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Special geometry I

Scalar geometry

L = −
∑

gij(φ
1, . . . , φn)hµν∂µφ

i∂νφ
j + . . .

Physics Definition

Special geometry is the scalar geometry of supersymmetric field
theories with 8 real supercharges (N = 2 theories).

One distinguishes between

I Affine special geometry/rigid supersymmetric theories

I Projective special geometry/supergravity theories.

Here we restrict to

I Minkowskian (rather than Euclidean or other) space-time
signature.



Special geometry II

Scalar geometry of N = 2 theories depends on: space-time
dimension d and field content: vector multiplets or hypermultiplets

Special geometries of rigid N = 2 supersymm. theories

d vector multiplets hypermultiplets

5 affine special real hyper-Kähler

4 affine special Kähler hyper-Kähler

3 hyper-Kähler hyper-Kähler

Special geometries of N = 2 supergravity theories

d vector multiplets hypermultiplets

5 projective special real quat. Kähler

4 projective special Kähler quat. Kähler

3 quaternionic Kähler quat. Kähler



Dimensional reduction

Dimensional reduction from 5 to 4 space-time dimensions

I ... of sugra coupled to VMs relates the corresponding scalar
geometries by a construction called the supergravity r-map
[DV] de Wit, Van Proeyen (CMP ‘92).

I The analogous construction for rigid theories is called the rigid
r-map [CMMS] C.–, Mayer, Mohaupt, Saueressig (JHEP ‘04).

Dimensional reduction from 4 to 3 space-time dimensions

I ... of sugra coupled to VMs relates the corresponding scalar
geometries by the supergravity c-map [FS] Ferrara, Sabharwal (NPB ‘90).

I Similarly, the scalar geometries of rigid N = 2 vector
multiplets in 4 and 3 space-time dimensions are related by the
rigid c-map [CFG] Cecotti, Ferrara, Girardello (IJMP ‘89).



Talk is based on various collaborations

[CDJL] C.–, Dyckmanns, Juengling, Lindemann, in preparation

[CDS] C.–, Dyckmanns, Suhr, in preparation

[CNS] C.–, Nardmann, Suhr (CAG, accepted 03/15), math.DG:1407.3251

[ACDM] Alekseevsky, C.– , Dyckmanns, Mohaupt (JGP ‘15)

[CDL] C.–, Dyckmanns, Lindemann (PLMS ‘14)
I [ACM] Alekseevsky, C.– , Mohaupt (CMP ‘13), [CHM] C.–, Han, Mohaupt (CMP ‘12),

[CM] C.–, Mohaupt (JHEP ‘09), [ACD] Alekseevsky, C.– , Devchand (JGP ‘02), [C] C.– (TAMS ‘98)

Further related work

[D] Dyckmanns, PhD thesis Hamburg, 09/15

[MS] Maćıa, Swann (CMP ‘15)

[Hi13] Hitchin (CMP ‘13)

[APP] Alexandrov, Persson, Pioline (JHEP ‘11)

I [Hi09] Hitchin PIM ‘09, [Ha], Haydys (JGP ‘08), [RSV] Robles-Llana, Saueressig, Vandoren (JHEP ‘06),

[AMTV] Antoniadis, Minasian, Theisen, Vanhove CQG ‘03, [F] Freed (CMP ‘99), [L] LeBrun (Duke ‘91).



Preservation of completeness under dimensional reduction

Theorem [CHM]

I The supergravity r-map associates a complete projective
special Kähler manifold of dimension 2n + 2 with every
complete projective special real manifold of dimension n.

I The supergravity c-map associates a complete quaternionic
Kähler manifold of dimension 4n + 4 (of negative scalar
curvature) with every complete projective special Kähler
manifold of dimension 2n.

Mathematical relevance

I Only a few constructions of complete quaternionic Kähler
manifolds are know.

I Above constructions (and quantum corrections) yield explicit
complete metrics if the completeness of the initial metrics is
under control.



Projective special real manifolds I: extrinsic definition

Definition
A projective special real (PSR) manifold is a hypersurface
H ⊂ Rn+1 s.t. ∃ homog. cubic polynomial h on Rn+1 s.t.

i) h = 1 on H and

ii) ∂2h is negative definite on TH.

H is endowed with the Riemannian metric

gH = −1

3
ι∗∂2h,

where ι : H→ Rn+1 is the inclusion map.

H complete :⇐⇒ (H, gH) complete.



Affine special Kähler manifolds

Definition
A (pseudo-) Kähler manifold (M, g , J) is a (pseudo-) Riemannian
manifold (M, g) endowed with a parallel skew-symm. cx. str. J.

Definition [F]

An affine special (pseudo-) Kähler manifold (M, J, g ,∇) is a
(pseudo-) Kähler mf. (M, J, g) endowed with a flat torsionfree
connection ∇ such that

(i) ∇ω = 0, where ω = g(·, J·),

(ii) d∇J = 0, where J is considered as a 1-form with values in
TM.



Conical and projective special Kähler manifolds

Definition [ACD, CM]

A conical affine special Kähler (CASK) manifold (M, J, g ,∇, ξ) is
an affine special (pseudo-)Kähler manifold (M, J, g ,∇) endowed
with a vector field ξ such that

(iii) ∇ξ = Dξ = Id, where D is the Levi Civita connection and

(iv) g is positive definite on D := span{ξ, Jξ} and negative
definite on D⊥.

⇒ ξ and Jξ generate a hol. action of a 2-dim. Abelian Lie
algebra. We will assume that the action lifts to a principal
C∗-action with the base M̄ = M/C∗. Then Jξ generates a
free isometric and Hamiltonian S1-action and M̄ inherits a
Kähler metric ḡ . (M̄, ḡ) is called a projective special Kähler
(PSK) manifold.



Extrinsic construction of special Kähler manifolds I

The ambient space

V = (C2n,Ω, τ), Ω =
∑

dz i ∧ dwi , τ = cx. conjugation.
→ pseudo-Hermitian form γ :=

√
−1Ω(·, τ ·).

Definition
A holomorphic immersion φ : M → V is called nondegenerate if
φ∗γ is nondeg. It is called Lagrangian if φ∗Ω = 0 and dimM = n.

Theorem [ACD]

I A nondeg. hol. Lagrangian immersion φ : M → V induces an
affine special pseudo-Kähler structure (J, g ,∇) on M.

I Every s.c. affine special (pseudo-) Kähler mf. (M, J, g ,∇) of
dim. n admits a nondeg. Lagr. immersion φ : M → V inducing
(J, g ,∇) on M. The immersion is unique up to affine
transformations with real symplectic linear part.



Extrinsic construction of special Kähler manifolds II

Example (affine special pseudo-Kähler domains)

Let F be a holomorphic function defined on a domain M ⊂ Cn

such that the matrix

(Nij) = (2ImFij),

is nondeg, where Fi = ∂F
∂z I

, Fij = ∂F
∂z i∂z j

etc. Then

φ : M → V , z = (z1, . . . , zn) 7→ (z ,F1, . . . ,Fn)

is a nondeg. Lagr. immersion and, thus, induces an affine special
pseudo-Kähler structure (J, g ,∇) on M.

Definition
Affine special pseudo-Kähler manifolds as in the above example are
called affine special pseudo-Kähler domains. The function F is
called a holomorphic prepotential.



Extrinsic construction of special Kähler manifolds III

Since every Lagrangian submanifold of (V ,Ω) is locally defined by
equations wi = Fi (z), i = 1, . . . , n, for some hol. function F and
some choice of adapted coordinates (z i ,wi ), we obtain:

Corollary

Let (M, J, g ,∇) be an affine special pseudo-Kähler manifold. Then
for every p ∈ M there exists a neighborhood U isomorphic to an
affine special pseudo-Kähler domain.

Remark
Similar results hold for conical and projective special Kähler
manifolds. CASK manifolds are realized as conical hol. nondeg.
Lagrangian immersions. The corresponding prepotential is defined
on a C∗-invariant domain M ⊂ Cn and is required to be
homogeneous of degree 2 and to satisfy:

∑
Nijz

i z̄ j > 0 and the
real symmetric matrix (Nij) has signature (1, n − 1) on M.



Extrinsic construction of special Kähler manifolds IV

Example (complex hyperbolic space as PSK domain)

F =
i

4

(z0)2 −
n∑

j=1

(z j)2


on M = {|z0|2 −

∑n
j=1 |z j |2 > 0} ⊂ Cn+1 is a prepot. for a CASK

domain (M, J, g ,∇, ξ). The corresponding PSK domain is CHn.



The supergravity r-map I: from projective special real to
projective special Kähler manifolds

I The sugra r-map can be described as follows [CHM]:

I Let H ⊂ Rn+1 be a PSR mf. and h the corresponding cubic
polynomial.

I Then U = R>0 ·H ⊂ Rn+1 is an open cone.

I We endow it with the Riem. metric

gU = −1

3
∂2 ln h,

isometric to the product metric dt2 + gH on R×H

I and finally the domain M̄ = U × Rn+1 with the Riem. metr.

gM̄ :=
3

4

n+1∑
a,b=1

gab(dxadxb+dyadyb), gab := gU

(
∂

∂xa
,
∂

∂xb

)
.



The supergravity r-map II

Theorem

(i) (M̄, gM̄) defined above is projective special Kähler with
respect to the cx. structure J defined by the embedding

M̄ = U × Rn+1 → Cn+1, (x , y) 7→ y + ix .

(ii) The natural inclusions H ⊂ U ∼= U × {0} ⊂ M̄ are totally
geodesic.

I The correspondence H 7→ (M̄, J, gM̄) is the supergravity
r-map.

I It maps PSR mfs. of dim. n to PSK mfs. of (real) dim. 2n+2.



The supergravity c-map I: from projective special Kähler to
quaternionic Kähler manifolds

I The supergravity c-map metric (or Ferrara-Sabharwal metric)
gFS resulting from dim. reduction of sugra coupled to vector
multiplets from 4 to 3 space-time dimensions was computed
in [FS]. The QK property was also proven in [Hi09].

I Here we follow [CHM]: In the case of a PSK domain (M̄, gM̄)
of dim. 2n the metric gFS has the following structure:

gFS = gM̄ + gG ,

where gG is a family of left-invariant Riemannian metrics on
G = Iwa(SU(n + 2, 1)) depending on p ∈ M̄.

I In particular, gFS is defined on the product N̄ := M̄ × G .

I The inclusion M̄ ∼= M̄ × {e} ⊂ N̄ is totally geodesic.



The supergravity c-map II

The explicit form of the family of metrics (gG (p))p∈M :

1

4φ2
dφ2 +

1

4φ2

(
d φ̃+

∑
(ζ id ζ̃i − ζ̃idζ i )

)2
+

1

2φ

∑
Iij(p)dζ idζ j

+
1

2φ

∑
Iij(p)

(
d ζ̃i +

∑
Rik(p)dζk

)(
d ζ̃j +

∑
Rj`(p)dζ`

)
,

I where (φ, φ̃, ζ1, . . . , ζn+1, ζ̃1, . . . , ζ̃n+1) : G → R>0 × R2n+3 is
a global coord. system on G ∼= R2n+4 and

I Rij , Iij are real and imaginary parts of

F̄ij +
√
−1

∑
Nikz

k
∑

Nj`z
`∑

Nklzkz`
,

I determined by the prepot. F of the underlying CASK dom.

I I = (Iij) > 0. Hence (Iij) = I−1 is defined and gG > 0.



The supergravity c-map III

Geometric interpretation of the fiber metric

I (G , gG (p)) is isometric to CHn+2.

I The principal part of

gG =
1

4φ2
dφ2 +

1

4φ2

(
d φ̃+

∑
(ζ id ζ̃i − ζ̃idζ i )

)2
+

1

2φ
gpr
G

is related to the CASK domain π : M → M̄ as follows:

I M has a can. realization as a Lagrangian cone in
V = (C2n+2,Ω, γ), where gM = Re γ|M is induced.

I Therefore we have a hol. map
M̄ → Gr1,n

0 (V ) = Sp(R2n+2)/U(1, n), p 7→ Lp.

I Composing it with the Sp(R2n+2)-equivariant embedding

Gr1,n
0 (V )→ Sym1

2,2n(R2n+2) = SL(2n + 2,R)/SO(2, 2n)

we obtain p 7→ (gIJ(p)) ∈ Sym1
2,2n(R2n+2).



The supergravity c-map IV

Geometric interpretation of the fiber metric continued

I In fact,
∑

gIJ(p)dqIdqJ = gM(p̃), ∀p̃ ∈ π−1(p), where
(qI )I=1,...,2n+2 are conical affine Darboux coordinates.

I Next we change the indefinite scalar product (gIJ(p)) to
(ĝIJ(p)) > 0 by means of an Sp(R2n+2)-equivariant diffeo.
ψ : F 1,n

0 (V )→ F n+1,0
0 (V ) from Griffiths to Weil flags.

I In the case of the CY3 moduli space this is related to the
switch from Griffiths to Weil intermediate Jacobians [C,Hi09]

I This corresponds to switching the sign of the indefinite metric
gM on the negative definite distribution D⊥.

I We show that the cx. symm. matrix R + iJ ∈ Symn+1,0(Cn+1)
corresponds to the pos. def. Lagrangian subspace L′ defined
by ψ(`, L) = (`, L′), where L = Lp and ` = p = Cp̃. This
proves J > 0.

I Finally we prove that gpr
G (p) =

∑
ĝ IJ(p)dqIdqJ , where

(qI ) = (ζ̃i , ζ
j).



The supergravity c-map V

Concluding remarks

I The c-map can be obtained as an application of an indefinite
version of Haydys HK/QK-correspondence [ACM], see
[Ha,APP,Hi13,MS] for related work.

I This can be used to give a proof of the QK property for an
explicit 1-parameter deformation of the c-map metric
[ACDM], known as the one-loop correction (on next slide).

I In the general case, when the PSK mf. M̄ is covered by PSK
domains, we show that the local Ferrara-Sabharwal metrics
are consistent and define a QK mf. N̄ which fibers over M̄ as
a bundle of groups with totally geodesic can. section M̄ ↪→ N̄.

I This shows that the supergravity c-map is globally defined for
every PSK mf.



One-loop correction of the FS-metric

Consider the FS-metric associated with a PSK domain M̄. The
following symmetric tensor field is called one-loop correction of the
FS-metric [RSV]:

g c
FS =

φ+ c

φ
gM̄ +

1

4φ2

φ+ 2c

φ+ c
dφ2

+
1

4φ2

φ+ c

φ+ 2c
(d φ̃+

∑
(ζ jd ζ̃j − ζ̃jdζ j) + ic(∂̄ − ∂)K)2

+
1

2φ

∑
dqaĝ

abdqb +
2c

φ2
eK
∣∣∣∑(X jd ζ̃j + Fj(X )dζ j)

∣∣∣2 ,
where c ∈ R, X j = z j/z0 and

K = − log
(∑

X iNij X̄
j
)

is the Kähler potential for the projective special Kähler metric gM̄ .



Simplest example of a one-loop corrected QK metric

Example

For M̄ = pt, i.e. F = i
2 (z0)2, we have:

g c =
1

4φ2

(
φ+ 2c

φ+ c
dφ2 +

φ+ c

φ+ 2c
(d φ̃+ ζ0d ζ̃0 − ζ̃0dζ

0)2

+2(φ+ 2c)((d ζ̃0)2 + (dζ0)2)
)
,

with g0 the complex hyperbolic plane metric and g c complete for
c ≥ 0.



Completeness of the one-loop corrected QK metric

Theorem [CDS,D]

I Let (M̄, ḡ) be a PSK manifold with regular boundary
behaviour. Then the corresponding one-loop deformation g c

FS

is a family of complete QK metrics for c ≥ 0.

I Let (M̄, ḡ) be a complete PSK manifold with cubic
prepotential. Then the corresponding one-loop deformation
g c
FS is a family of complete QK metrics for c ≥ 0.

Corollary [CDS,D]

All symmetric QK manifolds in the image of the c-map can be
deformed in this way by complete QK manifolds.

Remark
The only symmetric QK manifold of noncp. type which is not in
the image of the c-map is quaternionic hyperbolic space. Its metric
is also know to admit deformations by complete QK metrics [L].



Classification of complete PSR curves and surfaces

Theorem [CHM]

There are only 2 complete PSR curves (up to equivalence):

i) {(x , y) ∈ R2|x2y = 1, x > 0},
ii) {(x , y) ∈ R2|x(x2 − y2) = 1, x > 0}.

Theorem [CDL]

There are only 5 discrete examples and a 1-parameter family of
complete PSR surfaces:

a) {(x , y , z) ∈ R3|xyz = 1, x > 0, y > 0},
b) {(x , y , z) ∈ R3|x(xy − z2) = 1, x > 0},
c) {(x , y , z) ∈ R3|x(yz + x2) = 1, x < 0, y > 0},
d) {(x , y , z) ∈ R3|z(x2 + y2 − z2), z < 0},
e) {(x , y , z) ∈ R3|x(y2 − z2) + y3 = 1, y < 0, x > 0},
f) {· · · |y2z − 4x3 + 3xz2 + bz3 = 1, z < 0, 2x > z}, b ∈ (−1, 1).



Classification of complete PSR manifolds with reducible
cubic polynomial

Theorem[CDJL]

Every complete PSR manifold H ⊂ {h = 1} ⊂ Rn+1, n ≥ 2, for
which h is reducible is linearly equivalent to exactly one of the
following:

a) {xn+1(
∑n−1

i=1 x2
i − x2

n ) = 1, xn+1 < 0, xn > 0},
b) {(x1 + xn+1)(

∑n
i=1 x

2
i − x2

n+1) = 1, x1 + xn+1 < 0},
c) {x1(

∑n
i=1 x

2
i − x2

n+1) = 1, x1 < 0, xn+1 > 0},
d) {x1(x2

1 −
∑n+1

i=2 x2
i ) = 1, x1 > 0}.

I Under the q-map (composition of r- and c-map), these are
mapped to complete QK manifolds of co-homogeneity ≤ 1.

I The series d) is mapped to a series of complete QK manifolds
of co-homogeneity 1.



Completeness of centroaffine hypersurfaces
Let H ⊂ Rn+1 be a centroaffine hypersurface with positive definite
centroaffine metric g .

We are interested in the relation between

1) closedness,

2) Euclidian completeness and

3) completeness (with respect to g).

Under natural assumptions:
3) =⇒ 1) ⇐⇒ 2).

Main problem:

Prove that 1) =⇒ 3) in some interesting cases.

Example: Theorem (Cheng and Yau, CPAM ‘89)

1) =⇒ 3) if H is an affine sphere, i.e. if ∇gν = 0.



Completeness of PSR manifolds and QK manifolds

Theorem [CNS]

A PSR manifold H ⊂ {h = 1} ⊂ Rn+1 is complete if and only if
H ⊂ Rn+1 is closed.

Corollary

Let H be a locally strictly convex component of the level set
{h = 1} of a homogeneous cubic polynomial h on Rn+1. Then H

defines a complete quaternionic Kähler metric of negative scalar
curvature on R4n+8.

Applications

Using the Corollary we can construct many new explicit complete
QK manifolds and even families depending on an arbitrary number
of parameters, including multi-parameter defos of symm. spaces
[CDJL]. On top one can add 1 parameter by one-loop defo [CDS].



Sketch of proof of the theorem I

I Let H ⊂ Rn+1 be a Euclidian complete centroaffine
hypersurface with positive definite centroaffine metric g .

I We have to show that H is complete if H ⊂ {h = 1} for a
homogeneous cubic polynomial h. Let us not assume this yet.

I Consider the open cone U = R>0 ·H ⊂ Rn+1 and let k ∈ R∗.

Lemma 1

I There exists a unique smooth homogeneous function
h : U → R of degree k such that h|H = 1.

I For every hyperplane E tangent to H the intersection
B := U ∩ E ⊂ E is a bounded convex domain.

I

ϕ : B → H, x 7→ h(x)−1/kx ,

is a parametrization of H.



Sketch of proof of the theorem II

Lemma 2
In the above parametrization the centroaffine metric is given

g = − 1

kh̄
∂2h̄ +

k − 1

(kh̄)2
dh̄2,

where h̄ denotes the restriction of h to B and ∂ denotes the flat
connection of the affine space E ⊃ B.

Lemma 3
Let k > 0. Assume that there exists ε ∈ (0, k) such that f =

k−ε
√
h̄

is concave. Then H is complete.

Sketch of pf. of Lemma 3

A calculation shows

g =
k − ε
f

(
−1

k
∂2f

)
+

ε

(k − ε)(kh̄)2
dh̄2 ≥ ε

k2(k − ε)︸ ︷︷ ︸
C :=

(d ln h̄)2.



Sketch of proof of the theorem III

Let γ : I = [0,T )→ B, T ∈ (0,∞], be a curve which is not
contained in any compact subset of B and I 3 ti → T .

I Then h(γ(ti ))→ 0 and the previous estimate implies

L(γ) ≥ L(γ|[0,ti ]) ≥ C

∫ ti

0

∣∣∣∣ ddt ln h ◦ γ
∣∣∣∣ dt ≥ C

∣∣∣∣∫ ti

0

d

dt
ln h ◦ γdt

∣∣∣∣
= C | ln h(γ(ti ))− ln h(γ(0))| → ∞

Lemma 4
If h is a cubic polynomial then

√
h̄ is concave

Lemma 4 shows that the assumptions of Lemma 3 are satisfied
with (k, ε) = (3, 1). This finishes the proof of the theorem. �
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