

The universe appears complex and structured on many scales ...

How can we describe it by a simple mathematical model?

Although the universe is lumpy, it seems to become smoother and smoother when averaged over larger and larger scales ...

Hubble (1926) showed that the distribution of *faint* galaxies is **homogeneous**, i.e. $N(>S) \propto S^{-3/2} \Rightarrow N(<m) \propto 10^{0.6m}$, where $m \equiv -2.5 \log (S/S_0)$

Here is the test done on galaxies in the **Sloan Digital Sky Survey** NB: For stars, $N(< m) \propto 10^{0.4m}$, reflecting their 2D distribution

Velocity (redshift) is *proportional* to distance, so $z = 0.1 \Rightarrow d \sim 500$ Mpc

The cosmic microwave background (blackbody spectrum with $T=2.7255 \pm$ 0.0006 K) is isotropic to 1 part in $\sim 10^5$ (after a x100 larger dipole anisotropy is removed)

When we look out in distance, we look *back in time* so what we see makes sense if the universe was denser (hence hotter) when it was younger ... back to the Big Bang:

Open Question: The CMB exhibits a dipole anisotropy with amplitude 3.355 ± 0.008 mK, ascribed to our local 'peculiar' motion with $v = 369.0 \pm 0.9$ km/s towards the Shapley supercluster. It is *after* we boost to this frame that we see the CMB as isotropic. However using SNe Ia to trace the Hubble flow, convergence to the CMB frame has *not* occured even as far out as $z \sim 0.07$ (~300 Mpc)! Colin *et al*, MNRAS **414**:264,2011, Feindt *et al*, A&A **560**:A90,2013

Eppur si muove!

This is what our universe actually looks like out to a few hundred Mpc

It is not clear where the transition to homogeneity occurs (often quoted as ~100 Mpc)

Crucially all we can ever learn about the universe is contained within our past light cone

We *cannot* move over cosmological distances and check that the universe looks the same from other view points ... so we must *assume* the validity of the 'Cosmological Principle' (Milne 1935) viz. our position is *typical*

Special relativity

 $ds^2 = \sum g_{ij} dx^i dx^j \dots$ interval between events x^i and $x^j (i, j = 0, 1, 2, 3)$ $g_{ij}(x) \equiv g_{ji}(x) \rightarrow 10$ independent functions

Minkowski metric

$$\eta_{ij} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}, \quad \frac{\delta g_{ij}}{\delta x^k} = 0 \quad \Rightarrow \mathrm{d}s^2 = \mathrm{d}t^2 - \mathrm{d}x^2 - \mathrm{d}y^2 - \mathrm{d}z^2$$

... invariant under Lorentz velocity transformations, *i.e. equivalent* to local inertial coordinates of Newtonian mechanics

General relativity

Now g_{ij} is related to the **distribution of matter** ... but $g_{ij} = \eta_{ij}$ is a solution in the *absence* of matter – contrary to **Mach's principle***!

* inertial frames are determined relative to the motion of the matter ("distant stars") in the universe

Einstein (1919) saw two possible ways out:

* add suitable boundary conditions to eliminate anti-Machian solution, *viz*. let g_{ij} take some pathlogical form (rather than becoming η_{ij}) when far away from all matter χ ... however de Sitter pointed out pheonomenological problems with this idea!

- Postulate that the matter distribution is **homogeneous** (in the average) and that matter causes space to curve so as to close in on itself (3D analogue of a 2D balloon)
- \rightarrow Spatial volume finite but *no boundaries* and a non-singular metric everywhere

Einstein's world model

Homogeneity $\Rightarrow \frac{d\mathcal{N}}{dm} \propto 10^{0.6m}$... as observed later (Hubble 1926)

... incorporating Milne's 'Cosmological Principle'

 $ds^2 = dt^2 + g_{\alpha\beta} dx^{\alpha} dx^{\beta} \dots$ synchronous gauge (dense set of comoving observers)

This is the 'standard model' we are still using *today* to interpret all observations

Picture the spatial part as S^3 (3D analogue of balloon, embedded in flat 4D space)

Set of points defining S³:
$$R^2 = x^2 + y^2 + z^2 + w^2$$

where: $r^2 = x^2 + y^2 + z^2$

D Line element: $dl^2 = dx^2 + dy^2 + dz^2 + dw^2$
i.e. $dl^2 = dx^2 + dy^2 + dz^2 + r^2 dr^2/(R^2 - r^2)$
Polar coordinates ($z = r\cos\theta$, $x = r\sin\theta\cos\varphi$, $y = r\sin\theta\sin\varphi$):
 $dl^2 = dr^2 + r^2 (d\theta^2 + \sin^2\theta d\varphi^2) + r^2 dr^2/(R^2 - r^2)$
 $= dr^2/(1 - r^2/R^2) + r^2 (d\theta^2 + \sin^2\theta d\varphi^2)$

or, $ds^2 = dt^2 - R^2 [d\chi^2 + \sin^2\chi (d\theta^2 + \sin^2\theta d\phi^2)]$, where, $r = R \sin\chi$, $\chi \Rightarrow$ polar angle of hypersphere

Note interesting visual effects in curved space (when $r \sim R$), e.g. the angular size $\delta = D/R \sin \chi$ reaches minimum at $\chi = \pi/2$ and diverges to fill the entire sky when $\chi = \pi$ (this point is the just the 'Big Bang' – the antipodal point of the hypersphere)

Also the parallax, $\varepsilon = A \cot \varphi / R$, *vanishes* at $\chi = \pi / 2$

The 3 possible geometries of maximally-symmetric space

The expanding universe (Friedmann 1922, Lemaitre 1931)

Generalise line element: ${}^{c}\nabla R(t) = R_0 a(t)$

 $ds^{2} = dt^{2} - a^{2}(t) R_{0}^{2} [d\chi^{2} + \sin^{2}\chi (d\theta^{2} + \sin^{2}\theta d\varphi^{2})]$... a spatially **closed** expanding universe

To describe a spatially **open** expanding universe, change: $\chi \rightarrow i\chi$, $R_0 \rightarrow iR_0$, so $ds^2 = dt^2 - a^2(t) R_0^2 [d\chi^2 + \sinh^2\chi (d\theta^2 + \sin^2\theta d\phi^2)]$

This is the Robertson-Walker line element (maximally-symmetric space-time):

$$ds^{2} = dt^{2} - a^{2}(t) \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2} d\theta^{2} + r^{2} \sin^{2}\theta d\phi^{2} \right]$$

Homogeneous and isotropic world models

The redshift happens because, for null geodesics:

$$\int_t^{t_0} \frac{\mathrm{d}t}{a(t)} = \int_0^r \frac{\mathrm{d}r}{\sqrt{1-kr^2}} = \mathrm{const}$$

... for a galaxy (in co-moving coordinates), so crests of adjacent waves, separated by Δt at emission, will be received with separation, Δt_0 :

$$\frac{\Delta t_0}{\Delta t} = 1 + \frac{\Delta \lambda}{\lambda_0} \equiv 1 + z = \frac{a(t_0)}{a(t)}$$

This is the cosmological time dilation or redshift: $z = \infty$ is the 'Big Bang' at t = 0(the antipodal point of the hypersphere \Rightarrow the furthest we can look back in principle)

Everything is not expanding (how would we know?) ... certainly not bound structures like atoms or planets or galaxies – it is only the large-scale *smoothed* space-time metric which is stretching with cosmic time (and there is no restriction on the rate!)

The 'expansion' is in a sense *illusory* ... because we can always transform to a "comoving" coordinate system where *galaxies are at rest* wrt each other

Ideal fluid:
$$T_{ij} = \begin{pmatrix} \rho & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix}$$

Poisson's equation: $\nabla g = -4\pi G_N(\rho + 3p)$

Birkhoff's theorem: If $T_{ij} = 0$ in some region within a spherically symmetric distribution of matter, then the solution in the hole \Rightarrow flat space-time

Einstein's field equations

$$R_{ij} + \frac{1}{2}g_{ij}R_{c} = 8\pi G_{N}T_{ij}$$
, where $R_{ij} \equiv g^{\lambda k}R_{\mu\nu\lambda k}$ and $R_{c} \equiv g^{\mu\nu}R_{\mu\nu}$

For the RW metric, the 00 and 11 components simplify to the Friedmann equations:

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G_{\rm N}}{3}\rho - \frac{k}{a^2}$$
$$\left(\frac{\ddot{a}}{a}\right) = -\frac{4\pi G_{\rm N}}{3}(\rho + 3p)$$

'Newtonian' cosmology

Consider sphere of radius *l* embedded in homogeneous background (McCrea & Milne 1934): $\ddot{\ell} = -G_{\rm N}M/r^2 = -\frac{4\pi}{3}G_{\rm N}(\rho + 3p)\ell; \text{ also } dU \equiv \rho dV + V d\rho = -p dV$ $\Rightarrow \dot{\rho} = -(\rho + p)\frac{\dot{V}}{V} = -3(\rho + p)\frac{\dot{\ell}}{\ell} \dots \text{ energy eq. for ideal fluid}$ So, $\ddot{\ell} = \frac{8\pi}{3}G_{\rm N}\rho\ell + \frac{4\pi}{3}G_{\rm N}\dot{\rho}\frac{\ell^2}{\dot{\ell}} \Rightarrow \dot{\ell}^2 = \frac{8\pi}{3}G_{\rm N}\rho\ell^2 + K$

To obtain a *static* solution (Einstein's "greatest blunder") we have to set: $\rho + 3p = 0$ i.e. $p = -\frac{\rho}{3}$ (!) \Rightarrow universe of radius: $\mathcal{R}^2 = -\frac{\ell^2}{k} = [\frac{8\pi}{3}G_N\rho]^{-1}$

The static solution is in fact *unstable* (metric perturbations grow exponentially fast) but we do *not* have the freedom, as Einstein said, to "do away with the cosmological constant" ... it is a necessary consequence of **general coordinate invariance** which allows an *arbitrary* constant multiplying the metric tensor to be added to the l.h.s.

So must modify the field equations to: $R_{ij} + \frac{1}{2}g_{ij}R_c - \Lambda g_{ij} = 8\pi G_N T_{ij}$ The Λ term can be *interpreted* (when moved to r.h.s.) as a fluid with: $\rho_{\Lambda} = -p_{\Lambda} = \Lambda/8\pi G_N$ **FLRW Dynamics**

$$\frac{\ddot{a}}{a} = -\frac{4\pi G_{\rm N}}{3}(\rho + 3p) \pm \frac{1}{a^2 \mathcal{R}^2} \to -\frac{4\pi G_{\rm N}}{3}(\rho_{\rm b} + 3p_{\rm b}) \pm \frac{1}{a^2 \mathcal{R}^2} + \frac{\Lambda}{3}$$

 $b \Rightarrow$ 'background' (i.e. "ordinary" matter/radiation)

Conservation of energy-momentum: $\dot{\rho_{\rm b}} = -3(\rho_{\rm b} + p_{\rm b})\frac{a}{a}$ $\Rightarrow \left(\frac{\dot{a}}{a}\right)^2 \equiv H^2 = \frac{8\pi G_{\rm N}}{3}\rho_{\rm b} \pm \frac{1}{a^2 R^2} + \frac{\Lambda}{3}$, where + is open/- is closed universe

Two interesting solutions describing an expanding universe:

Einstein-de Sitter:... excellent description of early universe e.g. decoupling of CMB $p_{\rm b} \ll \rho_{\rm b}, \Lambda = \frac{1}{a^2 \mathcal{R}^2} = 0 \Rightarrow a(t) \propto t^{2/3}, t = \frac{2}{3H} = \frac{1}{\sqrt{6\pi G_{\rm N}\rho}}$ de Sitter:... used to describe early era of accelerated expansion: 'inflation' $\rho_{\rm b} = p_{\rm b} = 0 \Rightarrow a(t) = \exp(H_{\Lambda}t), \text{ where } H_{\Lambda} = \sqrt{\frac{\Lambda}{3}}$

The general solution is for an universe expanding under the influence of both matter (including radiation) and a cosmological constant ("dark energy")

This is today our 'standard model' of the universe ...

dominated by Λ ("dark energy") and undergoing accelerated expansion

But because it is 'simple' and fits "all the observational data" does *not* mean it is right ... when we lack a *physical* understanding of Λ