

Universidad de Oviedo

Electroweak production with multileptonic final state in the CMS experiment

Ignacio Suárez Andrés

Universidad de Oviedo Taller de Altas Energías 2016, Benasque

List of contents

- WZ cross section measurement
 - CMS-SMP-16-002, submitted to Phys. Lett. B

- Search for electroweak SUSY production
 - CMS-PAS-SUS-16-024, presented in ICHEP2016

WZ cross section measurement

Motivation

- First measurement of WZ cross section at 13 TeV.
- Very important background source in multileptonic BSM searches.
- Potential tests for anomalous triple gauge couplings (aTGC).

Main background: *fake* leptons

Prompt lepton: lepton coming from the main interaction vertex, such as from a vector boson or some BSM process.

Non-prompt (*fake*) lepton: lepton contained in a jet, jet misidentified as a lepton, etc.

Data-driven approach: *tight-to-loose* method.

Efficiency of preselected (*loose*) prompt and non-prompt leptons passing the final selection (*tight*) is estimated from data in dedicated control regions.

Data events failing to pass lepton requirements enter the analysis region with a weight based on these probabilities.

$$Cut \qquad N^{\text{loose}} = N^{\text{loose}}_{\text{real}} + N^{\text{loose}}_{\text{fake}} + \epsilon_{\text{fake}} N^{\text{loose}}_{\text{fake}} + \epsilon_{\text{fake}} N^{\text{loose}}_{\text{fake}}$$

Selection

Results

- 60 < $m_{
 m Z}$ < 120 GeV
- $p_T^{\ell Z1} > 20 \text{ GeV}$
- $p_T^{\ell Z2} > 10 \text{ GeV}$
- $p_T^{\ell W} > 20 \text{ GeV}$
- $|\eta^{\ell Z 1/Z 2/W}| < 2.5$

	Theoretical predictions	Fiducial	Total (in 60 < $m_{ m Z}$ < 120 GeV range)
0 GeV v	NLO (мсғм with NNPDF3.0 PDFs, dynamic QCD scales)	274 ⁺¹¹ (scale) ± 4 (PDF) fb	42.3 ^{+1.4} (scale) ± 0.6 (PDF) pb
V V < 2.5	NNLO (MATRIX with NNPDF3.0 PDFs, fixed QCD scales)	_	50.0 ^{+1.1} (scale) pb
	NNLO (мсғм with NNPDF3.0 PDFs, fixed QCD scales)	291 $^{+16}_{-13}$ (scale) ± 4 (PDF) fb	44.9 $^{+2.2}_{-1.8}$ (scale) ± 0.7 (PDF) pb

Measurement

Fiducial:

 $\sigma_{fid}\left(pp \rightarrow WZ \rightarrow \ell v \ell' \ell'\right) = 258 \pm 21 \text{ (stat)} ^{+19}_{-20} \text{ (syst)} \pm 8 \text{ (lumi) fb}$

Total (in 60 < $m_{\ell^+\ell^-}$ < 120 GeV range): σ (pp \rightarrow WZ) = 39.9 ± 3.2 (stat) $^{+2.9}_{-3.1}$ (syst) ± 0.4 (theo) ± 1.3 (lumi) pb

Search for electroweak SUSY production

Guiding models

subleading models: no or little sensitivity expected (or signal is not ready)

Final state channels

nOSSF = number of OSSF pairs (ee, $\mu\mu$, $\tau\tau$) nOSOF = number of OS different flavour pairs (ee, $\mu\mu$, e μ)

category

kinematics

isolation

impact parameters

lepton's closest jet

identification

Lepton MVA

New MVA lepton identifier developed.

Improved signal efficiency and background rejection wrt ID used in similar previous analyses.

Boosted Decision Tree: Leptons from ttZ vs semileptonic tt

input variables

PF miniRellso, charged had. (R=0.3)

segment compatibility (for muons)

POG electron ID non-trig. MVA (for electrons)

3D IP significance (SIP3D)

pTratio (= pT(lep)/pT(jet))

lepton's pTrel w.r.t. jet

#charged tracks in jet

2D IP|dxy| and |dz|

PT

n

(lepAware JEC applied) jet CSVv2 b-tag

Baseline selection

selection	same-sign dilepton channel	trilepton channel	4-lepton channel
#leptons	2, same charge	3	> 3
lepton p_T for $e(\mu)$	25(20)/15(10)	25(20)/15(10)/10	25(20)/15(10)/10/10
#taus	0	0, 1, 2	≥ 0
lepton p_T for $\tau_h(e/\mu)$	-	20(30/25)	20
#jets	0, 1	≥ 0	≥ 0
veto events with OSSF pair MII<12			
veto events with on-Z M3L	×	(in certain categories)	×
veto events with >0 b-tagged jet			
MET	> 60	> 50	> 0
overlap removal	no third lepton	no fourth lepton	×

Main background: WZ

- Exactly 3 light leptons (lepton MVA VT)
- 0 or 1 jet
- 0 b-tagged jets
- OSSF pair with 75 < $M_{\ell^+\ell^-}$ < 105 GeV
- $35 < E_{\rm T}^{\rm miss} < 100 \,{\rm GeV}$
- $M_{\rm T}^{\rm W} < 120 \, {\rm GeV}$

CR used to constrain WZ background. Negligible signal contamination, except for $\tilde{\chi}^{\pm}\tilde{\chi}^{0} \rightarrow$ WZ models with $\Delta M \sim M_{Z}$ (WZ-like kinematics). Additional uncertainty. Overlap with SRA13 \rightarrow substituted in the interpretation.

Most relevant signal regions

Categorization based on:

- p_{T}^{ll}
- *M*_T
- $E_{\mathrm{T}}^{\mathrm{miss}}$

Categorization based on:

- $M_{\ell^+\ell^-}$
- *M*_T
- $E_{\rm T}^{\rm miss}$

Flavor-democratic SlepSneu

Flavor-democratic SlepSneu

au-dominated SlepSneu

WZ

Conclusions

- WZ cross section measurement with 13 TeV data (2015, 2.3 fb⁻¹)
 - Measured value noticeably lower than NNLO prediction: future measurements should shed some light on this.
- Electroweak SUSY production (2016, 12.9 fb⁻¹)
 - Expanded exclusion upper limits on several models with combination of same-sign dilepton and multileptons.
 - No SUSY found (otherwise you would probably know already).

Thank you for your attention!

