Topological phases with cold atoms in optical lattices

H.P. Büchler

Theoretische Physik III, Universität Stuttgart, Germany

Atomic and molecular gases

Bose-Einstein condensation

- Gross-Pitaevskii equation
- non-linear dynamics

Rotating condensates

- vortices
- fractional quantum Hall

Quantum degenerate dilute atomic gases of fermions and bosons

Molecules

- Feshbach resonances
- BCS-BEC crossover
- polar molecules

Optical lattices

- Hubbard models
- strong correlations
- exotic phases

Quantum simulation

Feynman (1982): Universal quantum simulator

- simulation of a quantum mechanical system with a well controlled system quantum system
- quantum systems are numerical hard problems
 - exponential grow of Hilbert space
 - sign problem in QMC

- understanding of quantum systems
 - Fermionic Hubbard model

- search for novel states of matter:
 - topological phases
 - spin liquids

- ...

-

Why quantum simulations?

Why is it interesting?

- novel tool for strongly correlated states
- microscopic model for exotic and topological phases with many-body interaction terms
 - Pfaffian state: fractional quantum Hall state with a three-body interaction
 - toric code, color codes string nets
 - ring exchange interaction

Do exotic/topological phases exist in nature?

How often do they appear?

Exotic phases

- emergent symmetry
- gauge symmetry "QED"-like theories
- fractional excitations
- artificial light modes

Topological phases

- fractional quantum Hall states
- (non)-abelian anyons
- application in topological quantum computing

Interaction between light and atoms

- Hamiltonian between atoms and light: dipole approximation

$$H = -\mathbf{dE}(t, \mathbf{r})$$

- external laser field:
- rabi frequency: $\Omega = |\langle e | \mathbf{d} \mathbf{E}_{\omega} | g \rangle | / \hbar$
- detuning:

$$\Delta = \omega - (E_e - E_g)/\hbar$$

 $\mathbf{E}(t) = \mathbf{E}_{\omega} e^{-i\omega t} + \mathbf{E}_{\omega}^* e^{i\omega t}$

- AC Stark shift (change in the grounds state energy due to coupling to excited state)

$$\Delta E_g = -\alpha(\omega) |E_\omega|^2$$
$$\alpha(\omega) \approx \frac{|\langle e | \mathbf{d} \epsilon | g \rangle|^2}{E_e - E_g - \hbar \omega}$$

dynamical polarizability

Interaction between light and atoms

- spontaneous emission: Γ_e

excited state has a finite life time due to spontaneous emission

- AC Stark shift

$$\Delta E_g = \frac{\hbar \Omega^2 \Delta}{\Delta^2 + \Gamma_e^2/4}$$

- loss of atoms from the ground state

$$\Gamma_g = \frac{\Omega^2 \Gamma_e}{\Delta^2 + \Gamma_e^2/4}$$

- limits life-time of a BEC in an optical lattice
- requires large detuning $\Delta \gg \Gamma_e$
- high laser power

- a far-detuned standing laser wave provides a periodic potential for the particles

$$V(\mathbf{x}) = V_0 \cos(\mathbf{k}\mathbf{x})^2$$

 $a = \lambda/2$

laser

- recoil energy:

$$E_r = \frac{\hbar^2 k^2}{2m}$$

0 0

- structure in 3D

$$\mathbf{E}(t,\mathbf{r}) = \sum_{i} \mathbf{E}_{\omega_{i}}^{i} \cos(\mathbf{k}_{i}\mathbf{r})e^{-i\omega_{i}t} + c.c.$$

- \mathbf{k}_i : wave length fixed by the atomic transition
- ω_i : slightly different frequencies to cancel cross terms
- $\mathbf{E}^{\imath}_{\omega}$: polarization as additional degree of freedom

Tricks with 2D optical lattice

J. Sebby-Strabley, M. Anderlini, P.S. Jessen, and J.V. Porto, Phys Rev. A 73, 033605 (2006)

$$V(\mathbf{x}) = V_0 \left[\cos(kx)^2 + \cos(ky)^2 \right]$$

- in plane polarization
- cross terms disappear

$$V(\mathbf{x}) = V_0 \left[\cos(kx) + \cos(ky)\right]^2$$

- polarization along z-axes
- lattice with cross terms

- combined lattice
- lattice of double wells

Many body Hamiltonian

Pseudo-potential

- microscopic interaction potential
 - $V(\mathbf{r})$
- many bound states
- range $\,r_{
 m vdW}\sim5{
 m nm}$
- Wigner threshold law:
 - low energy scattering dominated by s-wave
 - dilute system
 - $n \; r_{\rm vdW}^3 \ll 1$
- replace with a effective interaction reproducing the same scattering properties

$$V(\mathbf{r}) \rightarrow U(\mathbf{r}) = \frac{4\pi\hbar^2 a_s}{m} \delta(\mathbf{r}) \frac{\partial_r r}{\partial_r r}$$

- 1. Born approximation produces exact scattering amplitude

- all higher terms in Born expansion vanish

Atoms in an optical lattice

Many-body Hamiltonian

- field operator $~\psi^{\dagger}({f x})$

$$H = \int d\mathbf{x}\psi^{\dagger}(\mathbf{x}) \left[-\frac{\hbar^2}{2m} \Delta + V(\mathbf{x}) \right] \psi(\mathbf{x}) + \frac{1}{2} \int d\mathbf{x} d\mathbf{y} U(\mathbf{x} - \mathbf{y})\psi^{\dagger}(\mathbf{x})\psi^{\dagger}(\mathbf{y})\psi(\mathbf{y})\psi(\mathbf{x})$$

$$\bigwedge$$
optical lattice
Pseudo-potential: $U(\mathbf{r}) = \frac{4\pi\hbar^2 a_s}{m}\delta(\mathbf{r})\partial_r r$

Derivation of effective low energy theory: Jaksch, Phys. Rev. Lett. 81, 3108 (1998)

(i) Solve the single particle problem in an optical lattice

(ii) Add the interaction as perturbation

Hubbard model for Fermions and bosons

Bloch wave

function

Λ

Wannier functions

- localized wave function at each lattice site

$$w_n\left(\mathbf{x} - \mathbf{R}_i\right) = \int \frac{d\mathbf{k}}{v_0} e^{-i\mathbf{k}\mathbf{R}_i} \psi_{n,\mathbf{k}}^{\dagger}(\mathbf{x})$$

- field operator

$$\psi(\mathbf{x})^{\dagger} = \sum_{n} b_{n,i}^{\dagger} w_n \left(\mathbf{x} - \mathbf{R}_i\right)$$

Interaction term

- replace pseudo potential

$$U(\mathbf{r}) \rightarrow \frac{4\pi\hbar^2 a_s}{m} \delta(\mathbf{r})$$

- wave function overlap

$$U_{ni;mj}^{n'i';m'j'} = \int d\mathbf{x} \, w_{n'i'}^* w_{m'j'}^* w_{mj} w_{nj}$$

onsite interactions dominate

Hubbard model

Hubbard

- restriction to the lowest Bloch band

$$H = -J\sum_{\langle ij\rangle} b_i^{\dagger} b_j + \frac{U}{2}\sum_i b_i^{\dagger} b_i^{\dagger} b_i b_i$$

hopping energy

interaction energy

Two approximations

- δ function interaction instead of pseudo potential
- restriction to lowest Bloch band

short distance cut-off with $\Lambda \sim a$

Valid for weak interactions

$$a_s/a_{
m ho} \ll 1$$

for stronger interactions both approximations fail

Bound states

- broad Feshbach resonance

Topological phases for cold atomic gases in optical lattices

Spin exchange interaction

L.-M. Duan, E. Demler, and M. D. Lukin, PRL 91, 090402 (2003).

Hubbard model

- spin 1/2 system with spin dependent optical lattices

$$H = -\sum_{\langle ij\rangle} t_{\mu,\sigma} c_{i,\sigma}^{\dagger} c_{i,\sigma} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow}$$
 hopping dependent on spin and direction

- exchange interaction (XXZ model)

$$H = \sum_{\langle i,j \rangle} \begin{bmatrix} \lambda_{\mu,z} \sigma_i^z \sigma_i^z + \lambda_{\mu,\perp} \left(\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y \right) \\ \ddots \\ \lambda_{\mu,z} = \frac{t_{\mu,\uparrow}^2 + t_{\mu,\downarrow}^2}{2U} \qquad \lambda_{\mu,z} = \frac{t_{\mu,\uparrow} t_{\mu,\downarrow}}{U} \end{bmatrix}$$

Spin exchange interaction

L.-M. Duan, E. Demler, and M. D. Lukin, PRL 91, 090402 (2003).

Kitaev model on hexagonal lattice

A. Kitaev, Annals of Physics, 321, 2 (2006)

- different interactions on the x,y,z -links

$$H = \sum_{\nu \in \{x, y, z\}} \lambda_{\nu} \sigma_i^{\nu} \sigma_j^{\nu}$$

Gapped phase (A):

- abelian anyonic excitations
- ground state degeneracy on torus
- string order parameter
- reduces to toric code

Gapless phase (B):

- in presence of a magnetic field: non-abelian anyons

String order parameter

E. G. Dalla Torre, E. Berg, and E. Altman, PRL 97, 260401 (2006)

Hubbard model with nearestneighbor interactions

- one-dimensional setup - bosonic particles $H = -t \sum_{i} \left[b_{i}^{\dagger}b_{i+1} + \text{H.c.} \right] + \frac{U}{2} \sum_{i} n_{i}(n_{i}-1) + V \sum_{i} n_{i}n_{i+1}$ dipolar interaction? $M = -t \sum_{i} \left[b_{i}^{\dagger}b_{i+1} + \text{H.c.} \right] + \frac{U}{2} \sum_{i} n_{i}(n_{i}-1) + V \sum_{i} n_{i}n_{i+1}$
- Mott insulator for $U \gg V, t$

- Density wave for $V \gg U, t$

New phase with string order parameter separating the Mott insulator and DW:

 $\langle \delta n_i e^{i\pi \sum_{k=i}^j \delta n_k} \delta n_j \rangle$

String order parameter

E. G. Dalla Torre, E. Berg, and E. Altman, PRL 97, 260401 (2006)

Hubbard model with nearestneighbor interactions

Majorana like edge states

Kraus, Dalmonte, Baranov, Läuchli, Zoller, PRL 111, 173004 (2013)

Double wire with pair hoping

- one-dimensional setup of spineless fermions
- fixed total number of particles

requires pair hopping between the chains

- DMRG is consistent with Majorana like edge states

Two internal states

- coupling by laser fields - free Hamiltonian $H = \frac{p^2}{2m} + V(\mathbf{r}) + U(\mathbf{r})$ $\widehat{\Delta} = \frac{\Omega}{2} \begin{pmatrix} \cos \theta & \sin \theta e^{i\phi} \\ \sin \theta e^{-i\phi} & -\cos \theta \end{pmatrix}$: internal coupling by the laser
 - two dressed internal states $|\chi_1
 angle, |\chi_2
 angle$

$$|\chi_1\rangle = \begin{pmatrix} \cos(\theta/2) \\ e^{i\phi}\sin(\theta/2) \end{pmatrix}$$
 : spatial dependent

Reviews:

Goldman, Juzeliunas, Ohberg, Spielman, Rep. Prog. Phys. 77, 126401 (2014) Dalibard et al, Rev. Mod. Phys. 83, 1523 (2011)

- general wave function:

$$|\psi\rangle = \sum_{j=1,2} \psi_j(r,t) |\chi_j(\mathbf{r})\rangle$$

- action of momentum operator

$$\mathbf{p}|\psi\rangle = \sum_{j,2} \left[\mathbf{p}\psi_j(r,t) \right] |\chi_j\rangle + \sum_{j,l=1,2} A_{jl}^{\prime} \psi_l |\chi_j\rangle$$

Adiabatic approximation

- strong couplings such that the atoms remain in the same dressed state

 $W = \frac{\hbar^2}{2m} |\langle \chi_2 | \nabla | \chi_1 \rangle|^2$

 $A_{jl} = i\hbar \langle \chi_j | \nabla | \chi_l \rangle$

$$i\partial_t \psi_1 = \left[\frac{(\mathbf{p} - \mathbf{A})^2}{2m} + V + \frac{\Omega}{2} + W\right] \psi_1$$

Reviews:

Goldman, Juzeliunas, Ohberg, Spielman, Rep. Prog. Phys. 77, 126401 (2014) Dalibard et al, Rev. Mod. Phys. 83, 1523 (2011)

Limitations

- vector potential is limited by variation of the fields

$$|\mathbf{A}| \lesssim \hbar/\lambda$$

$$BL^2 = \oint d\mathbf{l}\mathbf{A} \lesssim L\hbar/\lambda$$

only weak magnetic fields

Optical flux lattices

Cooper, PRL 2011

- periodic variation of the dressing fields
- singularity in the vector potential

Topological band structures

Topological band structure

Topological band structures using dipolar exchange interactions

Spin Hamiltonian for polar molecules

- polar molecules trapped in an optical lattice
- suppressed tunneling
- one particle per lattice site
- electric field perpendicular to the plane splits rotational excitations
- two levels: spin 1/2 system

 $|\downarrow\rangle = |0,0\rangle$ $|\uparrow\rangle = |1,0\rangle$

- dipole-dipole interaction gives rise to spin Hamiltonian

 $\sigma_i^+ \sigma_j^- + \sigma_i^- \sigma_j^+$

XY interactions

- resonant exchange interactions

$$H = \pm \frac{1}{2} \sum_{i \neq j} \frac{d_{eg}^2}{|\mathbf{R}_i - \mathbf{R}_j|^3} \left[\sigma_x^{(i)} \sigma_x^{(j)} + \sigma_y^{(i)} \sigma_y^{(j)} \right]$$

+ for m=0
- for m=1

- ferro/ antiferro - magnetic interaction depending on excited rotational state

Magnetic field

- microwave field coupling ground and excited state
- rotating frame

$$H = \frac{\hbar}{2} \sum_{i} \left[\Delta \sigma_z^{(i)} + \Omega \sigma_x^{(i)} \right] = \sum_{i} \mathbf{h} \cdot \mathbf{S}^{(i)}$$

XXZ model

- dipolar decay of the coupling parameters
- highly tunable from ferro- to antiferromagnetic coupling

$$H = J \sum_{i \neq j} \frac{1}{|\mathbf{R}_i - \mathbf{R}_j|^3} \left[\cos \theta \sigma_z^i \sigma_z^j + \sin \theta \left(\sigma_x^i \sigma_x^j + \sigma_y^i \sigma_y^j \right) \right]$$

Ising (anti-) ferromagnetic coupling

$$H = \mp J \sum_{i \neq j} \frac{\sigma_z^i \sigma_z^j}{|\mathbf{R}_i - \mathbf{R}_j|^3}$$

XY (anti-) ferromagnetic coupling

$$H = \mp J \sum_{i \neq j} \frac{\sigma_x^i \sigma_x^j + \sigma_y^i \sigma_y^j}{|\mathbf{R}_i - \mathbf{R}_j|^3}$$

Spin Hamiltonians for topological states

Kitaev Honeycomb lattice

Gorshkov, Hazzard, and Rey, 2013 Micheli, Brennen, and Zoller, Nature Physics 2, 341 (2006)

- controlling the spin interactions with static electric and microwave fields

Topological flat bands

- resonant spin exchange interaction all hopping of spin excitations

- Hubbard model for hard-core bosons
- tunable hopping
- flat bands

Spin tool box with polar molecules

A. Micheli, G. K. Brenne, and P. Zoller, Nature Physics (2006)

Polar molecules with additional spin degree of freedom

- integer filling of molecules in the lattice
- strong electric dipole moment with strong spin-rotational coupling

realization of Kitaev's Honeycomb lattice model

Bosonic Fractional Chern insulator

Yao, Gorshkov, Laumann, Läuchli, Ye, and M.D. Lukin, PRL 110, 185302 (2013)

Flat topological band

- combination of dipolar exchange interaction and artificial gauge fields
- effective bosonic particles with hard-core constraint and dipolar interaction

fractional bosonic Chern insulator at half filling

Rydberg atoms in an optical lattice

Setup

- one atom per lattice site with quenched tunneling
- static external electric field and magnetic field
- select three internal states
 - $|-\rangle_i |+\rangle_i$: ground state $|0\rangle_i$: two excited states

Mapping onto two hard-core bosons:

- bosonic creation operators for excitations

$$\begin{split} |+\rangle_i &= b_{i,+}^{\dagger} |0\rangle \\ |-\rangle_i &= b_{i,-}^{\dagger} |0\rangle \end{split}$$

Finite system in y-direction

- bulk edge correspondence (Hatsugai PRL 1993)

C= 2 implies two edge states

- exponential localization in presence of long-range hopping

Flat topological bands

Honeycomb lattice

- much flatter bands accessible
- very rich topological structure

 $C \in \{0, \pm 1, \pm 2, \pm 3, \pm 4\}$

- even richer for Kagame lattice

Lattice shacking

Haldane model by lattice shaking

Jotzu, Messer, Desbuqois, Lebrat, Uehlinger, Greif, Esslinger, Nature, (2014)

Distorted Honeycomb lattice

- non-interacting fermions
- nearest-neighbor hopping
- Dirac cones

- complex tunneling on between the same sublattices

$$\hat{H} = \sum_{\langle ij \rangle} t_{ij} \hat{c}_i^{\dagger} \hat{c}_j + \sum_{\langle \langle ij \rangle \rangle} e^{i \Phi_{ij}} t'_{ij} \hat{c}_i^{\dagger} \hat{c}_j + \Delta_{AB} \sum_{i \in A} \hat{c}_i^{\dagger} \hat{c}_i,$$

 topological phase transition: competition between terms breaking time reversal symmetry and inversion symmetry

Haldane model by lattice shaking

Jotzu, Messer, Desbuqois, Lebrat, Uehlinger, Greif, Esslinger, Nature, (2014)

Lattice shacking

- modifies tunneling strengths
- induces phases onto the tunneling
- also leads to longer-range hopping

Perturbation theory: ω/t

- leading order influence on hopping
 - $t_{ij} \to J_0(z_{ij})t_{ij}$
- first correction provides next-nearest hopping with a phase

Haldane model by lattice shaking

Jotzu, Messer, Desbuqois, Lebrat, Uehlinger, Greif, Esslinger, Nature, (2014)

Probing the gap

- low filling of the band with fermions
- drive Bloch oscillations through the Dirac point
- measure diabatic transitions into higher band

Probing the Berry curvature

- Berry curvature acts as a magnetic field in the semiclassical equation of motion

Lorentz force

- measure deflection for sign of Berry curvature

Interference Measurment

Duca, Li, Reitter, Bloch, Schleier-Smith, Schneider, Science (2015)

Topological states in a microscopic model of interacting one-dimensional fermions

Kitaev's Majorana chain

Kitaev's Majorana chain

$$a_i = \frac{c_{2i-1} + ic_2}{2}$$

Topological state

- robust ground state degeneracy
- non-local order parameter
- localized edge states

Beyond mean-field

$$H = -\sum_{i=1}^{L-1} \left[wa_i^{\dagger} a_{i+1} + \Delta a_i a_{i+1} + h.c. \right]$$

- mean-field coupling
- violates particle conservation

exist a particle conserving theory with Majorana modes in one-dimension?

Beyond mean-field

N. Lang and H. P. Büchler, Phys. Rev. B 92, 041118 (2015). F.Iemini,et al., Phys. Rev. Lett. 115, 156402 (2015).

- exact ground state

- "Majorana" like edge modes

Hamiltonian

- double wire system

$$H = H_a + H_b + H_{ab}$$

- intra-chain contribution

$$H_a = \sum_i A_i^a \left(1 + A_i^a\right)$$

- inter-chain contribution

$$H_{ab} = \sum_{i} B_i \left(1 + B_i \right)$$

Symmetries

- total number of particles $\,$ N
- time reversal symmetry T
- sub-chain parity P

Inter-chain Hamiltonian

Inter-chain Hamiltonian (expanded)

$$H_i^a = a_i a_{i+1}^{\dagger} + a_{i+1} a_i^{\dagger} + n_i^a \left(1 - n_{i+1}^a\right) + n_{i+1}^a \left(1 - n_i^a\right)$$

Intra-chain Hamiltonian

$$H_{ab} = \sum_{i} B_{i} (1 + B_{i})$$
$$B_{i} = a_{i}^{\dagger} a_{i+1}^{\dagger} b_{i} b_{i+1} + b_{i}^{\dagger} b_{i+1}^{\dagger} a_{i} a_{i+1}$$

pair-hopping between chains

positive Hamiltonian
zero-energy state
is ground state
fixed total number
of particles

$$|\psi\rangle = \sum_{n} |n\rangle |N - n\rangle$$

equal weight superposition of all possible distribution of N fermions between the two wires

Intra-chain Hamiltonian (expanded)

 $H_{ab}^{i} = a_{i}^{\dagger}a_{i+1}^{\dagger}b_{i}b_{i+1} + b_{i}^{\dagger}b_{i+1}^{\dagger}a_{i}a_{i+1} + n_{i}^{a}n_{i+1}^{a}\left(1 - n_{i}^{b}\right)\left(1 - n_{i+1}^{b}\right) + n_{i}^{b}n_{i+1}^{b}\left(1 - n_{i}^{a}\right)\left(1 - n_{i+1}^{a}\right)$

Ground state degeneracy

Two-open chains

- two-fold ground state degeneracy

$$\begin{split} |\psi_{\rm even}\rangle &= \sum_{n\in {\rm even}} |n\rangle |N-n\rangle \\ |\psi_{\rm odd}\rangle &= \sum_{n\in {\rm odd}} |n\rangle |N-n\rangle \\ \end{split}$$
 Two- closed chains

- only one zero energy state for total even number of particles

Even total number of particles

Wire networks

Networks of wires

- exact ground states for arbitrary networks
- degeneracy consistent with majorana modes at edges

number of edges

Ground state properties

l

Density-density correlations

- independent on ground state

$$\langle n_i^{\sigma} n_j^{\sigma'} \rangle = \rho^2 \qquad i \neq j$$

Superfluid correlations

$$\langle a_i^{\dagger} a_{i+1}^{\dagger} a_j a_{j+1} \rangle = \rho (1-\rho)$$

long-range superfluid p-wave pairingexponential decay

Green's function

$$\langle a_i^{\dagger} a_j \rangle$$

- exponential decay
- revival at the edge

Ground state properties

Stability of ground state degeneracy of edge states

- stable under all local perturbations
- splitting decays exponentially

Stability of ground state degeneracy for open wires

- Protected by either time-reversal symmetry or subchain parity

 $a_i^{\dagger}b_i + b_i^{\dagger}a_i$

: stable under time reversal hopping

 $ia_i^{\dagger}b_i - ib_i^{\dagger}a_i$

: finite overlap between two ground states

Entanglement spectrum

Entanglement spectrum

- two fold degenerate entanglement spectrum

consistent with a topological state

Entanglement entropy

- area law with logarithmic correction

indication of a gapless state

Excitation spectrum

Quadratic dispersion relation

 $\epsilon_k = 4\sin^2 k/2 \sim k^2$

System is in a critical point

- vanishing compressibility
- Goldstone mode with quadratic dispersion

Excitation spectrum

Is there a single particle gap?

- expected from exponential decay of Green's function

 $\langle a_i^{\dagger} a_j \rangle >$ property of the wave function and not the Hamiltonian

Proper definition

- ground state energy in a closed system for odd number of particles

Absence of single particle gap

Setup for braiding of two edge states

- wire network with two edges
- restriction to the low energy sector
- very weak coupling terms: adiabatic switching between them
- 8 relevant states
- characterized by subchain parity

Adiabatic switching of coupling

 transformation of the ground state according to the non-abelian statistic of Majorana modes

Time t

Adiabatic switching of coupling

 transformation of the ground state according to the non-abelian statistic of Majorana modes

Adiabatic switching of coupling

 transformation of the ground state according to the non-abelian statistic of Majorana modes

Conclusion and outlook

Majorana like Edge modes

- exact solvable system with fixed particle number
- analytical demonstration of Majorana edge modes
- toy model for understanding gapless topological states
- stable topological state expected for decreasing the attractive interaction

$$H_{ab} = \sum_{i} \left[B_i + \lambda B_i^2 \right]$$

