BSM Exercices

1. Evaluate the one loop contribution to m3, the squared Higgs mass, induced by the
top quark in the SM.

Notation:

Yo

£uawa:_
Yuk \/5

HthR + h.c.

with H = v + h.

2. Show that both the quadratically and logarithmically divergent corrections obtained
in 1) cancel if we assume that there are N new scalar particles described by :

A
Lscalar = —§h2(\q’L\2 +|®r[%) — h(pr|®L” + pr|®r|*) — mL|®L)* — mg|Pg|*.

and we properly choose N and the Lagrangian parameters.

3. Baryon number is violated in the minimal SU(5) GUT through interactions media-
ted by new gauge bosons X, Y such as the one shown in the figure:

Assuming gauge couplings close to the electroweak ones (e.g., ~ e ), estimate 7,
the proton life-time for My ~ 105 GeV. Compare with the present experimental
value [1] for the e™7% mode:

Tpserno > 8.2 10** years (90% C.L.)

Note: 1 GeV™! ~ 6.6 10~%s.



4. Consider an extension of the Standard Model where a scalar neutral singlet ® has
been added. Having the same quantum numbers, after EWSB this extra field will
in general mix with the SM Higgs field.

e [s it possible to avoid that?
e What are the consequences of this mixing for Higgs physics?

e If the new scalar particle is not very heavy, could it be produced at the LHC?
If so, how could it be detected?
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INTRODUCTION TO SUPERSYMMETRY

1.1 The unreasonable effectiveness of the Standard Model

The standard model (SM) of particle physics is well-known to be unreasonably
effective, since it is in accord with all the experimental data. However, the con-
sistency of the model relies on the Higgs field having a vacuum expectation value
(VEV) of 246 GeV even though this is highly unstable under quantum loop cor-
rections. This instability can be seen by computing the loop corrections to the
Higgs mass term. The fact that these corrections diverge quadratically with the
high-energy cutoff is the signal that this instability is a severe problem. Much of
the recent interest in supersymmetry (SUSY) has been driven by the possibility

that SUSY can cure this instability.
The largest contribution to the Higgs mass correction in the SM of particle

physics comes from the top quark loop. The top quark acquires a mass from the
VEV, (H°), of the, real, neutral component of the Higgs field (denoted by H 0y

Given the coupling of the Higgs to the top quark:

Lyukawa = —%HOEtR + h.c. (1.1)

(where t; and tp are the left-handed and right-handed components of the top
quark, y; is the top Yukawa coupling, and h.c. denotes the hermitian conjugate)

and expanding H" around its VEV
H® = (HY +hr'=v+A° (1.2)
(here h° represents the quantum fluctuations around the VEV) we have that the
top mass is
me = -y‘\/—; . (1.3)
.1121.1e coupling in eqn (1.1), we can easily evaluate the Feynman diagram in

1€ contribution to the Higgs mass squéred corresponding to Fig. 1.1 is

iMoo, = (—1)Nc/ (;l:;ﬂ [_\;gt K —i‘mt (_\%Z) K _imt]
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F1G. 1.1. The top loop contribution to the Higgs mass term.

d*k k%4 m?

= 2Nl [ gt |
I?Jtl (27r)4 (kQ _ mt2)2

(1.4)

After a Wick rotation (ko — iky, k2 — —k%) we can perform the angular
integration and impose a hard momentum cutoff (k% < A?), which yields:

. iNe|ye|? & k% (k2 — m2)
—im2 |y _Z‘/ dk2 BB — M) 1
10 op 82 J, E (k2 + m2)2 (1.5)

Changing variables to = = k% + m2 results in

2

872 m2 z 42
Nely:|® [, 5 2 A% +m?

where ... indicates finite terms in the limit A — oo. So we find that there are
quadratically and logarithmically divergent corrections which (in the absence of
a severe fine-tuning) push the natural value of the Higgs mass term (and hence
the Higgs VEV) up toward the cutoff. Another way of saying this is that the
SM can only be an effective field theory with a cutoff near 1 TeV, and some new
physics must come into play near the TeV scale which can stabilize the Higgs
VEV. SUSY is the leading candidate for such new physics.

There is a simple way to stabilize the Higgs VEV by canceling the divergent
corrections to the Higgs mass term.! Suppose there are N new scalar particles
@1 and ¢p that are lighter than a TeV with the following interactions:

A
Lassiar = —5(110)2(|¢L|2 +1#r[*) — RO(ur|or|? + 1r|or|?)
—mi oLl — m%|orl . (1.7)

The interactions in eqn ( 1.7) produce two new corrections to the Higgs mass
term, which are shown in Figs 1.2 and 1.3.

'This approach was discussed, for example, in ref. [1].
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F1G. 1.2. Scalar boson contribution to the Higgs mass term via the quartic
coupling.

F1c. 1.3. Scalar boson contribution to the Higgs mass term via the trilinear

coupling.

The contribution to the Higgs mass squared corresponding to Fig. 1.2 is

d'k ‘ i
—wﬁh:—MN/ [ e i } (1.8)

(2m)* k2 —m3 k2 —m%

by a similar series of manipulations as above we find
2
AN A? +m? g (A2+mR) ]
mily = — 2wl | — L) —mbn [ ——& ) ... . (1.9)
dmj |2 = - [2/\ mi, n( = R -

The contribution to the Higgs mass squared corresponding to Fig. 1.3 is

5 2 . 2
d*k ; i A ad

which yields

N A2 +mi\. A% +m%
5m%|3=—m[ui IH<TL "+ p% In e ] B (1.11)

Notice that if N = N, and A = |y|? the quadratic divergences in e2qns
(1.6) and (1.9) are canceled. If we also have m; = my, = mg and p3 = p% =
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2Am} the logarithmic divergences in eqns (1.6), (1.9), and (1.11) are canceled as
well. SUSY is a symmetry between fermions and bosons that will guarantee just
these conditions.? The cancellation of the logarithmic divergence is more than
is needed to resolve the hierarchy problem; it is the consequence of powerful
non-renormalization theorems that we will encounter in Chapter 8.

1.2 SUSY algebra

Interest in symmetries that extend Poincaré symmetry dates back to the 1960s
when the suggestion [2,3] of an approximate SU (6) symmetry? of the hadron
spectrum motivated Coleman and Mandula [4] to prove a “no-go” theorem.
Their theorem stated that the only symmetry of the scattering matrix (S-matrix)
that included Poincaré symmetry (with certain assumptions) was the product
of Poincaré symmetry and an internal symmetry group. The proof shows that
additional symmetry generators that transform as Lorentz tensors would over-
constrain the S-matrix. For example, in two body scattering, Poincaré symmetry
restricts the S-matrix element to be a function of only one variable: the scattering
angle. The existence of an additional tensor symmetry generator would mean that
the scattering could only occur at particular scattering angles, which means that
the S-matrix would not be analytic (violating one of the prime assumptions). The
extension of the Poincaré algebra to a “graded-Lie algebra” (i.e. algebras with
anticommutators and spinor generators) by Golfand and Likhtman [5] allowed for
the nontrivial possibility of a symmetry between bosons and fermions?: SUSY!
Haag et. al. [7] extended the Coleman-Mandula theorem to allow for graded-Lie
algebras and showed that SUSY is the only possible extension of the Poincaré
algebra, and found the most general form of the SUSY algebra.

The algebra of the SUSY generators can be used directly to prove some
interesting results.’ In addition to the usual Poincaré generators (translations,
boosts, and rotations) the generators of SUSY include complex, anticommuting
spinors® @ and their conjugates Q':

{Qa, @5} = QL. @} =0. (1.12)

The nontrivial extension of Poincaré symmetry arises because the anticommu-
tator of @ and QT gives a translation generator (the momentum operator P):

{Qon QL} = QUﬁdP;m (113)

v l Sk \

where g

2As we will see in more detail in Section 2.6.

3SU(6) arises by considering three flavors of quarks with two spins (up and down) as one
fundamental multiplet.

4A very detailed history of SUSY is given in ref. [6].

SFor excellent reviews, see refs [11,9].

6Tt is often useful to keep track of the spinor indices, a = 1,2, of Q and Q' separately by
putting a dot () on the indices of all conjugates, writing instead Q:r.l.
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ot = (1,O'i) . b‘.uda _ (1’ _a_i) ) (114)

[a%e%

Here the o' are the usual Pauli matrices:

ol = ((1](1)) R = (?_OZ) W <(1)_01> : (1.15)

The SUSY generators commute with translations:
[P Qo] = [Pu, QL1 = 0. (1.16)

The SUSY algebra is invariant under a multiplication of @, by a phase, so in
general there is one linear combination of U(1) charges, called the R-charge, that
does not commute with @ and QF:

[Qa, R] = Qa , [QL, R = -Q}, . (1.17)

The corresponding R-symmetry group is called U(1)g. .
Note that from eqn (1.13) it follows that the energy (Hamiltonian operator)
is given by the sum of squares of SUSY generators

H=P"= (@0} +QlQ: + @:0} +Qi@y) (118)

Single particle states fall into irreducible representations of the SUSY algebra
called supermultiplets. Since @ is a spinor, when it acts on a bosonic state
it produces a fermionic state, that is supermultiplets contain both bosons and
fermions.

A boson and a fermion in the same supermultiplet are called superpartners.
Since PP, commutes with @ and Q' all particles in a supermultiplet have t.l‘le
same mass. Since gauge generators also commute with @ and QF, all particles in
a supermultiplet have the same gauge charge.

If we define the operator F which counts the fermion number of a state then

(=1)F |boson) = +1 [boson) , (1.19)
(—1)F |fermion) = —1 |fermion) , (1.20)

which implies
{(-1)F,Qa}=0. (1.21)

Now consider the subspace of states |i) in a supermultiplet v‘\:ith a momentum
p,.. Completeness requires ‘

Z liy(i|=1. (1.22)

If we calculate the trace of energy operator weighted by +1 for bosons and -1
for fermions we find (using eqn (1.18)):

S Gl-1F Pl = 5 (Z<i|(—1>FQQT|i> v Z<z’|<—1>*‘czfcz|i>>
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3 Baryon number is violated in the minimal SU(5) GUT through interactions media-
ted by new gauge bosons X, Y such as the one shown in the figure:

Assuming gauge couplings close to the electroweak ones (e.g., ~ e ), estimate 7,
the proton life-time for My ~ 10 GeV. Compare with the present experimental
value for the e*7° mode:

Tpserno > 8.2 10 years (90% C.L.)
Note: 1 GeV™! ~ 6.6 107 s.

The width is proportional to the square of the amplitude. Neglecting phase space

7\
[ ~m# ( ) (0.1)
P AML
5
P

effects (ie, m, >> m, )

and by dimensional analysis mf = m? . Then using ¢> ~ a4r and taking into account

that 7 ~ ', we get

M2\
-5 X

~ Sx 0.2
T <47Ta) (0.2)

We can now substitute m, ~ 1 GeV, Mx ~ 10'> GeV
~ 10% GeV~? 0.3
’ (4mar)? ¢ (0.3)

Taking o ~ = and using 1 GeV~! ~ 6.6 10~ s,
137\ 137\ 2 1

~(—] 6610¥s~—) 6.610% 0.4
T ( ir > ° ( ir ) 365 x 24 x 3600° (0.4)

and we get
~ 2.510%" years (0.5)

Tp—setn0
P th

shorter than the lower experimental limit and then excluded.
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1. Consider an arbitrary set of scalar multiplets ®; of isospin J; having a neutral
component that takes a vev, v;. Show that the p parameter is given by

M2, > i+ 1) = Y
Ptree = M% cos2 Oy - 9 Z Yi2vi2

Gauge boson mass terms are originated from

Z(Duq’z‘)T(D“‘bi) (1.1)
The covariant derivative is given by:

Dy = 8, —ighW, —ighh,W} —igJsW} —ig'Y B, (1.2)

1
=0, — ig%(JJFW_ + J W) —ighhW? —ig'YB, (1.3)

1
= —(W'+iW?). M2, is given by the W+ W~ coefficient!,

where Jy = J; £iJy and W+
+ 1 2 NG

ie

1
Mg, = g*y (JM] S (Jedo T Jy) | TM); v? (1.4)
= g* ) (JM|(J} + J3) |TM); v} (1.5)
= ¢ (M| (J* = J3) [TM); v} (1.6)
=g Z J +1 ] Ul-z (17)
(1.8)

where J? = J? + J3 4+ J7 and we have used
J2|IMY = J(J +1)|JM) (1.9)
Jy [JM) = M |JM) (1.10)

and

QlIM); = (J3+Y)|JM); =0 (1.11)

for the neutral scalar components, the ones that adquire a vev.

'Remember that WTW~ = L(W'W! + W?2Ww?)



The neutral bosons can be evaluated similarly. The mass matrix in the (W7, B,)
basis is given by:
2
Mi=2%" (j,g zé’) Y202 (1.12)

where we have used Eq.(1.11). M2 is diagonalized by a rotation of angle Oy

O — < cos Oy sm€W> (1.13)

—sin By, cos Oy

ie,
2
Ow M; Of, = Mz 0 (1.14)
0 0
Then,
2
M = OF, Mz 0 Ow (1.15)
00
In particular,
MZ| = cos® Oy My (1.16)
11

Using Eq. (1.12), we complete the proof.
Getting p=1

For a unique multiplet, p = 1 implies that J(J + 1) = 3Y?

e For semi-integer isospin, d = 2J + 1 is even and 2Y = w has to be odd.
Smallest multiplet: (d=2, Y = 1/2), Higgs doublet

(d+1)(d

e For integer isospin, d = 2J+1 is odd and 2Y = 3 —U has to be even. Smallest

multiplet: (d=7, Y = 2), Higgs septuplet.



