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Classification Type II Heterotic AdS Global Analysis Conclusions

Why supergravity solutions

I Many of the developments in string theory and M-theory have
been driven by solutions that preserve a fraction of spacetime
supersymmetry

I Branes, Intersecting branes, Compactifications, solitons,
instantons, localization

I black holes, near horizon geometries, uniqueness (or
non-uniqueness) theorems

I AdS/CFT

I Applications to geometry: Geometries with skew-symmetric
torsion, special geometric structures, generalized geometry
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Classification

I Why have supersymmetric solutions not been classified already?

A typical Killing spinor equation in type II theory is

Dε = ∇ε+ Q(F)ε = 0

where D is the supercovariant connection, F fluxes.

Holonomy of D for generic backgrounds in in a sl(k, R) group;
k = 32 for D=11, IIA and IIB. [Hull; Duff, Liu; Tsimpis, GP]

I A consequence of this is that generically there are
supersymmetric backgrounds preserving any number of
supersymmetries!
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What does it mean to solve the KSEs?

I Assume that a background is supersymmetric, ie there exist one
or more ε 6= 0 that solve the KSEs, Dε = 0. Solution of the KSEs
means to find the restrictions on the fluxes and the geometry of
spacetime such that such a spinor ε exists.

I For this typically some of the fluxes are expressed in terms of
geometry, and the geometry of the spacetime must also be
restricted.

I To find solutions of the theory, some of the field equations and
Bianchi identities must also in addition be solved.
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Methods

I Investigate the integrability conditions to the KSEs

Works well for maximally supersymmetric solutions

I The bilinears or G-structures method

Works well for solving the KSEs for one Killing spinor. In
special cases this can be extended to more spinors

I Spinorial geometry method

It is very efficient for solving the KSEs for a small number of
Killing spinors and for a very large number of Killing spinors
(near maximal).

I There are other methods like use of twistors or generalized
geometry that apply for a special class of theories or solutions.
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Example of spinorial geometry

Consider the KSE of a Euclidean 6-D gauge theory in spinorial geometry [Gillard,
Gran, GP]

FCDΓCDε = 0

Since Spin(6) = SU(4) and ε in the 4 or 4̄ (Weyl) representations.

I The 4 representation is identified with Λev(C3) and the gamma matrices are

Γα =
√

2eα∧ , Γᾱ =
√

2eα y , ΓαΓβ̄ + Γβ̄Γα = 2δαβ̄

I The covariance group is SU(4) and has a single type of non-trivial orbit on 4
with isotropy group SU(3), and so ε can be chosen as ε = 1. This leads to a
linear system

FCDΓCD1 = Fᾱβ̄Γᾱβ̄1 + δαβ̄Fαβ̄1 = 0 =⇒ Fᾱβ̄ = 0 , δαβ̄Fαβ̄ = 0
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Maximally supersymmetric solutions

Investigating the integrability conditions of the KSEs one finds
[Figueroa, GP]

I The maximal supersymmetric solutions of D = 11 supergravity
are locally isometric to

R10,1, AdS4 × S7, AdS7 × S4, plane wave

I Maximal supersymmetric solutions of IIB supergravity are locally
isometric to

R9,1, AdS5 × S5, plane wave

I Maximal supersymmetric solutions of IIA supergravity are
locally isometric to

R9,1

I Massive IIA supergravity does not have a maximally
supersymmetric solution
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Nearly maximally supersymmetric solutions

Investigating the integrability conditions of the KSEs using spinorial
geometry and the field equations and Bianchi identities, one finds

I D = 11 supergravity solutions preserving ≥ 30 supersymmetries
are maximally supersymmetric [Gran, Gutowski, GP]

I IIB solutions preserving > 28 supersymmetries are maximally
supersymmetric, and there is a unique solution, a plane wave,
with strictly 28 supersymmetries. [Gran, Gutowski, Roest, GP]

I IIA solutions preserving ≥ 31 supersymmetries are locally
maximally supersymmetric [Bandos, Azcarraga, Varela]
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Homogeneity

Conjecture: All solutions of a supergravity theory preserving more than half of the
supersymmetry are homogenous. [Meessen]

Theorem: All solutions of D = 11, IIB and IIA supergravities that preserve strictly
more than 16 supersymmetries are homogeneous [Figueroa, Hustler]

Proof: In the Euclidean case, the proof is simple. If the vector bilinears do not span
the tangent space of the spacetime there is an X such that

XM〈ε1,ΓMε2〉 = 〈ε1, /Xε2〉 = 0

Thus the spinors /Xε for every Killing spinor ε are orthogonal to all Killing spinors,
and so

/X : K → K⊥

But /X2
= |X|21 and as X 6= 0, the map is an injection. However this cannot be if

dimK⊥ < dimK which is the case for more than 16 supersymmetries. Thus X = 0
and the spacetime is homogenous.
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N = 1

The KSEs of D=11, IIB and IIA supergravities have been solved for
one Killing spinor and the geometry of the spacetime has been
identified.
There are several local geometries that can occur distinguished by the
orbit of the Spin group in the space of spinors that the Killing spinor
belongs.

I D = 11: There are two types of (local) solutions for which the
isotropy group of the Killing spinor in Spin(10, 1) is either SU(5)
or Spin(7) n R9 [Pakis, Gauntlet, Gutowski; Gillard, Gran, GP]

I IIB: There are 3 types with Killing spinor isotropy groups in
Spin(9, 1) either Spin(7) n R8, or SU(4) n R8, or G2 [Gran, Gutowski,

GP]
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I IIA: There are 4 types of (local) solutions with Killing spinor
isotropy groups in Spin(9, 1) either Spin(7), or Spin(7) n R8, or
SU(4), or G2 n R8. [Gran, von Schultz, GP]

I In IIA and IIB, there are special cases where the solution of the
KSEs is especially simple.

I The requirements on the geometry in most cases are rather weak.
For compact isotropy groups, a typical requirement is the
existence of a time-like Killing vector field which leaves the
fields invariant as well as the Killing spinor. A similar statement
holds for the non-compact case with the difference that the
Killing vector is null.
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Heterotic supergravity

Heterotic supergravity: fields, a metric g, a closed 3-form field
strength H, dH = 0, and dilaton Φ.
The Killing spinor equations of Heterotic supergravities are

∇̂µε = ∇µε−
1
8

HµνρΓ
νρε = 0 ,

Γµ∂µΦε− 1
24

HµνρΓ
µνρε = 0 , ε ∈ ∆+

16

I Holonomy of the supercovariant connection:
hol(∇̂) ⊆ Spin(9, 1).

[∇̂, ∇̂]ε = R̂ε = 0

So either parallel spinors have a non-trivial isotropy group in
Spin(9, 1) or R̂ = 0 and the solutions are group manifolds.

I The KSEs of Heterotic supergravity have been solved in all cases
[Gran, Lohrmann, GP; Gran, Roest, Sloane, GP].
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Solution of KSE for dH = 0.

L Stab(ε1, . . . , εL) N

1 Spin(7) n R8 1

2 SU(4) n R8 −, 2

3 Sp(2) n R8 −, −, 3

4 (×2SU(2)) n R8 −, −, −, 4

5 SU(2) n R8 −, −, −, −, 5

6 U(1) n R8 −, −, −, −, −, 6

8 R8 −, −, −, −, −, −, −, 8

2 G2 −, 2

4 SU(3) −, 2, −, 4

8 SU(2) −, 2, −, 4, −, 6, −, 8

16 {1} 8, 10, 12, 14, 16
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SU(3)

M admits 4 ∇̂-parallel 1-forms λa, and a 2-form ω and a (3,0)-form χ,
fundamental forms of SU(3).

iaω = 0 , iaχ = 0 , Laω = 0 , Laχ = kaχ

The Lie algebra g of vector fields associate to λa is

R3,1 , sl(2,R)⊕ R , su(2)⊕ R , cw4

The spacetime locally is M = P(G,B6;π), Lie G = g equipped with
connection λa and B6 a Hermitian (KT) manifold with metric ds̃2

(6) and
Hermitian form ω(6) = ω. Then

ds2 = ηabλ
aλb + π∗ds̃2

(6) , H = CS(λ) + π∗H̃(6) , H̃(6) = −i(∂ − ∂̄)ω

g abelian: B6 is a Calabi-Yau with torsion, ie hol( ˆ̃∇) ⊆ SU(3). Moreover

θ̃ω(6) = 2d̃Φ , ∂aΦ = 0 , F ≡ dλ− λ2 ∈ su(3) .

where θ = ?(ω ∧ ?dω) is the Lee form.
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g non-abelian: B6 is Hermitian (KT) and hol( ˆ̃∇) ⊆ U(3). Moreover

ˆ̃ρ = kaFa , θ̃ω(6) = 2d̃Φ , ∂aΦ = 0 , Fa ∈ u(3) .

The complex trace of F is related k which is dual to the structure
constants of g.

I The geometry of the remaining cases is similarly known
I The half supersymmetric solutions associated with R8 and SU(2)

holonomies have been classified [GP]
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Special backgrounds

Apart from the general classification problem, there are several others for
special types of backgrounds for applications to black holes, AdS/CFT,
compactifications and others.

I Classification of supersymmetric black hole solutions and their near
horizon geometries

I Classification of warped AdS backgrounds (AdS/CFT,
compactifications)

I Classification of warped, flux Minkowski compactifications (can arise
as infinite AdS radius limits)

I Backgrounds used in localization techniques
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AdS backgrounds

The a priori number of sypersymmetries preserved by D=11, IIB and IIA
AdS backgrounds are [Beck, Gutowski, GP]

AdSn N
n = 2 2k, k < 16
n = 3 2k, k < 16
n = 4 4k, k ≤ 7, 32(D = 11)

n = 5 8, 16, 24, 32(IIB)

n = 6 16
n = 7 16, 32(D = 11)

Table: The proof for AdS2 requires the maximum principle. For the rest, no such assumption is
necessary. The bounds on k arise from the classification of solutions with near maximal
supersymmetry.
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AdS5 ,N = 24 and AdS6

Theorem: There are no smooth AdS5 solutions preserving N = 24
supersymmetries with compact without boundary internal space in all
type II and D = 11 supergravities.

There are plenty of AdS5 solutions apart from the IIB AdS5 × S5

preserving less supersymmetry [Gauntlett, Martelli, Sparks, Waldram; Piltch,

Warner; Maldacena Nunez; Itsios, Nunez, Sfetsos, Thomson] and a more systematic
investigation was done by [Apruzzi, Fazzi, Passias, Tomasiello].

Theorem: There are no smooth AdS6 solutions with compact without
boundary internal space in (massive) type IIA and D = 11
supergravities.

However there are AdS6 solutions in massive IIA [Brandhuber, Oz] and a
systematic investigation has been done in [Apruzzi, Fassi, Passias, Rosa,

Tomassiello]
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supergravities.

However there are AdS6 solutions in massive IIA [Brandhuber, Oz] and a
systematic investigation has been done in [Apruzzi, Fassi, Passias, Rosa,

Tomassiello]
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Minkowski supersymmetries

The a priori number of supersymmetries preserved by warped, flux,
Minkowski backgrounds in D = 11

Rn−1,1 ×w M11−n N
n = 2 unrestricted
n = 3 2k, k < 15
n = 4 4k, k ≤ 7
n = 5 8, 16, 24
n = 6 8, 16, 24
n = 7 16

Table: There is no a priori restriction on the number of supersymmetries preserved by
R1,1 ×w M9 backgrounds as the global techniques do not apply. The bounds on k arise from the
classification of supersymmetric solutions with near maximal supersymmetry.
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Heterotic

Theorem: In heterotic theory with dH = 0

I There are no AdSn, n > 3, supersymmetric backgrounds

I There are no smooth AdS2 backgrounds for which the internal space is
compact without boundary

I AdS3 backgrounds preserve 2,4,6 and 8 supersymmetries

I Smooth AdS3 backgrounds preserving 8 supersymmetries with compact
without boundary internal space are locally isometric to either
AdS3 × S3 × T4 or AdS3 × S3 × K3

I Although there is no classification of all possible backgrounds, there is
a clear overview of all possibilities and what equations should be solved
to achieve the task.
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Geometry

The geometry of AdS3 backgrounds is as follows:

N M7 Bk fibre
2 G2 − −
4 SU(3) U(3) S1

6 SU(2) self − dual−Weyl S3

8 SU(2) hyper − Kahler S3

Table: The G-structure of M7 is compatible with a connection with
skew-symmetric torsion. For N = 4, 6, 8, M7 is a local (twisted) fibration
over a base space Bk with fibre either S1 or S3 . The base spaces B are
conformally balanced with respect to the associated fundamental forms.
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Regularity

Regularity of certain classes of solutions, like compactifications, AdS
solutions and others is desirable as otherwise singularities require
some interpretation.

Regularity together with some topological assumptions on the spaces
involved provide powerful tools to solve field equations and KSEs

Supergravity theories have a so far un-explained deep relation with
the Hopf maximum principle

In many backgrounds of interest the solutions of the KSEs can be
identified with the zero modes of Dirac-like operators.
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Regularity of compactifications

Theorem: There are no flat or de-Sitter smooth warp flux compactifications
of 10- and 11-dimensional supergravities for which the internal space is
compact without boundary [Gibbons; Maldacena, Nunez]

Proof: It easily follows from the Einstein equations and in particular from
the field equation of the warp factor A,

ds2 = A2ds2(Mst) + ds2(Min)

which can be written as

∇2A + XiA−1∂iA− A2Rst = Q(F,A) ≥ 0

Applying the maximum principle leads to an inconsistency for Rst > 0 and
for Rst = 0 the fluxes must vanish F = 0.

I Higher order correction can alter this as well as allowing singularities

I It does not require supersymmetry
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New Lichnerowicz type of theorems for AdS

These arise in the investigation of AdS solutions and are instrumental in
understanding the symmetries of near horizon geometries

The warp, flux, AdSn, n > 2, backgrounds can be written as

ds2 = 2du(dr + rh) + A2(dz2 + e2z/`
n−3∑
a=1

(dxa)2) + ds2(M11−n) ,

with

e+ = du , e− = dr + rh , h = −2
`

dz− 2A−1dA ,

In these coordinates the Killing spinors of AdSn ×w M11−n backgrounds can
be written as

ε = σ+ − `−1
n−3∑
a=1

xaΓazτ+ + e−
z
` τ+ + σ− + e

z
` (τ− − `−1

n−3∑
a=1

xaΓazσ−)

−`−1uA−1Γ+zσ− − `−1rA−1e−
z
` Γ−zτ+ ,

where Γ±σ± = Γ±τ± = 0.
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The remaining independent KSEs on M11−n are

D(±)
i σ± = 0 , D(±)

i τ± = 0 ,

and

A(±)σ± = 0 , B(±)τ± = 0 ,

Example AdS6

D(±)
i = Di ±

1
2
∂i log A− 1

288
Γi

j1j2j3j4 Xj1j2j3j4

A(±) = −1
2

ΓzΓ
i∂iA±

1
2`

+
1

288
ΓzAΓj1j2j3j4 Xj1j2j3j4

B(±) = A(±) ± 1
`
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One can establish new Lichnerowicz type theorems as

D (±)σ± = 0⇐⇒ D(±)
i σ± = 0 , A(±)σ± = 0 ,

These are based on maximum principle formulae

D2 ‖ A−1σ− ‖2 +nA−1∂iA∂i ‖ A−1σ− ‖2= 2A−2〈D(−)
i σ−,D(−)iσ−〉

+2
9n− 18
11− n

A−2 ‖ A(−)ψ ‖2 ,

where D(−)
i = D(−)

i + 2−n
11−n ΓiA(−) and D (±) = ΓiD(±)

i .

I If the solution is smooth, the warp factor A is nowhere zero.

I A similar theorem for near horizon geometries together with the index
theorem have been instrumental to prove the existence of sl(2,R)
symmetry.
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Conclusion

I Apart from a few cases, there is no handle over the geometry of the vast
majority of supersymmetric backgrounds in type II theories

I But there is a guiding paradigm that of the classification in heterotic
theory

I There are stronger results for special backgrounds, like AdS, but again
the results are not complete specially in type II theories

I Progress for the classification of black holes and black hole horizons is
less advanced. For the latter part of it is the classification of AdS2
backgrounds. Stronger results are known in lower dimensions.

I Global methods based on analysis and topology may lead to new
insights.

I There are plenty of open problems but some advances in technique are
also necessary.
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