
Gunnar Möller
Cavendish Laboratory, University of Cambridge

FQHE in higher Chern 
number bands

T. Scaffidi & GM, Phys. Rev. Lett. (2012) 
GM & N.R. Cooper, Phys. Rev. Lett. (2009, 2015) 

T. Jackson, GM, R. Roy, Nature Communications (2015)
Entanglement in Strongly Correlated Systems

Centro de Ciencas de Benasque Pedro Pascual

February 23rd, 2016



Gunnar Möller Entanglement in Strongly Correlated Systems, Benasque 2016

Overview

• Why magnetic fields are exciting: fractional quantum Hall effect
• Emulating the effects of magnetic fields without external fields.
• Berry curvature and the Chern number

• Q1: Can FQHE states be stabilised?
• Q2: Are they the same states as in the continuum?
• Q3: How does the band geometry influence their stability?

Chern numbers |C|>1: 

• prediction of series of states at filling ⌫ =
r

r|Ck|+ 1

Motivation & Background

Fate of the Fractional Quantum Hall Effect in ‘Artificial Fields’

New Features of the FQHE in General Topological Bands

• numerical evidence for those states
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2D electron gas

‣ a macroscopic quantum phenomenon: magnetoresistance in 2D electron gases

‣ different topologically ordered phases at each Hall plateau 
‣ supporting fractionalized abelian and non-Abelian excitations

Topological Order in the Quantum Hall Effect

Where?
‣ in semiconductor hetero-
structures with clean two-
dimensional electron gases 

‣ at low temperatures (~0.1K) 
and in strong magnetic fields 

kBT ⌧ ~!c = ~eB/me

What?
‣ plateaus in Hall conductance 

‣ simultaneously: (near) zero 
longitudinal resistance

�
xy

= ⌫
e2

h
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Properties of Quantum Hall Liquids

Bq* = ν ⨉e

‣ no long-range order 
‣ preferred density:   
quantum number ν, observed to take integer or simple fractional values  

• quantum Hall plateaus ➜ quantum liquids:

dLL = eB/hn0 = ⌫dLL

n0

• changes in density = defects: localized quasiparticles

‣ quasiparticles have fractional charge & fractional statistics

h ω

. . .

E



Gunnar Möller Entanglement in Strongly Correlated Systems, Benasque 2016

tim
e 

iψ

i
i

f e ψψ φ=

almost�any� phase               

tim
e 

non-Abelian representation 
of the braid group 

!
"

#
$
%

&
=
β

α
ψ i

!
"

#
$
%

&
''
(

)
**
+

,
=!
"

#
$
%

&
=

β

α

β

α
ψ

2221

1211~
~

aa
aa

f

orthogonal degenerate states 

Abelian Anyons 

Non-Abelian 
Anyons 

Some quantum #

E Δ

‣ manipulations of 
quasiparticles could provide 
the basis for a quantum 
computer that is protected 
from errors!

‣ interactions drive emergent realization as 
quasi-particle states in quantum Hall systems!

Topological Quantum Computing

Fractional statistics - Anyons and Non-Abelions
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Quantum Hall effect without magnetic fields

Many different opportunities for emulating magnetic fields:

The fractional quantum Hall effect is observed under extreme conditions
‣ strong magnetic fields of several Tesla

‣ very low temperatures

‣ clean / high mobility semiconductor samples

1. Cold Atomic Gases 2. Solid State 3. Photons

Fe3Sn2
(proposed)

spin orbit 
coupling

strain

rotation

laser assisted hopping
Si waveguides
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Ideas behind these strategies for simulating magnetic fields

‣ Simulate a physical effect that a magnetic field B exerts particle of charge q 

Signature Simulated by

Lorentz Force FL = q ~v ⇥ ~B Coriolis Force in Rotating System

~⌦

Aharonov-Bohm
Effect

A
1 2

34

�

Complex Hopping Amplitudes A in Optical Lattices

X

⇤
A↵� = 2⇡n�

 / exp

⇢
i
q

~

Z
~A · d~̀

�

Berry Curvature
of Landau levels

Same physics seen in reciprocal space…
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Landau-levels as a topological band-structure

‣ Can we see in which way Landau-levels are special, just by looking at the wavefunctions?

Start with an analogy: Recipe for calculating the 
twist in this Möbius band:

‣ choose a closed path around the 
surface

‣ construct normal vector to the 
surface at points along the curve

‣ add up the twist angle while moving 
along this contour
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Calculating the Berry phases in reciprocal space

k
x

ky

C
t=0 t=T

|u~k(t)i
t

Calculate how wavefunction evolves while moving 
adiabatically through curve C : k(t), t=0...T

Local basis H̃|u~ki = ✏~k|u~ki

|U(t)i = exp

⇢
� i

~

Z t

0
✏~k(t0)dt

0
�
exp {i�(t)} |u~k(t)i

Phase evolution has two components: 

Michael Berry (1984)

dynamical time  
evolution

‘twist’

BZ
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Berry curvature and Chern number

k
x

ky

C S

Geometrical phase analogous to Aharonov-Bohm effect

Using Stokes’ theorem:

�(C) = i

Z

C
hu~k|

d

d~k
|u~kid~k ⌘

Z

C
~A(~k)d~k

�(C) =
Z

C
~A(~k)d~k =

Z

S
~rk ⇥ ~A(~k)d~�

C = @S

~B = ~rk ⇥ ~A(~k)Berry curvature:

C = 1
2⇡

R
BZ d2kB(k)Chern number:

is a property of the band eigenfunctions, only!

Effective ‘vector potential’ called Berry connection

takes only integer values!

~A(~k) = i

Z

UC
u~k(~r)

⇤~rku~k(~r) d
2r

• Chern number provides classification of all possible single-particle bands (class A)
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Berry curvature and Chern number

k
x

ky

C S

Geometrical phase analogous to Aharonov-Bohm effect

Using Stokes’ theorem:

�(C) = i

Z

C
hu~k|

d

d~k
|u~kid~k ⌘

Z

C
~A(~k)d~k

�(C) =
Z

C
~A(~k)d~k =

Z

S
~rk ⇥ ~A(~k)d~�

C = @S

~B = ~rk ⇥ ~A(~k)Berry curvature:

C = 1
2⇡

R
BZ d2kB(k)Chern number:

is a property of the band eigenfunctions, only!

Effective ‘vector potential’ called Berry connection

topological: takes only integer values!

~A(~k) = i

Z

UC
u~k(~r)

⇤~rku~k(~r) d
2r

• Chern number provides universal classification of all possible single-particle bands (cl. A)

integral over real-space, so it does not matter in what physical space the system ‘lives’

in reciprocal space, only the change of the scalar product on that space matters
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Q1: Do bands resembling Landau-levels support QH states?

k
x

ky

B = r⇥A
Berry curvature in the Hofstadter model

k
x

ky

B = r⇥A

Berry curvature in a Landau-Level: flat

continuum lattice
H = �J

X

h↵,�i

h
b̂†↵b̂�e

iA↵� + h.c.
i
+

1

2
U
X

↵

n̂↵(n̂↵ � 1)� µ
X

↵

n̂↵

+
X

Vij n̂in̂j

H =
1

2m
|p� eA|2 + V̂

A = Bzxey
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Fractional Quantum Hall Effect in Periodic Potentials

• quantized Hall response in partially filled bands?

• THEORY: Kol & Read (1993)

• Confirmations for such states?

H = �J
X

h↵,�i

h
b̂†↵b̂�e

iA↵� + h.c.
i
+

1

2
U
X

↵

n̂↵(n̂↵ � 1)� µ
X

↵

n̂↵+
X

Vij n̂in̂j
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Fractional Quantum Hall on lattices: Numerical Evidence

• interest in cold atom community 2000’s:  

• realisations of tight-binding models with complex hopping from light-matter coupling:

B

H = �J
X

h↵,�i

h
b̂†↵b̂�e

iA↵� + h.c.
i
+

1

2
U
X

↵

n̂↵(n̂↵ � 1)� µ
X

↵

n̂↵

• bosons with onsite U: many-body gap in the half-filled  
“synthetic Landau-level” persists to large flux density α

flux density
• correct GS degeneracy + good overlap with trial state
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Fractional Quantum Hall on lattices with higher Chern-# bands

• bands of the Hofstadter model go beyond the continuum limit and support new classes of 
quantum Hall states

n
many-body gap predicted by CF theory �

n�

n = 1/7: O = |h CF|GSi|2 ' 0.56

n = 1/9: O = |h CF|GSi|2 ' 0.46

(N=5 particles)

numerical verification 
for what we would now  
call FCI states with ν=1
• C=2 band
• hardcore bosons
E

k
x

ky

C = �2 GM & NR Cooper, PRL 2009

theory:
bosonic Hall states
on the lattice
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Φ>0
Φ<0

Chern bands in more general tight binding models

• 2011: FQHE expected in models with spin-orbit coupling + interactions

Numerical evidence:  GS degeneracy, gap, PES,…   D. Sheng; C. Chamon; N. Regnault & A. Bernevig, …

T. Neupert et al. K. Sun et al. E. Tang et al.

• Original proposal for IQHE without magnetic fields: Haldane (1988)

Chern numbers



Gunnar Möller Entanglement in Strongly Correlated Systems, Benasque 2016

Numerical evidence for “Fractional Chern Insulators”

• existence of a gap & groundstate degeneracy [checkerboard lattice]
• Chern number of groundstate manifold

[D. Sheng]
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Numerical evidence for “Fractional Chern Insulators”

• Strong numerical evidence for QHE like quantum liquids

• Finite size scaling of gap  

“Fractional Chern Insulators (FCI)” [PRX ’11, PRB ’12, N. Regnault & A. Bernevig]

• Particle Entanglement Spectra : count of 
excitations matches FQHE (here - Laughlin state) 

• existence of a gap & groundstate degeneracy [checkerboard lattice]

• Chern number of groundstate manifold [D. Sheng]
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‣ Analogy for topological order of many-body states:

‣ Topological order is invariant under continuous / adiabatic deformations!

‣ Approach: Continuously deform a fractional quantum Hall state into a 
fractional Chern insulator without closing the gap.

C=1
+  Interactions  = FQHE ?

‣ Are the quantum Hall states in general lattice models the same as in LL?

Q2: Do Chern bands support the same phases as LLs?
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Adiabatic Continuation of QH liquids in different systems

• use Hilbert spaces with the same overall structure (based on Wannier states) to study the 
low-lying spectrum numerically (exact diagonalization)

• adiabatically deform many-body Hamiltonian of FQHE to a fractionally filled Chern band:

Th. Scaffidi & GM, Phys. Rev. Lett. (2012)

H(x) =
�FCI

�FQHE
(1� x)HFQHE + xHFCI

FQHE of Bosons at
⌫ = 1/2

x = 0 x = 1

Laughlin state
Same topological phase!

Half filled band of the 
(flattened) Haldane-model

B

• E.g.: half-filled band for bosons & contact repulsion
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• single-particle dispersion - want flat bands

• band geometry - ideally want even Berry curvature

• shape of interactions - clear hierarchy of two-body energies desirable “Pseudopotentials”

• Full story: all three aspects contribute

• Focus here: band geometry, while keeping flat dispersion + identical interactions

many groups

finite size matters a lot - success by iDMRG A. Grushin et al.

Regnault, Bernevig; Dobardzic, Milovanovic, … 

Läuchli, Liu, Bergholtz, Moessner + other proposals

systematic study of geometric measures beyond Berry curvature This Talk!

How to decide which lattice models have stable fractional Chern Insulators?

Q3: Relation of band geometry and stability FQHE like states?
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Which Berry Curvature?

Gauge invariance of the Bloch functions: one arbitrary U(1) phase for each k-point

|u↵
ki ! ei�↵(k)|u↵

ki

Hbc(k) =
NX

↵=1

E↵(k)u
↵⇤
b (k)u↵

c (k)

The above manifestly leaves H invariant:

u↵
a (k) ! eu↵

b (k) = eirb·ku↵
b (k)

However, sublattice dependent phases are not gauges:

eB
↵

(k)�B
↵

(k) =
NX

b=1

r
b,y

@

@k
x

|u↵

b

(k)|2 � r
b,x

@

@k
y

|u↵

b

(k)|2

as this substitution yields a modified Berry curvature:

There is a unique choice such that the polarisation reduces to the correct semi-classical expression 

see, e.g. Zak PRL (1989) 
R̂µ ! �i

@

@kµ
and canonical position operator
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Conventions for Berry Curvature: in pictures

an example: Hofstadter spectrum in magnetic unit cell of 7x1,n = 1/7, n� = 3/7

k
x

ky

B = r⇥A

Curvature for Fourier transform with 
respect to unit cell position

Magnetic unit cell
�

7

�

7

�

7

�

7

�

7

�

7
�6�

7

k
x

ky

B = r⇥A

Curvature for canonical Fourier transform

~ ~

net flux defined only mod !0
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GMP Algebra: Generating low-lying excitations

[⇢LLL(q),⇢LLL(q
0
)] =

2i sin
�
1
2q ^ q0`2B

�
exp

�
1
2q · q0`2B

�
⇢LLL(q+ q0

)

these satisfy: GMP algebra (w/LLL form factor):

S. M. GIRVIN, A. H. MacDONALD, AND P. M. PLATZMAN 33

wave vector, but exhibits a deep minimum at finite k.
This magneto-roton minimum is caused by a peak in s(k)
and is, in this sense, quite analogous to the roton
minimum in helium. ' We interpret the deepening of the
minimum in going from v= —,

' to v= —,
' to be a precursor

of the collapse of the gap which occurs at the critical den-
sity v, for Wigner crystallization. From Fig. 3 we see
that the minimum gap is very small for v& —,. This is
consistent with a recent estimate of the critical density,
v, =1/(6.5+0.5). Within mean-field theory, the Wigner
crystal transition is weakly first order and hence occurs
slightly before the roton mode goes completely soft. Fur-
ther evidence in favor of this interpretation of the roton
minimum is provided by the fact that the magnitude of
the primitive reciprocal-lattice vector for the crystal lies
close to the position of the magneto-roton minimum, as
indicated by the arrows in Fig. 3.
These ideas suggest the physical picture that the liquid

is most susceptible to perturbations whose wavelength
matches the crystal lattice vector. This will be illustrated
in more detail in Sec. XI.
Having provided a physical interpretation of the gap

dispersion and the magneto-roton minimum, we now ex-
amine how accurate the SMA is. Figure 4 shows the ex-
cellent agreement between the SMA prediction for the gap
and exact numerical results for small (%=6,7}systems re-
cently obtained by Haldane and Rezayi. Those authors
have found by direct computation that the single-mode
approximation is quite accurate, particularly near the ro-
ton minimum, where the lowest excitation absorbs 98% of
the oscillator strength. This means that the overlap be-
tween our variational state and the exact lowest excited
eigenstate exceeds 0.98. We believe this agreement con-
firms the validity of the SMA and the use of the
Laughlin-state static structure factor.
Near k =0 there is a small (-20%) discrepancy be-

tween b,sMA(0) and the numerical calculations. It is in-

v=1/3

L"S

Q. 10

0.05

VII. BACKFLOW CORRECTIONS

It is apparent from Fig. 4 that the SMA works extreme-
ly well—better, in fact, than it does for helium. '9 Why is
this so'? Recall that, for the case of helium, the
Feynman-Bijl formula overestimates the roton energy by
about a factor of 2. Feynman traces this problem to the
fact that a roton wave packet made up from the trial wave
functions violates the continuity equation

V (J)=0.
To see how this happens, consider a wave packet

P(ri, . . . , rpg)= I d2k g(k)pkP(r„. . . , r~),
(7.1)

(7.2)

where g(k) is some function (say a Gaussian) sharply
peaked at a wave vector k located in the roton minimum.
It is important to note that this wave packet is quasista-
tionary because the roton group velocity dhldk vanishes
at the roton minimum. Evaluation of the current density
gives the result schematically illustrated in Fig. 5(a). The
current has a fixed direction and is nonzero only in the re-
gion localized around the wave packet. This violates the
continuity equation (7.1} since the density is (approxi-
mately) time independent for the quasistationary packet.
The modified variational wave function of Feynman and
Cohen includes the backflow shown in Fig. 5(b}. This
gives good agreement with the experimental roton energy
and shows that the roton can be viewed as a smoke ring
(closed vortex loop).
A rather different result is obtained for the case of the

quantum Hall effect. The current density operator is

eA(rj }

teresting to speculate that the lack of dispersion near the
roton minimum may combine with residual interactions
to produce a strong pairing of rotons of opposite momen-
ta leading to a two-roton bound state of small total
momentum. This is known to occur in helium. For the
present case b, i~3(0) happens to be approximately twice
the minimum roton energy. Hence the two-roton bound
state which has zero oscillator strength could lie slightly
below the one-phonon state which absorbs all of the oscil-
lator strength. For v & —, the two-roton state will definite-
ly be the lowest-energy state at k =0. It would be in-
teresting to compare the numerical excitation spectrum
with a multiphonon continuum computed using the
dispersion curves obtained from the SMA.

0.00
O.Q 0.5 1.0 1.5 2.0 + p)+

eA(rj ) z5 (R—rj) (7.3)

FIG. 4. Comparison of SMA prediction of collective mode
energy for v= 3, 5, 7 with numerical results of Haldane and
Rezayi (Ref. 20) for v= —,. Circles are from a seven-particle
spherical system. Horizontal error bars indicate the uncertainty
in converting angular momentum on the sphere to linear
momentum. Triangles are from a six-particle system with a
hexagonal unit cell. Arrows have same meaning as in Fig. 3.

&+ I
J(R)

I
+)=—-vx(e I M(R) I

+)
where

M(R) =p(R)R,

(7.4)

(7.5)

Taking P and P to be any two members of the Hilbert
space of analytic functions described in Sec. IV, it is
straightforward to show that

Girvin, MacDonald and Platzman, PRB 
33, 2481 (1986).

| SMA
k i = ⇢̂k| 0i

• single mode approximation captures low-lying 
 neutral excitations in quantum Hall systems:

Repellin, Neupert, Papić, Regnault, Phys. Rev. B 90 (2014)SMA carries over to Chern bands: 

⇢̂k =
X

q

�̂†
k+q�̂q

with single particle density operators
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Chern bands: generalised GMP algebra

e⇢q ⌘ P↵e
iq·brP↵ =

X

k

NX

b=1

u↵⇤
b (k+ q/2)u↵

b (k� q/2)�↵†
k+q/2�

↵
k�q/2

• consider band-projected density operators for general Chern bands:

• in general, the algebra of density operators does not close, i.e. 

[e⇢q, e⇢k] 6= F (k,q)e⇢k+q

• intuitive consequences for FQH states:

e⇢q ⌘ P↵e
iq·brP↵ =

X

k

NX

b=1

u↵⇤
b (k+ q/2)u↵

b (k� q/2)�↵†
k+q/2�

↵
k�q/2can generate many distinct eigenstates 

‣ no finite, closed set of low-energy excitations corresponding to the GMP single mode states

‣ 

‣ strong violation of the algebra should signal an unstable, gapless phase
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Conditions for closure of the generalised GMP algebra I

�c ⌘
r

A2
BZ

4⇡2
hB2i � c21

• conditions for closure of the algebra can be derived in a long-wavelength expansion

O(k2) :

O(k3) :

ds2 = h� |� i � h� | ih |� i

Pullback of Hilbert space metric constant over BZ

gµ⌫ + i
2

Fµ⌫

=
X

↵2occ

tr
�

@
@kµ

P↵

�
(1� P↵)

�
@

@k⌫
P↵

�

�g ⌘
s

1

2

X

µ,⌫

hgµ⌫g⌫µi � hgµ⌫ihg⌫µi

flatness of Berry curvature

devia&ons

i)

ii)
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Conditions for closure of the generalised GMP algebra II

• single condition in terms of metric g:

T (k) ⌘ tr g↵(k)� |B↵(k)| = 0;

• Next step: test how violations of the closure constraints correlate with gap

R. Roy, arxiv:1208.2055 (PRB 2014); Parameswaran, Roy, Sondhi C. R. Physique (2013)

‣ algebra of projected density operators reduces exactly to the GMP algebra
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Target models to examine

• Hamiltonian: bosonic states with on-site interactions — defined independent of specific lattice

2,body/contact 3,body/contact

⌫ =
1

2
Laughlin ⌫ = 1Moore,Read

• Lattice Geometry:

Haldane/model Kagomé/model Ruby/la?ce/model

➁
➀

t2e
i�

t1a2

a1

N = 2

a2

a1

➁➀

➂t2 + i�2

t1 + i�1

N = 3

➀
➁

➂
➃

➄

➅a2

a1

t̃1

t4
t̃

N = 6

T. Jackson, GM, R. Roy, Nature Comm. (2015)



• 1 point ⇔1 set of parameters: max gap tends to be found in lower-left corner 
• Demonstrates relevance of both band-geometric quantities

Model Comparison: Gaps vs. RMS B and trace inequality

Haldane/model Kagomé/model Ruby/la?ce/model
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curvaturecurvature
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Role of band geometry: trace of the metric tensor

• Systematic correlation of many-body gap and trace of metric tensor
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T (k) ⌘ tr g↵(k)� |B↵(k)| = 0;Influence of metric tensor g via “trace”:

T. Jackson, GM, R. Roy, Nature Comm. (2015)
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Intermediate conclusions

Q1: Do bands resembling Landau-levels support QH states?

evidence: ‣ ground state degeneracy, gap, entanglement spectrum match

Q2: Do Chern bands support the same phases as LLs?
evidence: ‣ adiabatic continuity shown for multiple phases

‣ no new types of quantum Hall liquids in C=1 bands 
(but potentially coexistence of QHE and Landau order) 

Q3: Relation of band geometry and stability FQHE like states?
evidence: ‣ bands resembling Landau-levels closely produce 

the most robust QH liquids

Artificial magnetic fields yield faithful realisations of the FQHE
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Q4: Is there new physics in fractional Chern insulators

‣ Harper / Hofstadter: systems with Magnetic Field and periodic potentials

B n��0 B

‣ twisted graphene bilayers: Kim et al. (2013) ‣ optical flux lattices: MIT / Munich (2014)

Streda Formula and TKNN Integers 
What is the physical meaning of the integers s and t ? 

Band Filling factor 

Quantum Hall Conductance 

Streda Formula and TKNN Integers 
What is the physical meaning of the integers s and t ? 

Band Filling factor 

Quantum Hall Conductance 

=
e2

h

X

n

Cn

One novelty: Higher Chern numbers |C|>1, e.g. in the Hofstadter Problem
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New Universality classes of FQH states

0 0.2 0.4 0.6 0.8 1
nV
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n �

single-particle spectrum Simple Heuristics: Composite Fermions

n� = ±n + n⇤
� B F+ =

first numerical evidence: GM & N.Cooper Phys. Rev. Lett. 103, 105303 (2009)

‣ higher Chern number bands yield new series of Abelian quantum Hall states!

n�

many-body gap predicted by CF theory



Energy Gaps in the Butterfly: Wannier Diagram 
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Diophantine equation for gaps 

t : slope,  s : offset 
 

Density of filled bands in the Butterfly: Wannier Diagram
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Streda & Thouless: Quantization of Hall conductivity

Streda Formula and TKNN Integers 
What is the physical meaning of the integers s and t ? 

Band Filling factor 

Quantum Hall Conductance 

n = Cn� +D, C,D 2 Z

Streda:
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The Composite Fermion Approach

Account for repulsive interactions U >0 by “flux-attachment” (Fradkin 1988, Jain 1989)

H = �J
X

h↵,�i

h
b̂†↵b̂�e

iA↵� + h.c.
i
+

1

2
U
X

↵

n̂↵(n̂↵ � 1)� µ
X

↵

n̂↵

Continuum Landau-level for 
fermions at filling 1/3:
three flux per particle

Composite fermions = 
electron + 2 flux quanta

Bosons:  
1 flux per composite particledrawings: K. Park

 /
Y

i<j

(zi � zj)
2 CF
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Composite Fermions in the Hofstadter Spectrum

1. Flux attachment for bosonic atoms: n⇤
� = n� ⌥ n

2. Effective spectrum at flux        is again a Hofstadter problem

⇒ transformation of statistics! B /
Y

i<j

(zi � zj) CF

n⇤
�

0 0.1 0.2 0.3 0.4 0.5
nV
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-2
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E
n⇤
�

3. Parton / Composite Fermion construction

⇒ diophantine relation of flux and filling under a gap

 B({ri}) / PLLL

Y

i<j

(zi � zj)

| {z }

 CF({ri})

Vandermonde / Slater determinant of LLL states

continuum:

B F+ =
�0

lattice:  B({ri}) /  
(�

x

,�
y

)
J ({ri})| {z }

 
(��

x

,��
y

)
CF ({ri})

GM & N. R. Cooper, PRL 2009
Slater determinant of Hofstadter 
orbitals at flux density n0

� = n

n = Cn� +D, C,D 2 Z
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Streda Formula and TKNN Integers 
What is the physical meaning of the integers s and t ? 

Band Filling factor 

Quantum Hall Conductance Simple Heuristics: Composite Fermions
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C = �2

Streda Formula and TKNN Integers 
What is the physical meaning of the integers s and t ? 

Band Filling factor 

Quantum Hall Conductance 

n
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[ k odd (even) for bosons (fermions) ]



n� = kn+ n⇤
�

Composite fermions filling integer # bands, so can  
use the Diophantine equation for the CF gap:

n = n⇤
s = C⇤n⇤

� +D⇤

useful to replace flux density by number 
of states in relevant low-energy manifold

ns = Cn� +D

ns

C
� D

C
= n

✓
kC⇤ + 1

C⇤

◆
� D⇤

C⇤⇒

Hence, a constant filling factor is defined only if              — but that is indeed a representative  
case: as n small, the CF band structure looks similar to the original one, but CF may fill r bands. 
Then, we have              and the filling factors are 

D

C
=

D⇤

C⇤

C⇤ = rC

⌫ =
r

kCr + 1
, r 2 Z

on the blackboard...
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Exact Diagonalization vs Theory Predictions:

H = PLB

X

i

n̂i(n̂i � 1)PLB

Bosons with contact interactions, in lowest band E

k
x

ky

Check predictions for incompressible states: 

⌫ =
r

r|Ck|+ 1
filling:

GS degeneracy:

Chern number of GS’s:

dGS = |rCk|+ sgn(r)

CMB = C⇤ = rC

GM & NR Cooper, PRL (2015), arXiv:1504.06623
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Exact Diagonalization: Spectra for new candidate
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Exact Diagonalization: Spectra for new candidates
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GM & NR Cooper, PRL (2015)
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Exact Diagonalization: Spectral flow

Evolution of the ground states under “threading flux”

⌫ =
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r|Ck|+ 1
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Exact Diagonalization: Finite Size Scaling of Gaps
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⇒ data suggests the composite fermion states are incompressible 
in the thermodynamic limit

C = 2 C = 3

Ascertain that GS degeneracy with finite gap is found consistently for different Ns

GM & NR Cooper, PRL 115, 126401 (2015), arXiv:1504.06623
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Exact Diagonalization: Particle Entanglement Spectra

⇒ smaller entanglement energies; differences in detail 
⇒ overall features similar

Compare PES of a C=2 system to a known C=1 spectrum: ν=2/3

C = 1

0 5 10 15
kxLy + ky

5

10

ξ

0 5 10 15
kxLy + ky

5

10

15
(46) (45) (45)(46)

(43)
(42)

(43) (42)

(40)
(39)

(21)(22)

(35)

(12)

(34)

(16) (13)

(15) (12)

Ruby lattice, C=1Hofstadter, n
φ
=7/15, C=2a) b)

(30)

C = 2

GM & NR Cooper, PRL 115, 126401 (2015), arXiv:1504.06623
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A Special case - Bosonic IQHE in C=2 bands

GM & NR Cooper, PRL (2009) & PRL (2015), arXiv:1504.06623; Hormozi et al. PRL 2012

Bosons in a C=2 band with negative flux attachment (r=-1) ⇒ ν=1

• quasiparticles are fermions - not fractionalized
⇒ only symmetry protected topological phase [Senthil & Levin, PRL (2013)]

• first evidence in Hofstadter model GM & NR Cooper, PRL (2009)

n
�

n�

alternative realisations:

• Quantum Hall Bilayers 
[Regnault & Senthil 
2013]  

• Honeycomb with 
correlated hopping 
[He et al. 2015] 

• Optical Flux Lattices 
[Sterdyniak et al 2015]

from: GM & NR Cooper, PRL (2009)
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A Special case - Bosonic IQHE in C=2 bands

GM & NR Cooper, PRL (2009) & arXiv:1504.06623; Hormozi et al. PRL 2012

Many-body gap: finite-size scaling at fixed flux density
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• significant geometry-dependency - but less so for flatter bands.
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Tuning band flatness in the Hofstadter spectrum

GM & NR Cooper, arXiv:1504.06623; Bauer, Jackson & Roy arxiv:1504.07185

Berry curvature exponentially flat in proximity to 

• can tune flatness of band geometry while keeping same physics

n� = 1/|C|

n� =
p

|C|p� sgn(C)
, p 2 N
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C=4: minBZ|∆B|

flatbumpy

e.g., n� = 4/9

general case for single bands:
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Flat-band limit of Hofstadter bands: BIQHE
• Enlarge the magnetic unit cell (q sublattices) at fixed particle number 
• Find some configurations with (near) square aspect ratio 
• Compensate for natural scaling                 (bosons) 

Bosons, C=2, ν=1

• flat band limit stabilises states, but finite size effects in N remain important

cf C=1 case in Bauer et al., arxiv:1504.07185; B. Andrews, GM, to be published.

flatter bands

� / q�1
Bart
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Fermionic FCI in Hofstadter bands

Good evidence for fermionic states, too: e.g. C=2, r=-2, ν=2/7:
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example spectrum

other competing states also present - e.g. generalisations of Read-Rezayi 
see e.g., poster by Jörg Behrmann (k-body interactions)
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⇒ flux attachment provides candidate states for all Chern bands

Universality of Predictions

‣ Again, argue with adiabatic deformations:

E

k
x

ky

‣ Hofstadter generates bands 
of any Chern #

A
1 2

34

�
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➁

➂
➃

➄

➅a2

a1

t̃1
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‣ adiabatic connection for 
single bands as long as

C1 = C2

‣ can deform to any other 
model…

⌫ =
r

r|Ck|+ 1
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Conclusions

The FQHE can be stabilised in general topological flat bands: 

 Artificial magnetic fields ‘work as advertised’: same phases achieved
 Systems emulating Landau-levels closely work best
 Allows many new platforms for exploring quantum Hall physics

• Numerical evidence matches the predictions (bosons, contact int.): 
‣ correct GS degeneracy

⌫ =
r

r|Ck|+ 1
[ k odd (even) for bosons (fermions) ]

GM & NR Cooper, PRL (2009) + (2015);  T. Scaffidi & GM PRL (2012), T. Jackson, GM, R. Roy, Nat. Comm. (2015)

• Series includes a Bosonic Integer QHE in C=2 bands

‣ robust gap

• New states exist in |C|>1 Chern bands: we predicted the series


