistics for PP 31912015




e

* Find the p-value of the signal
hypothesis H u

P, = r flq,1H )dq,

Q/.L ,obs

® In principle it p , <5%,
H, hypothesis is excluded at the
95% CL

e Note that H s for a given

Higgs mass my,

N mﬁ% Eilam Gross, WIS, Statistics for PP
¢ A,

f(q,IH

qp, obs

Py

3/9/2015
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® Find the moditied p-value
Py
p "u (m[—]) —
1-p,
e To tell if s is excluded, set U =1
and find

R =Gl

3/9/2015
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e

® Here, for each

one finds the
observed p’

value, i.e.
I),Au , M =1
® This modified

definition CLs

Higgs mass my,

p-value, p’ .» s by

Understanding the CLs plot

ATLAS Preliminary 2011 + 2012 Data
— Obs. V§=7TeV: [Ldt=4.6-4.8 fb"
- Exp. Vs=8TeV: [Ldt=5.85.91fb"

7295%
99%

400 500 600
m, [GeV]

00

Exclusion CL=1-CLs=1-p

The smaller CLs, the deepej%e excl74on

: % Eilam Gross, WIS, Statistics for PP 3/9/2015
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4 ™
Understanding the CLs plot

e CLsis the

compatibility of o 10°t ATLAS Preliminary 2011 +2012 Data-
. 10°E  —Obs. Vs=7TeV: [Ldt=4.6-4.8fb"
the data with the 1026 ween Exp. {s=8TeV: [Ldt=585.91b"
: : 10
sional hypothesis
g YP { Eormeesrmgeeanmsnnmsssassasanmsesaseasasmasasmeeesaseassmesenas
1
() The Smaller the 10 o .......................................................:',.' 95%
10-2 O S R SRR R SRRy SO 99%
CLs, the less 1073
- 10
mpatible th -.
compatible the hpe !
data with the 10°®
: : 107
prospective signal 10 | |
100 200 300 400 500 600
m, [GeV]
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o 10°E ATLAS Preliminary 2011 + 2012 Data
10°s  —obs. Vs=7TeV: [Ldt=4.6-481"
102 e EXP. ys=8TeV: |Ldt=5.859fb"

10
1 ...............................................................
107 o e A

L flq,VH )dq, O

L ,0bs ’ 0_4

10°

PY 10°®
107

95%
99%

108 . . :
( m ) — p 100 200 300 400 500 600
p H m,, [GeV]

1- Py For a given data set,

o on?: 1 d find f hich in the absence of a signal,
Optlon terate and Iind U for whic the bigger the tested 1 is

’ — L0 =
Py (my)=>5% 2U=U upe the exclusion is deeper
If 4 up<l,myis excluded at the 95% |; .. p’ , is smaller

3/9/2015

n%% Eilam Gross, WIS, Statistics for PP
J




4 o
Sensitivity

o The sensitivity of an experiment to
exclude a Higgs with a mass my, is the

median upper limit

o " =med{u, | Hy)

® The 68% (green) and 95% (yellow)
are the

1 and 2 O bands

® The median and the bands can be
derived with the Asimov background
only dataset n=b

D:Q;l] Eilam Gross, WIS, Statistics for PP

=

@

350

Distribution of the upper limit with
background only experiments

™~

W
The Asimov dall)ta setis n=b

-> median upper limit

3/9/2015




cLLup+N — NGO +O

CCGV Useful Formulae - The Bands

=0c®'(1-050)=0cd'(0.975)
2 . A
O, = Var| u]

»uup-i-N
o =0.05
2
2 :Ltup+N
O =
nuup+N
q:uup+N ’A

4 XEYES I J

(@7 (1- aD(N))

%) Eilam Gross, WIS, Statistics for PP

Distribution of the upper limit with
background only experiments

™~

350

95
l'l'up

The Asimov data set is n=b
-> median upper limit

3/9/2015




e

The Asimov data set

The median of f(q , | Hy)

Can be found by plugging in the

unique Asimov data set
representing the H,, hypothesis,
background only

n=b

The sensitivity of the
experiment for searching the
Higgs at mass my, with a signal
strength U , is given by p, u
evaluated at q , A

f(q,lH,)

9

med{f(q,|Hy)}=q,,a

P’ Eilam Gross, WIS, Statistics for PP

R =Gl

3/9/2015
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Useful Formulae

P’ - 94, =0.05
(g, -Ja..)

@ is the cumulative distribution of the
standard (zero mean, unit variance)

Gaussian.

g, 4 |s evaluated with the oo
Hos- Asimov data set (background only) = /
Z

n:p_'{ Eilam Gross, WIS, Statistics for PP
i piaTa )

=
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e

Exclusion - L(s+b | data)
Ap=l)=—— ;
lllustrated L(f1-s+b|data)

¢, =—2log A(u=1)

The profile LR of s+b experiments (u=1)
under the hypothesis of s+ b (H| )

JACANES) ,
f under the hypothesis of s+ b (H, )

The profile LR of b-only experiments (1 =20)

The observed profile LR f(q, p=0)

L(s+ b | data) /
L({i-s+b|data)

/ p=] , f@IDdg

p, is the level of compatibility between the data and the Higgs hypothesis 3/9/2015
If p, is smaller than 0.05 we claim an exclusion at the 95% CL S

= —2log

ql,obs

S

/6




Understanding the Brazil Plot

The expected 95% CL exclusion region covers the my range from 110, GeV to 582 GeV. The observed
95% CL exclusion regions are from 110 GeV to 122.6 GeV and 12\9.7 7/eV to 5% . The addition of
" ATLAIS Preliminary 2011 + 2012 Data

_ bs. Vs=7TeV: |Ddt =4.6-4.8fb" 3
° = < 9
U up 0 (my)/ O g(my)<l1 -/ Exp. Is =8 TeVNLdt 25.8-5.9 fb!

0 (my)< O ¢,(my)=?SM my, excluded *1o

L1111l

—

95% CL Li

T TTTTT
|

® The line Y up=1 corresponds to
CLs=5% (p ,=5%)

° If U up<I the exclusion of a SM Higgs is CLs Limits | | | o
d,eeperép §<5%. | 100 200 300 400 mio[%. g\c/)]o
p SZCLSQCLzl—p s=>95%

T
1

10" =

IlII|
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Search and Discovery Statistics in HEP
Lecture 3: pO, Discovery and the LEE,

Multidimensional PL & Measurements

Eilam Gross, Weizmann Institute of Science

This Prescntation would have not been Possible without the tremendous hclp of
the Fo”owing People throughout many years

Louis Lyons, Alex Read, Glen Cowan )Kyle Cranmer , Yonatan Shlomi

Ofer Vitells & Bob Cousins

e )
1 ~ Eilam Gross, WIS, Statistics for PP 3/9/2015 /




DISCOVERY

Case Study:
Higgs Discovery

o um
7y ~ Eilam Gross, WIS, Statistics for PP

3/9/2015
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e
Basic Definition: Sighal Strength

® We normally relate the Signal strength to its expected Standard

Model value, i.e.

fi(m, ) =MLE of u

Eilam Gross, WIS, Statistics for PP 3/9/2015
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4 ™
Introducing the Heartbeat

o(my)
_ H
p(my ) =
Oy (M)
w(m, )=MLE of u
2 55F ATLAS Preliminary 2011+ 2012 Data —
% - —— Best fit Vs=7TeV: |Ldt = 4.6-4.8 b .
& 28 [-2mhiw<i Vs=8TeV: |Ldt=5.8-5.9 fb"
» C ]
< 1.5 -
(- : ]
(@)] - _
0 N | & b —
0.5 ]
O] WAy ™ WV W™t =
-0.5F =
'1 :F 1 1 1 1 |——
100 200 300 400 500 600
m, [GeV]
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Reminder: The test statistic

—2InA(0) 4 >0,® Downward fluctuations of the background

do = R do not serve as an evidence against the
0 (<0,
background
g = 2InA(u) HSH Upward fluctuations of the signal do not
) .
0 H=>U serve as an evidence against the signal

Eilam Gross, WIS, Statistics for PP 3/9/2015 /
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@

Significance & p-value

Calculate the test statistic fq,|H)~x 12

based on the observed

experimental result (after -
taking tons of data), q,,
Calculate the probability

that the observation is 4

as or less compatible with

p= r (g, | H)dt -

the background only 0
hypothesis (p-value)

o0

p=1| f(q,|H,))dt

9obs

If p-value< 2.8-107 , we claim a 50 discovery

A significance of Z=1.64 corresponds to p=5%

» Eilam Gross, WIS, Statistics for PP

3/9/2015

/




I —CDFu(%)

5.73e-007

6.33e-005

2.70e-003

4 55e-002

3.17e-001

.................................................

(%]

I

v —2log A )
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e

Discovery A=0)= L(0-s+b|data)

- ’ =-21lo ﬂ, =0
- lllustrated L(i-s+b|data)’ " gA(u=0)

The profile LR of bg-only experiments (u = 0)
under the hypothesis of BG only (/)

/6

f(g,|n=0) The profile LR of S+B experiments (u
f under the hypothesis of BG only (H, )

The observed profile LR g, =1
L(0-s+b|data) /
L({1-s+b|data)

/

qO,obs = _2 log

P, is the level of compatibility between the data and the no-Higgs hypothesis3/9/201
If p, is smaller than ~2.8-107 we claim a 5s discovery

=])

5
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e
Median Sensitivity

® To estimate the median
sensitivity of an experiment
(before looking at the data),
one can either perform lots o
st+b experiments and
estimate the median qq 4 or
evaluate qq with respect to a
representative data set, the
ASIMOV data set with L=1,
l.e.n=s+tb

Zmed = (D_l (l —p(),l)ed) = (b_l ( I —P()(CJ()M))

Z, =-2In2,(0) = /g, ,
L(u=0]| ASIMOYV data = s+ b)

A,(0)=
A0) L({i,=1| ASIMOV data = s+ b)

Eilam Gross, WIS, Statistics for PP 3/9/2015
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I —CDFu(%)

5.73e-007

6.33e-005

2.70e-003

4 55e-002

3.17e-001

.................................................

(%]

I

v —2log A )
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"The New s/\b h

The new s/\b

L, = 0.4

med[Zo[1] = v/Gox = /2 (s +b) In(1 + 5/b) — )

\)

b

FO(s /D)

. s/bkl
Z, =49, A

3/9/2015 Y




"The New s/\/b E

S/Vb

med[Z 11]

The new s/\b 10" 1 10 1P

1] = V@oa = /2((s + ) In(1 + 5/b) — s)

3/9/2015 Y
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e

Taking Background Systematics into Account

® The intuitive explanation of s/ Vb is that it compares the signal,s, to

the standard deviation of n assuming no signal, b,

* Now suppose the value of b is uncertain, characterized by a

standard deviation 0.

® A reasonable guess is to replace \/b by the quadratic sum of

\b and o,i.e.,
btA-b= o0, =\/(\/5)2 +(A-b) =\b+A%?

S/\/E:>S/\/b(1+bA2) Lo >S/b

s/b A
TZS%S/I?ZO.S for A ~10%

If s/b<0.5 we will never be able to make a discovery
But even that formula can be improved using the Asimov formalism

;f n:xma Eilam Gross, WIS, Statistics for PP 3/9/2015
s Rgas)
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Significance with systematics

® We tind (G. Cowan)

1/2
B (s +b)(b+ o) b? ots
ZA = [2 ((s—l—b)ln b+ (s + b)o? o2 In 1+b(b+0§)

Expanding the Asimov formula in powers ot s/b and

0,>/b gives 3

ZAzm

* So the “intuitive formula can be justified as a limiting case

(1 + O(s/b) + O(c? /b))

of the significance from the profile likelihood ratio test evaluated with

the Asimov data set.

, n:;ﬂ Eilam Gross, WIS, Statistics for PP 3/9/2015 /
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Significance with systematics

() 1

N, % s=95
]

()

£

G,/b=02,05

0 i IR | i R R | i el B,
10" 1 10 102
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e
PO and the expected pO

po:/ f(q0|0)dqo
q0.0bs

P, is the probability to observe a less BG
like result (more signal like) than the
observed one

Small p0 leads to an observation

ATLAS Preliminary

2011 + 2012 Data
\s=7TeV: |Ldt=4.6-4.8 b
\s=8TeV: |Ldt=5.8591b"

A tiny p0O leads to a discovery

400 500 600
m,, [GeV]

300

ATLAS Preliminary
—— Best fit
[]-2InA(p) <1

2.5

N

—
[3)

= ] 2 1h
——e Py =1-®(2)
Z \2m

Z=a"'(1-p)

Signal strength (u)

—

p:

o
3]

llllllllllllll\llllllIII||I_|_

o

o
3]

o_'IIIIIIIII

2011 + 2012 Data
Vs=7TeV: |Ldt=4.6-481" ]
Vs=8TeV: [Ldt=5.8-591fb"

III|IIlIlIIII|III

lIlIIIIII

200

1
—_ =
o
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4 . h
Distribution of O (discovery)

® We find i}
pO:/ f(q0/0) dqo -

(@l0) = L6(q0) + L L a2
J(qo — 500 2\/%\/q_06 : Zo:q)_l(l_po):\/q_o.

° q, distribute as half a delta function at zero and halt a chi

squared. qO,obs - qO,obs <mH)_>P0:pO(mH)

vy 14i
Entri 1< . ' ' ' "
vl ATLAS Preliminary 2011 + 2012 Data
RMS 0. —— Obs. \s=7TeV: [Ldt=4.6-4.8 b
o ---- Exp. \s=8TeV: [Ldt=5.859fb"

102

10°

10*

IIIIII| T IIIIIIII T IIIIIHI T IIIIIIIl T TTTT

200 300 400 500 600
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Example: H2>YY

2400
2200
2000
1800
1600
1400
1200
1000

Events / GeV

600
400
200

Selected diphoton sample

o Data 2011 and 2012
Sig + Bkg inclusive fit (mH =126.5 GeV)

4th order polynomial

\s=7TeV,

\s=8TeV,

J
J

Ldt=4.81b"

Ldt=591b"

800E—

100

-+
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140
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m,, [GeV]
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w

SM H-yy
— Best fit
[]-2InA(n)<1

N
o

1
J
o<
®

ATLAS Preliminary

Signal strength

IIIIIIIII|IIII|III-1—
IIIIIIIII|IIII|III'T_

—
_ O N

O
o

lllllllll!

I I I

Data 2011, 1s=7 TeV, | Ldt = 4.8 fb!
Data 2012, {s= 8 TeV, | Ldt = 5.9 fb”
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o
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o
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Pt M et
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H2>YY

/an)

Vbl 1o

1 3

Data 2011, Vs =7 TeV, | Ldt =4.8 fo" 3
Data 2012, Vs =8 TeV, | Ldt =5.9 fb''g

Observed p_, 10 categories 7]
...... Expected P, 10 categories =
Observed Py 9 categories 3

=

Expected p o 9 categories
Observed p_, inclusive
...... Expected p o inclusive

—7IIS(IsIIIllIlIllIlIlllllllllIlllllllllllllll-
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The Look Elsewhere Effect
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Look Elsewhere Effect

* To establish a discovery we try to reject the background only hypothesis H;
against the alternate hypothesis H,

* H, could be

* A Higgs Boson with a specified mass my,

- A nggs Boson at some mass myy in the search mass range

* The look elsewhere effect deals with the ﬂoating mass case

Let the Higgs mass, my;, and the
signal strength p

be 2 parameters of interest

L(u,m,,,b)
L(laa mﬂab)

The problem is that m is not defined under the null H, hypothesis

l(,u, mH) —

mﬁ% Eilam Gross, WIS, Statistics for PP 3/9/2015 /




Look Elsewhere Effect

70

Is there a signal

here?

Eilam Gross, WIS, Statistics for PP
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Look Elsewhere Effect

70

Obviously

@ m=30 60F
What is its 50
significance? ok

What is your test
statistic?

30

O
2 sm=30) 1 b) ﬁg% .

0 10

q fix ,0bs

Eilam Gross, WIS, Statistics for PP 3/9/2015 /




Look Elsewhere Effect

Test statistic I ( b)

=—2In
@ ot L(fis(m = 30) + b)

What is the p-value?

||||||||||||||||||||||||||||||

generate the PDF ] 0-1;_ e, 1H)

f(a, | H,) | -
and find the p-value 1072}
Wilks theorem:

) 10-35-
f(q]‘ix |Hy)~ x;
ol”lf‘;ll{ﬁxgw 1|5""2|0""2'5""t30
@ Eilam Gross, WIS, Statistics for PP 3/9/2015 /




Look Elsewhere Effect

Would you ignore ® 5 91|780
this signal, had you or Ii |
seen it? il ! l !‘

30 i !i - Ii

B | 20

: Nk

% e

10 —% i‘ E. { ||lh |E

/b % m
s
00 1|0 2[0 3IO 4|0 5I0 6]0 7|0 8I0 90 100
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Look Elsewhere Effect

50

Or this?
45 25730 A

40

35

30

251 [
20} ) l : %
151 q N %

10
5_
00 110 210 SIO 4[0 5I0 610 710 8I0 910 100
@ Eilam Gross, WIS, Statistics for PP 3/9/2015 /




Look Elsewhere Effect

Or this?
3.51130 -

| I I
70 80 90 100

’% Eilam Gross, WIS, Statistics for PP 3/9/2015 /




Look Elsewhere Effect

Or this?

Obviously NOT!

ALLTHESE
“SIGNALS” ARE
BG

FLUCTUATIONS

50

45

40t

35

30

25

20

_____
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Look Elsewhere Effect

* Having no idea
where the signal
might be there

are two options

e OPTION I:
scan the mass
range in pre-
defined steps and |
test any R
disturbing 9 i obs () =-2In

fluctuations

Gross, WIS, Statistics for PP

=5 Eila

L(b)

L(us(m)+ b)
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Look Elsewhere Effect

* Having no idea
where the signal
might be there

are two options

e OPTION I:
scan the mass
range in pre-
defined steps and |
test any R
9 iv.obs (U) =—2In

disturbing

fluctuations

Gross, WIS, Statistics for PP

=5 Eila

L(b)

L(us(m)+ b)
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Look Elsewhere Effect

The scan resolution must be less

than the signal mass resolution

Assuming the signal can be only at
one place, pick the one with the
smallest p-value (maximum

significance)

q . e (1) = =21

Eilam Gross, WIS, Statistics for PP

L(b)

n———:
L(us(m)+b)
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Look Elsewhe

The scan resolution must be less
-

than the signal mass resolution 10 ¢

Assuming the signal can be only at ;42|

one place, pick the one with the

smallest p-value (maximum

significance) 107}

Ty

This is equivalent to OPTION II:

||||||||||||||||||

leave the mass ﬂoating

q e o (1) = —21n

qﬂoat,obs('ll) — é(ﬁ) — maXm {_21

Eilam Gross, WIS, Statistics for PP

L(b)
L(its(m) + b)
i, L(b)
L(fis(m)+ b)
3/9/2015
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E tfloat,obs _f(tfloat | HO)
p 1°_1? —f(t, | H,)
. float f )
trialfactor = —— =
pfix
P
10
) " range I |
trialfactor = g. = M 1
reSOlutlon O 0 5 10 15 20 25 ¢ 30
m
This turned out to be wrong, 1 vkt oo
that was a big surprise 20— float/fixed
——float / float
. range I
trial factor o< g. wead = Lieu| %
resolution o =
0.5 1‘ 1.I5 Sigr%iﬁcanc:‘.B Ili 315
n:;ﬂ Eilam Gross, WIS, Statistics for PP 3/9/2015 /
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The profile-likelihood test statistic

with a nuisance parameter that is not defined under the

Null hypothesis, such as the mass
Let © be a nuisance parameter undefined under the
null hypothesis, e.g. 6=m

p=“signal strength”

® Consider the test statistic: H,:u=0
0

L(u=0)
0)=-2lo H. : 0
q,(0) g L(.6) LU

* For some fixed 0, q,(6) has (asymptotically) a chi® distribution with one
degree of freedom by Wilks’ theorem.

* q,(0)is a chi’ random field over the space of 6 (a random variable indexed by a
continuous parameter(s) ). we are interested in

I 0 g is the global
(0) — _2 11'1 (;u ) _ max[qo (6)] maximum point
£(f1,0)
® For which we want to know what is the p-value
p-value=P(max[q,(60)] = u)
6
D:;ﬂ Ef8m Gross, WIS, Statistics for PP 3/9/2015
aw,
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A small modification

° Usually we only look for ‘positive’ signals

—2log L(ﬂA: D >0 qo(8) is ‘half chi?
qO (9) = 4 L(;Lla 6) 4. Chamoft, Ann. wath St
L 0 l[l <0 25, 573578 (1954)]

The p-value just get divided by 1/2

e Or equivalently consider /1 asa gaussian field

since

qo<e>=(ﬂ(9))
(o)

N D:g\% Ef8m Gross, WIS, Statistics for PP 3/9/2015 /
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e

Random fields (1D)

® In 1 dimension: points where the field values become larger then u are

called upcrossings.

max [q,(6)]

upcrossings

Q\AK/\/

e The probability that the global maximim is above the Tevel u'is called

exceedance probability. (p-value of q,

=q,(Q) = mgX[qo(H)])

P(max(q,(6)] =)

P H94m Gross, WIS, Statistics for PP
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(The 1-dimensional case

O e o S e T e e _ _
) For a chi? random field,
s 401 1 the expected number of
ERN y upcrossings of a level u is given
2 20 | by: [Davies,1987]
g _
L% 10f !' —u/2
E[N ]=Ne
5¢ :
q,(m)
0 20 40 60 80 100 120
m

To have the global maximum above a level u:

- Either have at least one upcrossing (N,>0) have q,>u at the origin (q,(0)>u

[R.B. Davies, Hypothesis testing when a nuisance parameter is

P(éo > u) < P(Nu > O) + P(qo (O) > u) present only under the alternative. Biometrika 74, 33-43 (1987)]

=) < E[Nu]"'P(% (0) >u) Becomes an equality for
large u

9] ERSm Gross, WIS, Statistics for PP 3/9/2015
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The 1 dlmpnqmnal cAase

>0 —u/2
| E[N, |=Ne
=
= 30} oy
z The only unknown is 7V 1
*:2) 201 which can be estimated from
& 10f the average number of
upcrossings at some low
reference level
) 3
o | E[N,]=N,e™"
q,um)
: — —uy /2

m N, =E[N, Je""

u

P(qo >u)< E[N ]+ P(qo (0) >u) E[N,1=E[N, Jeto =2

local

= E[N, Je" ™" +p

1 a2, ]
= Ne"? + Py >u)= EIN, Je" ™" + > PO > )

Endm Gross, WIS, Statistics for PP




a ™
1-D example: resonance search

The model is a gaussian signal (with
unknown location m) on top of a continuous
background (Rayleigh distribution)

Events / umit mass

L= HPoiss(nl. s, (m)+ Bb,)

_ (N@=0.5))=434+0.11
E
‘ I L
10" F e
—1: . . 4
107 P-value In this example we find
T Ll 3
A7) ﬁ N, =5.58%0.14 max g, (m) |
=107 Excellent [from 100 random backgrotind
R~ [ approximation simualtions] o
10 = already from ~20 |
- (p-value=5x102) <., _ 0 ‘ ‘ ‘ il
10-5;_ -------- Wle ul2 —|——P(Zl2 > u) 10, 5 0 15 20 25
2 q(h)
0 5 10 15 20 25 30 [(E. Gross and O. Vitells, Eur. Phys. J. C, 70, 1-2, (2010) , )

c arXiv:1005.1891]




A real life example

P(g, >u) < E[N ]+ P(q,(0)>u)
E[N |= Wle_“/z
WIE<N >e”°/2

Uy

1
P(g, >u)= Wle_”/z +§P()(12 > u)

ATLAS Preliminary

\s=7TeV: |Ldt=4.6-4.8 b
\s=8TeV: |Ldt=5.8591b"

2011 + 2012 Data

. —u/2
P global ~— Wle T P local

300

400 500 600
m,, [GeV]

3 25
UO u

— 2
pglobal o <Nu0 >€ T plocal

—
a N

Signal strength (u)

o
[

III]IIIIIIIII!IIIIIIIIIIIIIIII_[_

o

EXERCISE

o
o

ATLAS Preliminary

—— Best fit
[]-2InA() <1

2011 + 2012 Data |

Vs=7TeV: [Ldt=4.6-48f" 3
\s=8TeV: |Ldt=5.859f"

Illllllllllllllll

[

o_lllll]l

1
—_ =
o
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Measurements

Case studies: ATLAS and CMS
mass and coupling combinations

Eilam Gross, WIS, Statistics for PP 3/9/2015 /




e

A(mH) =

PL in obtaining the mass

Ay = Lo 0() t, =—2InA(x)

L(&, 0)

L (mH ) ﬂggF+tfH(+bBH) (mu), W ppvu(mu), % (my) , 0 (mH))

5o Y N 27 €
LOw; ftygp vy » FvBrives 77, 6)

Scan the test statistic t, = #(or)
find &
t(dtNo,)=N"

@ ,' D:Ej Eilam Gross, WIS, Statistics for PP 3/9/2015
N L Y,




e
Obtaining the Syst Error

N

S LA L R — T T [ T
2 2 u —— H-yy ]
Gsyst — \/Gtot o Gstat % 6 ATEAS and CHIS —— H->ZZ-54] —]
c - LHC Run 1 —— Combined yy+41 7
N - e Stat. only uncert. ]
' 51 ]
4\ e ... E
3 =
g ' --------------- E
0 ; 1 1 | 1 1 1 \, |' | 1 1 1 1 ;
124 124.5 125 125.5 126
m,, [GeV]
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oy . A
PL in obtaining the mass

N =L@ = DI A (@)

L(&,6)
Am.z; =m}] —mir
A ~YY AYY 277 [
L(Am,z i, Ko Fitir (+vbH) > HVBF+VH » B 0)

A(Amfyz) — A A - ~YY ~YY A a
L( m'yZa mpm, 'LngF—thH(—I—bI;H) ) :uVBF-H/Ha % ) 0)

2nd yerse same as the first

ge Y%A Eilam Gross, WIS, Statistics for PP 3/9/2015 /
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A case of 2 poi

® In order to address the values of the signal strength and mass of a
potential signal that are simultaneously consistent with the data, the

following profile likelihood ratio is used:

L(u, mp, 0, mpy))
L(it, ing, 0)

® In the presence of a signal, this test statistic will produce closed

/l(l'l’ mH) —

contours about the best fit point ( {1, My );

® The 2D LR behaves asymptotically as a Chis squared with 2 DOF
(Wilks™ theorem) so the derivation of 68% and 95% CL cintours is
casy, but care must be taken; The projection of 2D CI are not 1D CI!

Y%A Eilam Gross, WIS, Statistics for PP 3/9/2015
& & ‘—U
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4 . . R
Measuring the signal strength and
mass, a 2D Scan

2 parameters of interest: the signal strength p and the Higgs mass my,
L(u,m ,I;)
m)=="2nAu,m, )=-2In 4
q(u,m,;) (u,m,;) L b
@ Eilam Gross, WIS, Statistics for PP 3/9/2015 /




19.7 b (8 TeV) + 5.1 fo' (7 TeV)

E | | 1 1 1 | | 1 1 1 |
2 N % Combined
- CM
g - |_(|> S H 77 ob H— vy tagged
2 0 —YY + —
i o» H— ZZtagged
15 ; -
1.0~ -
0.5 -
L1 1 1 1 ]
0'0123 124 125 126 127
m, (GeV)
H 19/2015
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e
PL in obtaining the Coulolings

L(KFBKvsg(KF’Kv))

A(KF, Kv) =
L(KF,KV,H)
¥L|_ _I T | T T T I | l T 1T I T
1.6~ ATLAS and CMS =
- Run 1 Internal .
1.4F - -
1.2 ]
1 ]
0.8 ]
: ATLAS
0.6]- - ]
I CMS
[ xSM  —68%CL — i
0. 4__ + Belst fit ---§|)5/ CL| | ATlTAS+CMS
07 08 09 1 11 12 13 1.4
K
@ - 3/9/2015 /




e
68% Cl is a tricky issue

Is the WW a better measurement than the combination?

L 3 I I I I I I I I I I I I I I I | | I I
ATLAS and CMS

—h
Illllll:lllllllll
v
e
R
.
.
‘[
.
*
“

Run 1 Internal /7
pd

0 —
£ O SiD) =
| CJH-yy
B HoZzzr 4
o CJH->ww* ]
" % SM — 68% CL : :’) :f ]
N . Bestlfit 95|% CL I I ; Comblned B
B4 06 08 1 12 16
(- <

112015

/




e
68% Cl is a tricky issue

When constraining to positive couplings, the WW gains the full CI

QMLL 3_ T T I T T l T 7T I T T I [T T I I [T I I |

- ATLASand CMS -

2 5 Run 1 Internal .

2- .

1.5- .

1 .

_ CIH-> vy -

- H=ZZ

- [JH—->WW -

0'5_ H—-bb _

. % SM —68% CL T
.+ Bestfit ==-95% CL ATLAS+CI\48

84 06 08 1 12 14 16

f
KV 3/9/2015




e
68% Cl is a tricky issue

Is the WW a better measurement than the combination?

1D CI
Is not
2D CI

(c)

Eilam Gross, WIS, Statistics for PP

A~ 1 O [T T 1771 | T 17T | T | L | T T | T T T | T T1TT T | 1T T | 1T 17T T_]
2. F ATLAS and CMS [0, zz oz 11 oc e
L) 9= Run 1 Internal - SM expected E
é 8 f_ = (Observed _f
R =
6 =
5 3
4E- 4
35— N £ 3
o N : ) S 3
= \ ] S 7 ]
1 : ‘.‘. I: .‘. .0‘. :
0 : | I I | | I“MI 1 | 11 1 | 11 1 | 11 “gé of‘{ | 1 | | I | :
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
W
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1D vs 2D Confidence Interval

Ay’ =1
1 Ay =23 (68% CL)

(] (0]
X
_3_|||||I||1||||||||||||||||I|||||
-3 2 1 0 1 2 3
X
@ Eilam Gross, WIS, Statistics for PP 3/9/2015 /




4 N

Application of Cls and gN" test statistic
- L(H,) L.(0") Can you tell
g =-2In =) 2ln——— n
L(H) = L(0) O* from 07
) (n?+)nie_”?+
Ll.(0+):P0is(nl.;nl.O )= g25— - Data . ATLAS ]
ni! % " [ Background ZZ* HosZ 74| ’
;E. " [ Background Z+jets, tt
”JZO;__JP=°+ (s=7 TeV [Ldt=4.6fb" -
- =0 Vs=8 TeV [Ldt=20.7 o'
A 3 00 ° OB%T output1
jbl Eilam Gross, WIS, Statistics for PP 3/9/2015
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Test Spin O parity — Exercise

H,=0"
H =0

Eilam Gross, WIS, Statistics for PP

1]

()] .

Z0.25- ATLAS Preliminary
Wt Ho 22" 5 a4

L \s=7TeV: [Ldt=4.61b"

- \s=8TeV: [Ldt=20.7 fo"

| BDT analysis _

0.15[- |
.l
0.1- i
: Pl
0.05/- AN
: |

.".:I . ‘\‘.&\\\\\\‘

N

LU LA B L B AL L B L B

P

T rrrrrrrt

—Data -
Signal hypothesis -
(m”=125 GeV)

_J:O =0" |

a1 o
%5590 5 o0 5 10 15
log(L(H )/L(H))
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Multidimensional PL
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e
A toy case with 2 poi

Lu,e,b Lu,e,b
9log ( (‘f’ 2 A)) 9log ( (;f, 2 A))
L(ji,€,b) L(fi,€,b)
200 2.0 -
1.5 1.5
9.21 9.21
g e e
2.30 4.61
051 05! 2.30
%%0 02 04 06 08 10 0.0
. 00 02 04 06 08 1.0
€
background = 100 background = 100
signal = 90 signal = 90
e=0.5 e=0.5
O =0.05 O =0.15
Op =20 Op =10
@ G IS ~v/IS, Statistics for PP 3/0/2015 Y,




e
A toy case with 1-3 poi

3 cases studied

1poi: u while €,4,b profiled
2poi: e  profile Aand b
3poi: u,e,A profile b

n= UeAs+b
L=L(u,AD)

Ly, e, A) = (neAs + b)ne—(,ueAs—i—b)#e—(smeas—sf/QUg#e—(bmeas—b)z/&rg L (Ameas—A)? /202
7, n! 0-5\/% O'b\/% oAV 2T

= Eilam Gross, WIS, Statistics for PP 3/9/2015 /




,uaAs —|— b)"

A toy Case with 3 pol

—(pueAs+b) —(Emeas_s) /20

L(p, e, A)

o\ 27r

1
opV 2T

three parameters of interest (profiling only b)
non-profiled parameters set to their real value

flq@)lu=1)

0.500 -

0.100|
0.050|

0.010
0.005

‘‘‘‘‘‘

X

AAAAAAAAAAA

oaV2m
background = 100
signal = 90
e=0.5
A=0.7
O =0.05
Op =10

OA =0.2

16000 events

— X*(Ndot=3) — X*(Ndot=2)
- Xz(ndof=1)

» Eilam Gross, WIS, Statistics for PP

0

q(1)
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A toy Case with 2 pol

™~

Iu . A ,ua‘As—i—b —(peAs+b) —(Emeas—a) /202 1 6—(bmeas—b)2/2ag 1 e—(Ameas—A)2/2U,24
, 0-6\/% O-b\/% O'A\/%
two parameters of interest (profiling A and b) background = 100
non-profiled parameters set to their real value signal = 90
f(q)lu=1)
W 2 E = 05
d: Z A=O7
0.500
| 2 = 0.05
0.100 - = 10
0.050
| =0.2
0.010}
0.005
| 6000 events
— X (ndof 3) X (ndof 2)
@ : : n:—ni_ I&Iémd@frosg WIS, Statistics for PP 3/9/2015 /




™~
A toy Case with 1 pol

L(u, e, A) M€A3+b (MaAs—i-b)— —(emeas—€)? /202 1 6—(bmeas—b)2/2a§ 1 e—(Amm—,4)2/2034
, 0-6\/% O-b\/% O'A\/%
one parameter of interest (profiling € A and b) background = 100
non-profiled parameters set to their real value signal =900
flqo)lu=1) 9 e=0.5
i Z A=0.7
0.500 -
| 1 OUe =0.05
g Ob =10
OA =0.2

0.010
0.005

6000 events

L= = = —

2 4 6 8 10 12 e 90
- Xz(ndof=3) Xz(ndof=2)
— X (ndof )

» mﬁ% Eilam Gross, WIS, Statistics for PP 3/9/2015 /




Sign ificance random data set
alK) Random Data Set 'T'ﬁ;t:lilg);i?:ed Elz’t:r:re;eters
4+ Are fixed to their nominal values.
The likelihood are more parabolic,
3 yet, never symmetric
The asymptotocs hold!
2t —
1<0bs o
0.5 1.0 15 20H
— Profiled
— Fixed A = Ameas; b = Bmeas 5 € = €meas Q(ﬂ)
background = 100 8\ Asimov Data Set
signal = 90
e=0.5
A=0.7
=0.05
Ob =10
OA = | '
A =02 — Profiled
FixedA=Ag,b=Dby,e=€ 347015

% Eilam Gross, WIS, Statistics for P
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Asimov Data Set

1.1

1.0f— T e oo - -

0.9

0.8

S S,
0.5 1.0 1.5 20H
A ~ ~
A ~ ~
— C/Cg NAO b]bo

background = 100
signal = 90
£=0.5
A=0.7

Oc =0.05

Op =10
0A =0.2




Random Data Set (with signal) N

Nmeas = 137 background = 100
bmeas = 105.533 signal =90
€=0.5

TR () s (511 ) 22 5 A=%Z  0.05
Ameas - 0.870554 Ub =10
umeas = 0.756304 UA =0.2

| R S N

..... P e

__#e, . AIA, . bib,

Nmeas = 135
Dmeas = 102.337
€Emeas = 0.452067

Ameas = 0.565271
Umeas = 1.42021

H
- - - - 045 - - - - 1.0 - - - " 1:5 - - - - 2.0 p
— E’Co A’Ao b’bo




14/
1.3
12|
11}
1.0
09|
08!

........

121.143
0.53765

Hmeas =

Random Data Set (with signal)

background = 100 Nmeas
signal = 90 b
£e=05 meas
A=0.7
T =005 Emeas
- 0.977535 Ub - 10 Ameas
0.419804 0A =02 Uimeas
1.2?
O
N 0.8
0.6/
....... 15 PR 2‘0" 0-4
a 1
blbO - lélfo

152

107.781
0.507957
0.371606

2.60291
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Pulls and Ranking of NPs

0.—0..
The pull of 6, is given by ——
GO
0.-06
without constraint o ——2 |=1
GO

91' _ 90 i

o

=0

It's a good habit to look at the pulls of the NPs and make sure that

Nothing irregular is seen

In particular one would like to guarantee that the fits do not over constrain

A NP in a non sensible way

n%% Eilam Gross, WIS, Statistics for PP
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4 N

Asimov
Pmeas = 100
€meas = 0.5
Ameas =0.7
Mmeas = 1

Nmeas=USEA+b=131.5

To get the pulls:

—scan q(€)

—Find é

~Find 6" and ¢_ i.e. the poitive and negative error bar substituting q(¢)=1

q(A) q(b)
6 6

. f=fmin . AzAwa b=bmia
3 o 3 -2 - 1 2 3 o -3 -2 - 1 2 3 o
— Profiled — Profiled — Profiled
— Fixed A = Ameas, b = Dmeas , 1 = hmeas Fixed € = €meas, D = Dmeas » U = Pmeas  — Fixed € = Emeas, A = Ameas » M = Umeas

With the Asimov data sets we find perfect pulls for the profiled scans
But not for the fix scans!

ball




s

Random Data Set

Nmeas = 132
Bmeas = 103.208
€meas = 0.465459
Ameas = 0.487107
Umeas = 1.41099

To get the pulls:

—scan ()
—Find €

—Find 6" and o i.e. the poitive and negative error bar substitutin e)=1
€ € p g g q

A-Awi : ‘ b=bma
-3 -2 3 oo -3 -2 3 oo
— Profiled - Profiled — Profiled
— Fixed A = Ameas, b = Pneas + U = Umeas — FiX€d € = €meas, D = Bmeas » U = Umeas — Fixed € = €meas, A = Ameas » U = Umeas
With the random data sets we find perfect pulls for the profiled scans
But not for the fix scans!
T
el
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Back to Asimov: Find the Impact of a NP

Pmeas = 100
Emeas = 0.5
Ameas =0.7
Mmeas = 1

Nmeas=USEA+b=131.5

To get the impact of a Nuisance Parameter
in order to rank them:

Say we want the impact of ¢
—Scan q(¢), profiling all other NPs
—Find €

—(note that 1, = ji)

/\

—Find ,u =U

éto*
€

e

—The impact is given by Au* u —u

e+6‘

3.0
25
2.0
215

1.0

0.5

3.0

2.5

2.0
¥1s
o

1.0

0.5

%935 0.40 045 050 055 0.60 0.65
€
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Random Data Set: Find the Impact of NP

Nmeas = 132
Bmeas = 103.208
€meas = 0.465459
Ameas = 0.487107
Umeas = 1.41099

To get the impact of a Nuisance Parameter 25

in order to rank them: 2.0
Say we want the impact of € 215
—Scan q(¢€), profiling all other NPs 1.0
—Find € 0.5
—(note that /1, = ji) 3.0
~Find i, .= ,thémi _ :3

e € < 1.5
—The impact is given by Au™ = ﬁ@ioj — ;:

%935 0.40 045 050 055 0.60 0.65
€

=
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Asimov: SUMMARY of Pulls and Impact

Pmeas = 100
€meas = 0.5
Ameas =0.7

Mmeas = 1

Nmeas=USEA+b=131.5

-2 A R 1 28

| | €

| |

) A
| |
| % b
) & -y
=2 -1 0 1 2
O,

negative correlation

positive correlation




/ Random Data Set: SUMMARY of Pulls and Impact

Nmeas = 132

Bmeas = 103.208
€meas = 0.465459
Ameas = 0.487107
Umeas = 1.41099

a
-2 - - 1 2Ap
\
e
» 3
A
a- ao
-2 -1 0 1 2
Oa,




Pulls and Impacts:
More examples




3.0

2.5

2.0

215

1.0

Nmeas = 154
bmeas = 93.6307
€Emeas = 0.541389

Ameas = 0.465922
2.6592

Hmeas =

ry
-2 -1 1 2Ap

el

a-a
L I 4 A J
-2 -1 0 1 2
aao
negative correlation
positive correlation
q(b)
6
5
4
3
2
Nl
£=Coin ‘ AzAwin : : b=bmia
-3 -2 3 oo -3 -2 4 3 o0 -3 -2 - 1 2 3 o
— Profiled — Profiled — Profiled

— Fixed A = Ameas, b= bmeas » U= Mmeas

— Fixed € = €meas, D = Dmeas » U = Umeas

— Fixed € = €meas, A = Ameas + M = Umeas

04




w

215

bmeas = 104.334
€meas = 0.487497

Ameas = 0.666568
0.535663

Hmeas =

3.0

2.5

2.0

1.0

3.0
25
2.0
1.5
1.0
0.5

%035 0.40

55 0.60 0.65

=3 -2 -1 1 2 3 o
— Profiled
— Fixed A = Ameas, b = Dmeas , I = Umeas

-2 - 1

280

L L 1 |
-2 -1 0

negative correlation

positive correlation

-3 -2 ‘ . : 3 oo
— Profiled
— Fixed € = €meas, D = Dmeas » I = HUmeas

1 2

a(b)
6
5
4
3
2
——tt
! ! bboin
-3 -2 -1 1 2 3 o

— Profiled
— Fixed € = €meas, A = Ameas + H = Umeas




280

-2 -

Nmeas = 127
bmeas = 107.675
€meas = 0.507863

Ameas = 0.62459
Umeas = 0.676915 .
) a-a
0 1 2
3.0 aao
negative correlation
2.5 positive correlation
q(b)
2.0 s
5
2 1.5 4
3
1.0 2
Oemmged \
0.5 -3 -2 -1 -3 -2 3 o -3 -2 -1 1 2 3 o
— Profiled — Profiled — Profiled
3 o" . — Fixed A = Amqas, b = bmeas N y = pmeas _ Fixed € = Emeas, b = bmeas 3 u = Ilmeas o Fixed € = €Emeas, A = Ameas N ﬂ = ngas
2.5
2.0
E1s
(e

1.0
0.5
0

#35 0.40 o.
o

@)

S 1523 060 0.65
e s :




3.0

25

2.0

215

[y = 130
bDmeas = 119.561
€meas = 0.535367
Anmeas = 0.858264
Hmeas = 0.252421

e ; 2 Af
A @€
o
al
-2 ) ' 1 2

-3 =2
— Profiled

— Fixed A = Ameas, b= bmeas » M= Umeas

-1

i
— Profiled

— Fixed € = €meas, b = bmeas » U = Hmeas

negative correlation

positive correlation

PR T —
— Profiled

— Fixed € = €meas, A = Ameas + 4 = Umeas




Real Examples
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Pulls and Ranking

Ranking 0, by its effect
in the NP

By ranking we can tell
which NPs are the important
ones and which can be pruned

mﬁ% Eilam Gross, WIS, Statistics"
am

ggF Higgs PDF XS

ggF Higgs QCD scale XS
WW gen. modeling

Top quark gen. modeling
Mu. misid OC uncor. 2012
El. misid OC uncor. 2012
Lumi 2012

VBF Higgs UE/PS

JES eta modeling

Muon Iso.

ggF QCD scale el

ggF Higgs PDF accept
VV QCD Scale accept 01j
Top gen. model 2j

ggF Higgs UE/PS

Light jet mistag

Electron Iso.
QCDscale_ggH_m12
Multijet misid corr.

ggF H QCD scale accept
ggF H scale 0-1j

El. Eff. highpt 2012

ZIl ABCD MET eff. 2j

VV QCD scale 2j

Wg QCD scale accept 2j
Mu. misid Flav. 2011

JER

Bkg. qq PDF accept

ggF H gen. accept

El. misid 15-20 stat. 2012

o

- -\iF\\- --\-\\ k-1 F-F-1-t-ck - - —

: - z
E 4 .
: < :
s ” =
' (P N
Combined —— PFull
1 standard deviation
Prefit Impact on |1
m,=125.36 GeV 7////] Postfitimpacton [i
III|III]|IIII|IIII|IIII|I]II|IIII|IIII
-1.5 -1 -05 0 1 1.5

(8 - B,)/A¢
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The Higgs Mass Paper

ATLAS and CMS
LHC Run 1

ATLAS ECAL non-linearity /
CMS photon non-linearity

Material in front of ECAL
ECAL longitudinal response
ECAL lateral shower shape

Photon energy resolution

ATLAS H — yy vertex & conversion
reconstruction

Z — ee calibration

CMS electron energy scale & resolution
Muon momentum scale & resolution
ATLAS H — yy background modeling

Integrated luminosity

Additional experimental
systematic uncertainties

Theory uncertainties

Uncertainty in ATLAS
combined result

Uncertainty in CMS
combined result

Uncertainty in LHC
combined result

LI B I LI I B LI L BN B
] | |
] | |
I u| I
I I I
1 I 1
1 1
1 | 1
| [ 1
1] ] 1]
1 [ 1
ATLAS CMS Combined
Observed Observed Observed
[ [C]Expected [CJExpected | [CJExpected
0005 01 0 005 0.1 0 002004006
om, [GeV]
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Home About Science Calendar

Bloggers
Higgs Combination Applet

S pOt I have been showing unofficial Higgs combinations here for the last year
or so but maybe you want to try some unusual combinations of your own.

Now you can using the viXra unofficial Higgs combination Java applet. It T
is armed with most of the plots published by the experiments CDF, DO,
CMS, ATLAS and LEP. You just have to choose how to combine them. I

A CO m b i n ati O n am hoping it is self-explanatory but ask some questions and you may get

some good tips. You may need to update your Java plug-in.

Disclaimer: The results are approximate, unofficial and not endorsed by

on a back of = weevemen-

an envelope s

-

95% CL limit on o/o™™

i% Eilam Gross, WIS,
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An exercise in combining experiments (or channels)

® We assume two channels and ignore correlated systematics

L= L1(p, 01)La2(p, 02)

® We have

A

. A2
—2log L;(p,0;) = (H Mz) + const.

op)

¢ [t follows that . o9 . _9
H10y

,[L: )
01" + 0,

3/9/2015
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An exercise in combining experiments (or channels)

® The combined limit at CL 1- ¢ is given by

A

pup = i+ 0@~} (1 - a(2))

® The combined discovery p-value is given by

po=1—®(1/o)

® Median upper limit
pmed = o711 — a/2)
e Which gives
1 1 1

— n
(uiped)?  (umed)? - (uined)?

Eilam Gross, WIS, Statistics for PP 3/9/2015 /
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An exercise in combining experiments (or channels)

® This combination takes onto account fluctuations of the observed

limit

—_ I_ I I I T I I T T I I I I T T | T T I I
2] i
— e A LLLLLLL Expected Combined approximate
g 4= Observed Combined approximate
1 [~ === Expected Combined
— Observed Combined
Q 35—
N
To]
(e)}

Mo

W
II|IIII|IIII|IIII|IIII|IIII|II.I_

110 115 120 125

I I 130
M, [GeV]
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Implications in Astro-Particle Physics

-39
10 = ‘ \ T T T T T T T T T T T T T T g
=4 | XENON100 (2012) 3
& “ i 1 Q DAMA/NA — observed limit (90% CL) 7
g 10 = \N . Expected limit of this run: =
Q e . CoGeNT 3
t: = ™ DAMA/L I + | © expected —
O N\ / + 2 ¢ expected —
B ooy v T _=
3 = VN s I — e (2012) =
VJ — QIMP -
®» L _
w . 9
O a2l CRESST-II (2012) oo QD) _|
= 10 = < )\3\\ \ =
O = = =
o — AT
o N e o Pt
Lo ol RN G T ERETWEISS 011y ke
o 1007 =
= — R
Z' —
A L
= 104 = —
E — -
45
10 E | 1 L1 | I | 1 !_! L1 |
7 8910 20 30 40 50 100 200 00 400 1000
WIMP Mass [GeV/c?]

The lack of events in spite of an expected background allows us to set
a better limit than the expected
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