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Integer quantum Hall effect

Landau levels
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Classical Hall effect

Hall effect : a 2D electron gas in
a perpendicular magnetic field.

⇒ current ⊥ voltage
Rxy ∝ B

Rxx

Rxy
B

Integer Quantum Hall effect (IQHE)

IQHE : von Klitzing (1980)

Quantized Hall conductance

σxy = ν
e2

h

ν is an integer up to O(10−9)
Used in metrology
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A single electron in 2D and in a ⊥ magnetic field B .
Uniform ⊥ magnetic field : gauge choice
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Landau levels

In (dimensionless) complex coordinate z = (x + iy)/lB , and setting

a =
√

2

(
∂

∂z̄
+

z

2

)
, a† = −

√
2

(
∂

∂z
− z̄

2

)

Familiar form of the Hamiltonian

H = ~ωc

(
a†a +

1

2

)
[a, a†] = 1

(N + 1)th Landau level :

EN = ~ωc

(
N +

1

2

)
Discrete spectrum, large degeneracy

hwc

hwcN=0

N=1

N=2
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Lowest Landau Level (N = 0)
Since a =

√
2
(
∂
∂z̄ + z

2

)
, ground states are of the form

Ψ(z , z̄) = f (z) e−zz̄/4

with f (z) is any holomorphic function (∂z̄ f = 0).

⇒ chirality : (x , y)→ z = (x + iy)

Ground states, a.k.a. Lowest Landau level (LLL) states

Ψ(x , y) = f (x + iy) e−(x2+y2)/4l2
B

Projection to the LLL : x and y no longer commute [x̂ , ŷ ] = i l2
B

∆x ∆y ≥ l2
B/2

⇒ each electron occupies an area 2πl2
B

magnetic flux through this area = quantum of flux Φ = h/e

LLL degeneracy ∼ number NΦ of flux quanta through the surface
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Landau problem on arbitrary surfaces

Lowest Landau Level on arbitrary surface :

The magnetic flux has to be quantized
∫

d2x B = NΦ
h
e , with NΦ integer.

The ground state degeneracy on a surface of genus g is

NΦ + (1− g)

it depends on the topology (genus).

it does NOT depend on the geometry (metric)
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Back on flat space : magnetic translations

translation invariance : ~x and ~x + ~u are gauge
equivalent

~A =
B

2

(
−y
x

)

Magnetic translations R~u = e iq~u.~Ae~u.
~∇

Aharonov-Bohm effect :

R~uR~v = e i qB
~ ~u∧~v R~v R~u

Infinitesimal generators of translations commute with H, but

[Tx ,Ty ] = −i 6= 0

Let us choose momentum along the y direction as a quantum number.
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Cylinder with perimeter L (we identify y ≡ y + L)

Natural gauge choice : ~A = B

(
0
x

)

Ty |Ψk〉 = ky |Ψk〉, ky =
2πn

L

Ψky (x , y) = e iyky e−
(x−ky )2

2 (lB = 1)

Momentum ky and position x are locked :

x ∼ l2
Bky

[x̂ , ŷ ] = il2
B implies that ~x̂ = l2

B p̂y .

localized in x̂ and delocalized in ŷ

the interorbital distance is 2π
L l2

B

lB

Density profile of the
LLL orbital Ψky (x , y).
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Projection to the LLL : dimensional reduction
Projection to the LLL : x and y no longer commute [x̂ , ŷ ] = i l2

B (link with
non-commutative geometry).

4 dimensional phase space ⇒ 2 dimensional phase space

A basis of LLL states

looks like a one-dimensional chain

But !
Physical short range interactions become long range in this description

(distance of order lB means ∼ L/lB sites).
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The IQHE : bulk insulator

Cartoon picture : no interactions, no disorder

Landau Levels = flat bands

Integer filling with fermions
⇒ Bulk insulator.

How come we have I ∝ V then ?
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The IQHE : conducting edges
⇒ Conducting edges
each channel contributes
e2/h to the Hall conductance

σxy = ν
e2

h

Chiral (and therefore
protected) massless edges

Topological insulator

This quantization is insensitive to disorder or strong periodic potential :

topological invariant : the Chern number

Disclaimer : this is just a cartoon picture. Does not explain plateaux.
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Fractional filling
the many-body problem

FQHE trial wavefunctions
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Fractional filling : the role of interactions
N fermions in NΦ orbital/states (filling fraction ν = N/Nφ < 1)
(or N bosons at any filling fractions)

without interactions we would expect a metallic bulk !
Experimentally, emergence of exotic and non perturbative physics :

insulating bulk,

metallic chiral edge modes,

excitations with fractional charges,

due to electron-electron interactions

Strongly correlated system, no small
parameter. What can we do ?

Exact diagonalization

Effective field theories (theories of anyons)

Trial wavefunctions
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Trial wave functions

The ν = 1/3 Laughlin state.

filling fraction ν = 1/3 + short range model interaction
⇒ exact ground-state :

Ψ 1
3

=
∏
i<j

(zi − zj)
3

The model interaction is the short range part of Coulomb.

Extremely high overlap with Coulomb interaction !
(obtained by exact diagonalization)

First hints of a topological phase :

excitations with fractional charge e/3

topology dependent ground state degeneracy : 3g exact ground states.
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Cartoon picture : thin cylinder limit (L� lB)

Very small cylinder perimeter L : LLL orbitals no longer overlap
1d problem

Laughlin’s Hamiltonian → Haldane’s exclusion statistics
no more than 1 particle in three orbitals

At filling fraction ν = 1/3, we get three possible states

|Ψ1〉 = | · · · 1 0 0 1 0 0 1 0 0 · · · 〉
|Ψ2〉 = | · · · 0 1 0 0 1 0 0 1 0 · · · 〉
|Ψ3〉 = | · · · 0 0 1 0 0 1 0 0 1 · · · 〉

3-fold degenerate ground state on the cylinder (and torus).
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Bulk excitations/defects : anyons

Adiabatic insertion of a flux quantum at position w
creates a hole in the electronic liquid :

Ψw =
∏

i

(w − zi )
∏
i<j

(zi − zj)
3

Cartoon picture : | · · · 1 0 0 1 0 0 0 1 0 0 · · · 〉
Electronic density around a quasihole

(N. Regnault)

fractionalization : the missing electronic charge is e/3
these excitations are called quasi-holes.

under adiabatic exchange of two quasi-holes

⇒ phase e2iπ/3

non trivial braiding !

⇒ quasi-holes = abelian anyons
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Massless edge modes

Ψu = Pu

∏
i<j

(zi − zj)
3

where Pu is any symmetric, homogeneous polynomial.

Cartoon picture : no more than 1 electron in 3 orbitals.

dispersion relation : E ∝ P
chiral and gapless edge

Number of edge states :
I E = 0 : 1 state
I E = 1 : 1 state
I E = 2 : 2 states
I E = 3 : 3 states
I E = 4 : 5 states
I E = 5 : 7 states
I · · ·

(a) E = 0

(b) E = 1

(c) E = 1

(d) E = 2

(e) E = 2

(cartoon picture)

spectrum of massless chiral boson.
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Massless edge modes

Ψu = Pu

∏
i<j

(zi − zj)
3

where Pu is any symmetric, homogeneous polynomial.

Cartoon picture : no more than 1 electron in 3 orbitals.

dispersion relation : E ∝ P
chiral and gapless edge

Number of edge states :
(a) E = 0

(b) E = 1

(c) E = 1

(d) E = 2

(e) E = 2

(cartoon picture)

spectrum of massless chiral boson.
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Entanglement entropy

Cut the system in two parts A and B
(the boundary has length L)

The entanglement entropy is

SA = −Tr(ρA log ρA)

with ρA the reduced density matrix.

For a topological phase :

SA ∼ αL− logD

where D is the quantum dimension.

For ν = 1/3 Laughlin : D =
√

3

Entanglement entropy of the ν = 1/3 Laughlin state
as a function of the cylinder perimeter L

(N. Regnault)
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Entanglement spectrum

Schmidt decomposition

|Ψ〉 =
∑
α

exp(−ξα/2) |A, α〉 ⊗ |B, α〉

ρa =
∑
α

exp(−ξα) |A, α〉 〈A, α|

Entanglement spectrum
Li and Haldane (2008) :
spectrum of ξ = − log ρA

(plot ξ vs momentum)

⇒ Reproduces the physical
edge spectrum !

momentum
Entanglement spectrum of the ν = 1/3 Laughlin state on the sphere
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Topological phases

A system is in a topological phase if, at low energy, all observables are
invariant under smooth deformation of the underlying space-time manifold,
i.e. when its low energy effective field theory is a TQFT (with a gap).

Ground state degeneracy depends on the genus

Excitations (”quasi-holes”) with fractional charges, possibly
non-abelian anyons (non trivial action of the braid group)

Link between 2 + 1 TQFT and 1 + 1 CFT

Quasi-hole wavefunctions are conformal blocks.

degeneracy = number of conformal blocks

braiding = monodromies
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Chiral boson and Laughlin
using the edge theory to describe the bulk
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The free boson a.k.a. U(1) CFT

Massless gaussian field in 1 + 1 dimensions

S =

∫
d2z ∂φ ∂̄φ

The mode decomposition of the chiral free boson is

φ(z) = Φ0 − ia0 log(z) + i
∑
n 6=0

1

n
anz−n

[an, am] = nδn+m,0, [Φ0, a0] = i

U(1) symmetry : φ(z)→ φ(z) + θ

conserved current :

J(z) = i∂φ(z) =
∑
n

anz−n−1
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Vertex operators :

VQ(z) =: e iQϕ(z) :

Primary states/ vacua |Q〉 are defined by their U(1) charge Q

a0|Q〉 = Q|Q〉, an|Q〉 = 0 for n > 0

The Hilbert space is simply a Fock space

Descendants are obtained with the lowering operators a†n = a−n, n > 0

∆E = 0 : 1 state : |Q〉
∆E = 1 : 1 state : a−1 |Q〉
∆E = 2 : 2 states : a2

−1 |Q〉, a−2 |Q〉
∆E = 3 : 3 states : a3

−1 |Q〉, a−2a−1|Q〉, a−3 |Q〉
∆E = 4 : 5 states : a4

−1 |Q〉, a−2a2
−1 |Q〉, a2

−2 |Q〉, a−3a−1 |Q〉, a−4 |Q〉
∆E = 5 : 7 states : · · ·
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The Laughlin state written in terms of a U(1) CFT

Ground state wavefunction

∏
i<j

(zi − zj)
3 = 〈0|Ob.c.V (z1) · · ·V (zN)|0〉, V (z) =: e i

√
3ϕ(z) :

where Ob.c. = e−i
√

3Nϕ0 is just a neutralizing background charge.

Bulk excitations

Wavefunction for p quasiholes

〈Ob.c.Vqh(w1) · · ·Vqh(wp)V (z1) · · ·V (zN)〉

with
Vqh(w) =: e

i√
3
ϕ(w)

:

Edge excitations

Ψu = 〈u|Ob.c.V (z1) · · ·V (zN)|0〉

edge mode = CFT descendant

we recover 1, 1, 2, 3, 5, 7, · · ·
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Conformal field theories (CFT)

Benoit Estienne (LPTHE) Matrix Product State for FQHS 2016, Feb 18 28 / 53



CFT = Quantum Field Theory + conformal invariance

conformal = angle preserving

z → f (z) =
∑
n

fnzn

Symmetry generators {Ln, n ∈ Z}

[Ln, Lm] = (n −m)Ln+m +
c

12
n(n2 − 1)δn+m,0

In particular L0 generates dilatations.

conformal invariance comes from criticality.

2D classical stat mech models : scale invariance

1+1 quantum models : masslessness
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Calculating in CFT : primary fields

Observables in a QFT = correlation functions

〈φ1(x1)φ2(x2) · · ·φn(xn)〉

In a CFT fields φi (observables) have a scaling dimension ∆i :

φi (λ x) = λ∆iφi (x), [L0, φi ] = ∆iφi

Fields fall into representations of the Virasoro algebra :

∆a

∆a + 1

∆a + 2

∆a + 3
...

Φa

L−1Φa

L2
−1Φa, L−2Φa

L3
−1Φa, L−2L−1Φa, L−3Φa

· · ·

Finitely many primary fields Φa.
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Calculating in CFT : Operator Product Expansion

as z → w : Φi (z)Φj(w) ∼
∑
k

F k
i j(z ,w)Φk(w)

Conformal symmetry fixes everything, and OPEs are exact !

Φa(z)Φb(w) =
∑

c

C c
a b

(z − w)∆a+∆b−∆c
(Φc(w) + γc

a b(z − w)L−1Φc(w) + · · · )

closely related to anyon models : fusion rules Φa × Φb = Nc
a bΦc

OPEs reduces n-point correlation functions to (n − 1)-point ones !

〈φ1(x1)φ2(x2)︸ ︷︷ ︸
OPE

· · ·φn(xn)〉
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CFT : operator picture

From the 1 + 1D perspective : cylinder of perimeter L.

〈φ1(x1, t1)φ2(x2, t2) · · ·φn(xn, tn)〉 =

〈0|φ̂n(xn) · · · φ̂3(x3)e−Ĥ(t3−t2)φ̂2(x2)e−Ĥ(t2−t1)φ̂1(x1)e−Ĥt1 |0〉

Dilatations on the plane become translations in the time direction :

Ĥ ∼ 2π

L
L0
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CFT : Hilbert space
Product of matrices with auxiliary space = CFT Hilbert space.∑
α,β,···

〈0|φ̂n(xn) · · · |β〉e− 2π
L

(t3−t2)∆β 〈β|φ̂2(x2)|α〉e− 2π
L

(t2−t1)∆α〈α|φ̂1(x1)|0〉

So how does the CFT Hilbert space looks like ?

state-operator correspondence : |a〉 = Φa(0)|0〉

∆a

∆a + 1

∆a + 2

∆a + 3
...

|a〉
L−1|a〉

L2
−1|a〉, L−2|a〉

L3
−1|a〉, L−2L−1|a〉, L−3|a〉

· · ·

Truncated CFT : efficient way to approximate correlation functions.
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FQH trial wave-function from CFT

Moore and Read (1990) proposed to write
FQH Trial wavefunctions as CFT correlators

Ψ(z1, · · · , zN) = 〈u|Ob.c.V (z1) · · ·V (zN)|v〉

Operator V (z) =
∑

n znVn

Infinite dimensional Hilbert space (graded by
momentum/conformal dimension)

Why is this ansatz sensible ?

correct entanglement behavior (area law and counting)

yields a consistent anyon model (pentagon and hexagon equations)

Laughlin state is of this form
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Beyond Laughlin (for bosons)

U(1) ν = 1/r Laughlin state V (z) =: e i
√

rϕ(z) :

Ψground-state =
∏
i<j

(zi − zj)
r

SU(2)2 Moore-Read state V (z) = Ψ(z)⊗ : e iϕ(z) :

Ψground-state = Pf
(

1

zi − zj

)∏
i<j

(zi − zj)

SU(2)k Read-Rezayi state

V (z) = J+(z) = Ψ1(z)⊗ : e i
√

2/kϕ(z) :

What about quasi-hole operators ?

Vqh(w) = σ1(w)⊗ e i
√

1/2kϕ(w) :⇒ non-Abelian anyons
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Trial wavefunctions from CFT

Extrapolating the thermodynamic limit of these trial states is difficult.

Gapped ?

Well-defined quasi-holes ?

Non-Abelian braiding ?

Area law for the entanglement entropy ?

Entanglement spectrum ?

Quantum dimensions ?

etc...

The natural conjecture is that they are described by the anyon model
(TQFT) corresponding to the underlying CFT.
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Matrix Product State (MPS)
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Limitations of exact diagonalizations and trial wf
→ decomposition of a state |Ψ〉 on a convenient occupation basis

|Ψ〉 =
∑
{mi}

c{mi} |m1, ...,mNΦ
〉

What is the amount of memory needed to store the Laughlin state ?

Can’t store more than 21
particles !

Matrix Product State : more compact and computationally friendly
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Matrix Product States

|Ψ〉 =
∑
{mi}

(
〈u|B [m1] · · ·B [mn] |v〉

)
|m1, ...,mn〉

Why is this formalism interesting ?
Many quantities (correlation functions, entanglement spectrum, . . . ) can

be computed in the (relatively small) auxiliary space.
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The CFT ansatz Ψ(z1, · · · , zn) = 〈u|V (z1) · · ·V (zn)|v〉
is a continuous MPS

Dubail, Read, Rezayi (2012)

Translation invariant MPS

|Ψ〉 =
∑
{mi}

(〈u|Bm1Bm2 · · ·Bmn |v〉) |m1 · · ·mn〉

Zaletel, Mong (2012)

the matrices Bm are operators in the underlying CFT

the auxiliary space is the (infinite dimensional) CFT Hilbert space . . .

. . . which can be truncated while keeping arbitrary large precision
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Where does this MPS structure
come from ?
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Starting from a trial wavefunction given by a CFT correlator

Ψ(z1, · · · , zN) = 〈u|Ob.c.V (z1) · · ·V (zN)|v〉

and expanding V (z) =
∑

n V−nzn, one finds (up to orbital normalization)

c(m1,··· ,mn) = 〈u| Ob.c.
1√
m1!

V m1
−1

1√
m2!

V m2
−2 · · ·

1√
mn!

V mn
−n |v〉

This is a site/orbital dependent MPS

c(m1,··· ,mn) = 〈u| Ob.c.B
m1 [1]Bm2 [2] · · ·Bmn [n] |v〉

with matrices at site/orbital j :

Bm[j ] =
1√
m!

(V−j)
m

Benoit Estienne (LPTHE) Matrix Product State for FQHS 2016, Feb 18 42 / 53



Spreading the background charge

The background charge (for n orbitals) is a (non-local) operator

Ob.c. = e
− i√

ν
nϕ0 =

(
e
− i√

ν
ϕ0
)n

where ϕ0 is the bosonic zero mode.

c(m1,··· ,mn) = 〈u|
(

e
− i√

ν
ϕ0
)n 1√

m1!
V−1

m1
1√
m2!

V−2
m2 · · · 1√

mn!
V−n

mn |v〉

From e
− i√

ν
ϕ0V−j = V−j+1e

− i√
ν
ϕ0 , so we get a site independent MPS

〈u| 1√
m1!

V0
m1e
− i√

ν
ϕ0 1√

m2!
V0

m2e
− i√

ν
ϕ0 · · · 1√

mn!
V0

mne
− i√

ν
ϕ0 |v〉
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Translation invariant MPS on the cylinder

Uniform background charge ⇒ site independant MPS

Bm[j ] =
1√
m!

(V−j)
m ⇒ Bm =

1√
m!

(V0)m e
− i√

ν
ϕ0

Taking into account the orbital normalization on the cylinder :

Bm =
1√
m!

(V0)m e
− i√

ν
ϕ0e−

2π
L

H

where

ϕ0 is the bosonic zero mode (B0 shifts the electric charge by ν)

H is the cylinder Hamiltonian : H = 2π
L L0

V0 is the zero mode of V (z)

auxiliary space = CFT Hilbert space
infinite bond dimension :/
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Truncation of the auxiliary space
The auxiliary space (i.e. the CFT Hilbert space) basis is graded by the
conformal dimension ∆α.

L0 |α〉 = ∆α|α〉

But in the MPS matrices we have a term

Bm =
1√
m!

(V0)m e
− i√

ν
ϕ0e−( 2π

L )
2
L0

The conformal dimension provides a natural cut-off.
Truncation parameter P : keep only states with ∆α ≤ P.

P = 0 recovers the thin-cylinder limit | · · · 100100100 · · · 〉
The correct 2d physics requires L� bulk correlation length ζ

For a cylinder perimeter L, we must take P ∼ L2

Bond dimensions χ ∼ eαL · · · of course ! since SA ∼ αL.
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What about the torus ?

CFT ansatz : ground state |Ψ〉a

Ψa(z1, · · · , zN) = Tra
(

e i2πτL0−i
√
νnϕ0V (z1) · · ·V (zN)

)
becomes

|Ψ〉a =
∑
{mi}

Tra
(

e iπ(N−1)
√
νa0Bmn . . .Bm1

)
|m1, · · · ,mn〉

where the blue term is only present for fermions (ensures antisymmetry).
The MPS matrices are

Bm = q
L0
2n e−i

√
ν

2
ϕ0

1√
m!

V m
0 e−i

√
ν

2
ϕ0q

L0
2n , q = e2iπτ

Again χ grows exponentially with torus thickness.
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Matrix Product States :
a powerful numerical method

plots from collaborations with :
Y-L. Wu, Z. Papic, N. Regnault, B. A. Bernevig
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Infinitely long cylinder, bulk correlation length

〈O(0)O ′(r)〉 ∼ exp(−r/ζ)
The transfer matrix E1 =

∑
m Am ⊗ A∗m

⇒ correlation length ζ−1 ∝ log(λ1/λ2)
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Entanglement entropy (orbital cut)
Area law SA = αL− γ, where the subleading term γ is universal

γ = logD/da

Model state γvac γqh D
MR 1.04 0.69 2

√
2

Z3 RR 1.45 0.97 5
2 sin(π5 )
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Quasi-hole excitations

−15 −10 −5 0 5 10 15
x/`0

−10

−5

0

5

10

y
/`

0

ρ/(2π`20)−1
0

ν
2

ν

Insert quasi-holes in the MPS

Compute the density profile

Measure the radius of the quasi-hole

0 2 4 6 8 10
r / `0

1/3

1/2
3/5

ρ
/
(2
π
`2 0

)−
1 Z3 Read-Rezayi

Moore-Read

Laughlin 1/3

Ly = 20`0

(a)

16 18 20 22
Ly / `0

2.5

3.0

3.5

4.0

R
/
` 0

(b)

ν R/`0

Laughlin 1
3

e
3 : 2.6

Moore-Read 1
2

e
4 : 2.8 e

2 : 2.7

Z3 Read-Rezayi 3
5

e
5 : 3.0 3e

5 : 2.8

Benoit Estienne (LPTHE) Matrix Product State for FQHS 2016, Feb 18 50 / 53



Braiding non-Abelian quasi-holes

Instead of computing the Berry phase,
⇒ check the behavior of conformal block overlaps

〈Ψa|Ψb〉 = Caδa b + O
(

e−|∆η|/ξab
)
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Microscopic, quantitative verification of the non-Abelian braiding.
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Conclusion
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Conclusion
FQH trial wavefunctions have been used for more than 20 years :

They are nothing but Matrix Product States in disguise

Numerically powerful

I Bulk correlation length ζ (or equivalently bulk gap)
I precision computation of the topological entanglement entropy γ

(and the quantum dimensions da)
I Non-Abelian quasihole radius and braiding

CFT/MPS provide a strong link between microscopics and 3d TQFT

As conjectured by Moore and Read

Model states ⇒ (non-Abelian) chiral topological phases.

Limitations : at the end of the day these states are model states
with the anyon data as an input. Similar to quantum-double models.

I Are they in the same universality class as the experimental states ?
I DMRG methods might help answer this question.
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