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Special geometry |

Scalar geometry
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Physics Definition
Special geometry is the scalar geometry of supersymmetric field
theories with 8 real supercharges (N = 2 theories).

One distinguishes between

» Affine special geometry/rigid supersymmetric theories

» Projective special geometry/supergravity theories.

Here we restrict to

» Minkowskian (rather than Euclidean or other) space-time

signature.



Special geometry Il

Scalar geometry of N = 2 theories depends on: space-time
dimension d and field content: vector multiplets or hypermultiplets

Special geometries of rigid N = 2 supersymm. theories

d vector multiplets hypermultiplets
5 affine special real hyper-Kahler
4 || affine special Kahler | hyper-Kahler
3 hyper-Kahler hyper-Kahler

Special geometries of N = 2 supergravity theories

vector multiplets hypermultiplets
projective special real quat. Kahler
projective special Kahler | quat. Kahler
quaternionic Kahler quat. Kahler

WO




Dimensional reduction

Dimensional reduction from 5 to 4 space-time dimensions

» ... of sugra coupled to VMs relates the corresponding scalar
geometries by a construction called the supergravity r-map

[DV] de Wit, Van Proeyen (CMP ‘92).

» The analogous construction for rigid theories is called the rigid

[-Map [CMMS] C.—, Mayer, Mohaupt, Saueressig (JHEP ‘04).

Dimensional reduction from 4 to 3 space-time dimensions

» ... of sugra coupled to VMs relates the corresponding scalar
geometries by the supergravity c-map [Fs] Ferrara, Sabharwal (NPB ‘00).
» Similarly, the scalar geometries of rigid N = 2 vector

multiplets in 4 and 3 space-time dimensions are related by the
rlgld C-Map [CFG] Cecotti, Ferrara, Girardello (1JMP '89).
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Preservation of completeness under dimensional reduction
Theorem [CHM]

> The supergravity r-map associates a complete projective
special Kahler manifold of dimension 2n + 2 with every
complete projective special real manifold of dimension n.

» The supergravity c-map associates a complete quaternionic
K&hler manifold of dimension 4n + 4 (of negative scalar
curvature) with every complete projective special Kahler
manifold of dimension 2n.

Mathematical relevance

» Only a few constructions of complete quaternionic Kahler
manifolds are know.

» Above constructions (and quantum corrections) yield explicit
complete metrics if the completeness of the initial metrics is
under control.



Projective special real manifolds |: extrinsic definition

Definition
A projective special real (PSR) manifold is a hypersurface
H < R"! s.t. 3 homog. cubic polynomial h on R™*1 s.t.

i) h=1on X and
ii) 0%h is negative definite on TJH.

H is endowed with the Riemannian metric
1
= —Z,*8?h,
81 3L

where ¢ : 5 — Rt is the inclusion map.

H complete : <= (K, gy¢) complete.



Affine special Kahler manifolds

Definition
A (pseudo-) Kahler manifold (M, g, J) is a (pseudo-) Riemannian
manifold (M, g) endowed with a parallel skew-symm. cx. str. J.

Definition [F]
An affine special (pseudo-) Kahler manifold (M, J, g, V) is a
(pseudo-) Kahler mf. (M, J, g) endowed with a flat torsionfree
connection V such that
(i) Vw =0, where w = g(-,J-),
(i) dVJ =0, where J is considered as a 1-form with values in
™.



Conical and projective special Kahler manifolds

Definition [ACD, CM]
A conical affine special Kahler (CASK) manifold (M, J, g, V,£) is

an affine special (pseudo-)Kahler manifold (M, J, g, V) endowed
with a vector field £ such that

(iii) V& = D¢ =1d, where D is the Levi Civita connection and

(iv) g is positive definite on D := span{, J¢} and negative
definite on D+.

= & and J¢ generate a hol. action of a 2-dim. Abelian Lie
algebra. We will assume that the action lifts to a principal
C*-action with the base M = M/C*. Then J¢ generates a
free isometric and Hamiltonian S'-action and M inherits a
Kahler metric g. (M, g) is called a projective special Kahler
(PSK) manifold.



Extrinsic construction of special Kahler manifolds |

The ambient space
V = (C?",Q,7), Q=>_dz' Adw;, T = cx. conjugation.
— pseudo-Hermitian form ~ := /—1Q(:, 7).

Definition
A holomorphic immersion ¢ : M — V is called nondegenerate if
¢* is nondeg. It is called Lagrangian if $*Q =0 and dim M = n.

Theorem [ACD]

» A nondeg. hol. Lagrangian immersion ¢ : M — V induces an
affine special pseudo-Kahler structure (J, g, V) on M.

» Every s.c. affine special (pseudo-) Kahler mf. (M, J, g, V) of
dim. n admits a nondeg. Lagr. immersion ¢ : M — V inducing
(J,g,V) on M. The immersion is unique up to affine
transformations with real symplectic linear part.



Extrinsic construction of special Kahler manifolds Il

Example (affine special pseudo-Kahler domains)

Let F be a holomorphic function defined on a domain M C C”
such that the matrix

(Nj) = (2Im F),

is nondeg, where F; = %, Fij = % etc. Then

p: M=V, z=(...,2")— (2,F1,...,Fn)

is a nondeg. Lagr. immersion and, thus, induces an affine special
pseudo-Kahler structure (J, g, V) on M.

Definition

Affine special pseudo-Kahler manifolds as in the above example are
called affine special pseudo-Kahler domains. The function F is
called a holomorphic prepotential.



Extrinsic construction of special Kahler manifolds Il

Since every Lagrangian submanifold of (V, Q) is locally defined by
equations w; = F;(z), i =1,...,n, for some hol. function F and
some choice of adapted coordinates (z', w;), we obtain:

Corollary

Let (M, J,g,V) be an affine special pseudo-Kihler manifold. Then
for every p € M there exists a neighborhood U isomorphic to an
affine special pseudo-Kahler domain.

Remark

Similar results hold for conical and projective special Kahler
manifolds. CASK manifolds are realized as conical hol. nondeg.
Lagrangian immersions. The corresponding prepotential is defined
on a C*-invariant domain M C C" and is required to be
homogeneous of degree 2 and to satisfy: > Njz'Z > 0 and the
real symmetric matrix (/) has signature (1,n—1) on M.



Extrinsic construction of special Kahler manifolds IV

Example (complex hyperbolic space as PSK domain)

F=y ((z0)2 - ZW)

j=1

on M = {|2°> = 327, [Z/]* > 0} € C"*! is a prepot. for a CASK
domain (M, J, g, V,&). The corresponding PSK domain is CH".



The supergravity r-map |: from projective special real to
projective special Kahler manifolds

» The sugra r-map can be described as follows [CHM]:

» Let H C R"*! be a PSR mf. and h the corresponding cubic
polynomial.

» Then U =R>%.3 c R"! is an open cone.

» We endow it with the Riem. metric
1
= —-9%Inh,
8u 3 n

isometric to the product metric dt? + g5 on R x ¥
» and finally the domain M = U x R™1 with the Riem. metr.

3 n+1 0 0
. 2 b as b ._
= 3 2 sa(H A Y ) g= s (5505



The supergravity r-map |l

Theorem
(i) (M, gg;) defined above is projective special Kahler with
respect to the cx. structure J defined by the embedding
M= UxR™ - C™  (x,y)—y+ix.

(i) The natural inclusions 3 C U = U x {0} C M are totally
geodesic.

» The correspondence 3 — (M, J, g) is the supergravity
r-map.
» It maps PSR mfs. of dim. n to PSK mfs. of (real) dim. 2n+2.



The supergravity c-map |: from projective special Kahler to
quaternionic Kahler manifolds

» The supergravity c-map metric (or Ferrara-Sabharwal metric)
grs resulting from dim. reduction of sugra coupled to vector
multiplets from 4 to 3 space-time dimensions was computed
in [FS]. The QK property was also proven in [Hi09].

> Here we follow [CHM]: In the case of a PSK domain (M, g;)
of dim. 2n the metric ggs has the following structure:

grs = 8y t &6

where gg is a family of left-invariant Riemannian metrics on
G = Iwa(SU(n + 2,1)) depending on p € M.

» In particular, ges is defined on the product N := M x G.

» The inclusion M = M x {e} C N is totally geodesic.



The supergravity c-map Il
The explicit form of the family of metrics (gc(p))pem:

4¢2d¢2 4¢2 (d¢+z Cldé — Gdd ) ¢Zgu p)dCidci

1 . - -
+352.9(p) (4G + 3" Ru(p)dc) (G + 3 Riulp)c)
> where (¢7 ggv Cla s 7Cn+1a 513 ce 75n+1) G — R>O X R2n+3 Is

a global coord. system on G =2 R?"+* and

» Rjj, Jjj are real and imaginary parts of

/72 Niz¥ N
FU + > Nk/zkzg

» determined by the prepot. F of the underlying CASK dom.
» J=(J;) > 0. Hence (39) = 71 is defined and g > 0.



The supergravity c-map Il
Geometric interpretation of the fiber metric

» (G, gc(p)) is isometric to CH™?2.
The principal part of

v

86 = 790" + gz (46 + 3G - Gdc)) 4 5

442

is related to the CASK domain 7 : M — M as follows:

¢>

v

M has a can. realization as a Lagrangian cone in
V = (C?"*2,Q, ), where gy = Re |y is induced.

Therefore we have a hol. map
M — Gry"(V) = Sp(R2"2)/U(1, n), p — Lp.
Composing it with the Sp(R?"+2)-equivariant embedding

v

v

Gy "(V) = Sym} 5,(R"?) = SL(2n +2,)/SO(2. 2n)

we obtain p — (giy(p)) € Syms ,,(R*"2).

I’



The supergravity c-map IV

Geometric interpretation of the fiber metric continued

>

In fact, > g1/(p)dq'dg’ = gm(p), VB € m~1(p), where
(q’)lzl’...,2n+2 are conical affine Darboux coordinates.

Next we change the indefinite scalar product (gy(p)) to
(&s(p)) > 0 by means of an Sp(R?>"*2)-equivariant diffeo.

P Fy"(V) = FJTH0(V) from Griffiths to Weil flags.

In the case of the CY3 moduli space this is related to the
switch from Griffiths to Weil intermediate Jacobians [C,Hi09]
This corresponds to switching the sign of the indefinite metric
gn on the negative definite distribution D

We show that the cx. symm. matrix R + ig € Symp10(C"*1)
corresponds to the pos. def. Lagrangian subspace L’ defined
by ¢(¢, L) = (¢, L"), where L =L, and ¢ = p = Cp. This
proves J > 0.

Finally we prove that g2 (p) = >_ g"(p)dq,dq,, where

(q1) = (&, &).



The supergravity c-map V

Concluding remarks

> The c-map can be obtained as an application of an indefinite
version of Haydys HK/QK-correspondence [ACM], see
[Ha,APP,Hi13,MS] for related work.

» This can be used to give a proof of the QK property for an
explicit 1-parameter deformation of the c-map metric
[ACDM], known as the one-loop correction (on next slide).

> In the general case, when the PSK mf. M is covered by PSK
domains, we show that the local Ferrara-Sabharwal metrics
are consistent and define a QK mf. N which fibers over M as
a bundle of groups with totally geodesic can. section M — N.

» This shows that the supergravity c-map is globally defined for
every PSK mf.



One-loop correction of the FS-metric

Consider the FS-metric associated with a PSK domain M. The
following symmetric tensor field is called one-loop correction of the
FS-metric [RSV]:

¢+ c 1 ¢+ 2c

c
= 7+
8Fs d) 8w 4¢2 ¢+C

b P (b YA - Gdd) +ie(d - )k
2

d¢?

42 ¢ + 2c
1 2 - -
+ 2% Z dq.&?"dq, + gbigex ‘Z(defj + Fi(X)d{)

where c € R, X/ = 2/ /2% and

K = —log (3 X'NyX)

is the Kahler potential for the projective special Kahler metric g;.



Simplest example of a one-loop corrected QK metric

Example
For M = pt, i.e. F = £(2°)2, we have:
c 1 (¢+2¢c, 5 O+C, ,» 0,5 » .0\
= d d dCo — Cod

+2(6 + 26)((dlo)? + (dC°)?))

with g0 the complex hyperbolic plane metric and g€ complete for
c>0.



Completeness of the one-loop corrected QK metric
Theorem [CDS,D]

» Let (M, g) be a PSK manifold with regular boundary
behaviour. Then the corresponding one-loop deformation ggg
is a family of complete QK metrics for ¢ > 0.

> Let (M, g) be a complete PSK manifold with cubic

prepotential. Then the corresponding one-loop deformation
gFs is a family of complete QK metrics for ¢ > 0.

Corollary [CDS,D]

All symmetric QK manifolds in the image of the c-map can be
deformed in this way by complete QK manifolds.

Remark

The only symmetric QK manifold of noncp. type which is not in
the image of the c-map is quaternionic hyperbolic space. Its metric
is also know to admit deformations by complete QK metrics [L].



Classification of complete PSR curves and surfaces
Theorem [CHM]

There are only 2 complete PSR curves (up to equivalence):
) {(x,y) e R?|x’y =1, x > 0},
i) {(x,y) € R?|x(x* —y?) =1, x > 0}

Theorem [CDL]

There are only 5 discrete examples and a 1-parameter family of
complete PSR surfaces:

a) {(x,y,z) €R3|xyz =1, x >0,y > 0},
b) {(x,y,z) € R3|x(xy — z?) = 1, x > 0},
c) {(x,y,2) € R3|x(yz+x?) =1, x <0,y > 0},
(x,y,2) € R3|z(x? + y? — 22), z < 0},
(x,y,2) ER|x(y? = 22) +y* =1,y < 0,x > 0},
y?z—ax34+3x22+ b2 =1,2<0,2x > z}, be (—1,1).

o

(S

) {
) {
) {
) {
) {-



Classification of complete PSR manifolds with reducible
cubic polynomial

Theorem[CDJL]
Every complete PSR manifold H C {h =1} Cc R"*!, n > 2, for
which h is reducible is linearly equivalent to exactly one of the

following:
a) {xo1(X0f x? = x2) =1, xpy1 < 0,x, > 0},
b) {(x1 + Xpt1)(C7y XF = x31) =1, X1+ xay1 < O},
o) PaXii = x3) =1, x1 <0,%41 >0},
d) e =M xA) =1, x>0}
» Under the g-map (composition of r- and c-map), these are
mapped to complete QK manifolds of co-homogeneity < 1.

» The series d) is mapped to a series of complete QK manifolds
of co-homogeneity 1.



Completeness of centroaffine hypersurfaces

Let H{ ¢ R™! be a centroaffine hypersurface with positive definite
centroaffine metric g.

We are interested in the relation between
1) closedness,
2) Euclidian completeness and

3) completeness (with respect to g).

Under natural assumptions:
3) =1) < 2).

Main problem:

Prove that 1) = 3) in some interesting cases.

Example: Theorem (Cheng and Yau, CPAM ‘89)
1) = 3) if H is an affine sphere, i.e. if Vv = 0.



Completeness of PSR manifolds and QK manifolds

Theorem [CNS]

A PSR manifold H C {h =1} C R™1 is complete if and only if
H C R™1 s closed.

Corollary

Let H be a locally strictly convex component of the level set

{h =1} of a homogeneous cubic polynomial h on R"*1. Then K
defines a complete quaternionic Kahler metric of negative scalar
curvature on R*"+8,

Applications

Using the Corollary we can construct many new explicit complete
QK manifolds and even families depending on an arbitrary number
of parameters, including multi-parameter defos of symm. spaces
[CDJL]. On top one can add 1 parameter by one-loop defo [CDS].



Sketch of proof of the theorem |

» Let 3 C R"*! be a Euclidian complete centroaffine
hypersurface with positive definite centroaffine metric g.

» We have to show that 3 is complete if H C {h =1} for a
homogeneous cubic polynomial h. Let us not assume this yet.

» Consider the open cone U = R>?. 3 c R"! and let k € R*.

Lemma 1

» There exists a unique smooth homogeneous function
h: U — R of degree k such that h|sc = 1.

» For every hyperplane E tangent to J{ the intersection
B:=UNE C E is a bounded convex domain.

¢©:B—H, x> h(x)"kx,

is a parametrization of K.



Sketch of proof of the theorem I

Lemma 2
In the above parametrization the centroaffine metric is given
k-1

1 e _
= —-—0?h+ ———dh?,
ET %k (kh)?

where h denotes the restriction of h to B and O denotes the flat
connection of the affine space E D B.

Lemma 3 _
Let k > 0. Assume that there exists ¢ € (0, k) such that f = “Vh
is concave. Then H is complete.

Sketch of pf. of Lemma 3

A calculation shows

k—c¢ 1 € = T
#= 1 () o™ > g




Sketch of proof of the theorem IlI

Let y:/=[0,T) = B, T € (0,00], be a curve which is not
contained in any compact subset of Band I 2 t; — T.

» Then h(~(t;)) — 0 and the previous estimate implies

t; d
L — In ho~dt

Y

t; d
L 1)>C —1Inh dt > C
(Yo,61) = /O il 0’7‘ >

= CInh(x(8)) ~ Inh(x(0))] > o0

Lemma 4
If his a cubic polynomial then Vh is concave

Lemma 4 shows that the assumptions of Lemma 3 are satisfied
with (k,€) = (3,1). This finishes the proof of the theorem. [J
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