Extensions of the Standard Model scalar sector

Ana Peñuelas Martínez in collaboration with A. Pich

Instituto de Física Corpuscular (IFIC)

Taller de Altas Energías 2016, Benasque

Ana.Penuelas@ific.uv.es

September 7, 2016

Contents

- Introduction
 - Standard Model
 - Motivation
- 2 Higgs singlet extension
 - The model
 - Phenomenology and fits
 - Heavy scenario
 - Light scenario
- The Aligned Two Higgs doublets

- Scalar potential and symmetry breaking
- Yukawa sector
- Phenomenology and Higgs signal strengths
- Global fits in the A2HDM
 - ullet Light CP-even Higgs with H^\pm loop
 - Light CP-odd Higgs
- 4 Conclusions

Overview

- Introduction
 - Standard Model
 - Motivation
- 2 Higgs singlet extension
 - The model
 - Phenomenology and fits
 - Heavy scenario
 - Light scenario
- The Aligned Two Higgs doublets

- Scalar potential and symmetry breaking
- Yukawa sector
- Phenomenology and Higgs signal strengths
- Global fits in the A2HDM
 - Light CP-even Higgs with H^{\pm} loop
 - Light CP-odd Higgs
- Conclusions

Introduction. Standard Model

 The SM is the theory better describing elementary particles and their interactions

• Local gauge invariance under $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \Rightarrow$ massless particles

- To generate masses ⇒ spontaneously symmetry breaking
- We introduce the complex doublet

$$\phi(x) = \begin{bmatrix} \phi^{(+)}(x) \\ \phi^{(0)}(x) \end{bmatrix}$$

Minimum of the potential for

$$\begin{bmatrix} 0 \\ \sqrt{\frac{-\mu^2}{2h}} \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{v}{\sqrt{2}} \end{bmatrix}$$

•
$$\rightarrow \phi(x) = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ v + H(x) \end{bmatrix}$$

Introduction. Motivation

The Higgs mechanism is the simplest to generate masses in the SM

Introduction. Motivation

 Different alternatives would both reproduce the content of the SM as well as including some new ingredients

$$\rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_{\rm w}} = \sum_i \frac{v_i^2 [T_i (T_i + 1) - Y_i^2]}{2 \sum_i v_i^2 Y_i^2} = 1,$$

Introduction. Motivation

ullet The experimental data will be connected through μ

$$\mu = \frac{\sigma(pp \to h_2 Y)}{\sigma(pp \to HY)_{SM}} \frac{\mathrm{BR}(h_2 \to X)}{\mathrm{BR}(H \to X)_{SM}}$$

• The χ^2 function will be minimized

$$\chi^2(\varphi_i^0) = \sum_k \frac{\left(\mu_k^{\varphi_i^0} - \mu_k\right)^2}{\sigma_k^2} \,,$$

Overview

- Introduction
 - Standard Model
 - Motivation
- 2 Higgs singlet extension
 - The model
 - Phenomenology and fits
 - Heavy scenario
 - Light scenario
- The Aligned Two Higgs doublets

- Scalar potential and symmetry breaking
- Yukawa sector
- Phenomenology and Higgs signal strengths
- Global fits in the A2HDM
 - Light CP-even Higgs with H^{\pm} loop
 - Light CP-odd Higgs
- 4 Conclusions

Higgs singlet extension. The model

• Simplest extension of the SM: A real bosonic singlet invariant under all the quantum numbers of the SM is added (φ)

doing
$$\varphi o \varphi + \langle \varphi \rangle$$

$$V(\phi, \varphi) = \mu^2(\phi^\dagger \phi) + h(\phi^\dagger \phi)^2 + (a\varphi + b\varphi^2 + c\varphi^3 + d\varphi^4) + (\phi^\dagger \phi)(A\varphi + B\varphi^2) + V_0$$

with h > 0, d > 0, B > 0 (increasing), det H > 0 (bounded) i $\mu^2 < 0$

$$\langle 0 | \phi | 0 \rangle = \begin{bmatrix} 0 \\ \frac{v}{\sqrt{2}} \end{bmatrix}, \qquad \langle 0 | \varphi | 0 \rangle = 0.$$

$$\begin{split} \phi(x) &= e^{i\frac{\sigma_i}{2}\theta^i(x)} \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ v + H(x) \end{bmatrix} \xrightarrow{\text{unitary gauge}} \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ v + H(x) \end{bmatrix} \,, \\ \varphi(x) &\xrightarrow{\text{unitary gauge}} \varphi(x) \,. \end{split}$$

Higgs singlet extension. The model

$$V = \underbrace{-\frac{1}{4}hv^4 + V_0'}_{V_0} + \underbrace{\left(hvH^3 + \frac{h}{4}H^4\right)}_{\text{Higgs self-interactions}} + \underbrace{\left(c\varphi^3 + d\varphi^4\right)}_{\varphi \text{ self-interactions}} + \underbrace{\frac{1}{2}M_H^2H^2 + \frac{1}{2}M_\varphi^2\varphi^2 + Av\varphi H}_{\text{mass terms}} + \underbrace{Bv\varphi^2H + \frac{1}{2}AH^2\varphi + \frac{1}{2}BH^2\varphi^2}_{\text{H-}\varphi \text{ interactions}},$$

$$\begin{bmatrix} h_1 \\ h_2 \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} H \\ \varphi \end{bmatrix}, \qquad m_{h_{1,2}}^2 = \frac{M_H^2 + M_\varphi^2}{2} \pm \frac{|M_H^2 - M_\varphi^2|}{2} \sqrt{1 + \tan^2 2\theta} \,.$$

Phenomenology and fits

$$\mathcal{L}_{\mathrm{Y}} = -\frac{1}{\sqrt{2}} \Big(1 + \frac{h_1 \cos \theta - h_2 \sin \theta}{v} \Big) \Big(c_2 \overline{d} d + c_2 \overline{u} u + c_3 \overline{e} e \Big) \,.$$

Reduction of the couplings with respect to the SM

$$\begin{split} \kappa_V^{h_1} &\equiv g_{h_1 VV}/g_{HVV}^{SM} = \cos\theta \,, \qquad \kappa_f^{h_1} &\equiv y_{h_1 f\!f}/y_{Hf\!f}^{SM} = \cos\theta \,, \\ \kappa_V^{h_2} &\equiv g_{h_2 VV}/g_{HVV}^{SM} = -\sin\theta \,, \qquad \kappa_f^{h_2} &\equiv y_{h_2 f\!f}/y_{Hf\!f}^{SM} = -\sin\theta \,. \end{split}$$

$$\begin{split} \Gamma_{\mathit{h}_1} &= \Gamma_{\mathit{SM}} \cos^2 \theta + \underbrace{\Gamma_{\mathit{h}_1 \to \mathit{h}_2 \mathit{h}_2}}_{\text{if allowed}}, \\ \Gamma_{\mathit{h}_2} &= \Gamma_{\mathit{SM}} \sin^2 \theta \,. \end{split}$$

$$\Gamma_{h_1 \to h_2 h_2} = \frac{|\widetilde{\mu}|^2}{8\pi m_{h_1}} \sqrt{1 - \frac{4m_{h_2}^2}{m_{h_1}^2}} \,,$$

Phenomenology and fits. Heavy scenario

The cross sections

$$\frac{\sigma(pp \to h_2 Y)}{\sigma(pp \to HY)_{SM}} = \sin^2 \theta.$$

• For the branching ratios

$$\frac{\mathrm{BR}(\textit{h}_2 \rightarrow \textit{X})}{\mathrm{BR}(\textit{H} \rightarrow \textit{X})_{\textit{SM}}} = \frac{\Gamma(\textit{h}_2 \rightarrow \textit{X})}{\Gamma_{\textit{h}_2}} - \frac{\Gamma_{\textit{H},\textit{SM}}}{\Gamma(\textit{H} \rightarrow \textit{X})_{\textit{SM}}} = \frac{\sin^2 \theta}{1} \frac{1}{\sin^2 \theta} = 1 \, .$$

All the strengths are identical

$$\mu = \sin^2 \theta$$

Results of the fit (χ^2)

$$\sin \theta = 0.99 \pm 0.01$$
, $\chi^2/\text{d.o.f.} = 0.55$

Phenomenology and fits. Heavy scenario

Phenomenology and fits. Light scenario

The cross sections

$$\frac{\sigma(pp \to h_1 Y)}{\sigma(pp \to HY)_{SM}} = \cos^2 \theta.$$

For the branching ratios, with the additional decay

$$\begin{split} &\frac{\mathrm{BR}(h_1 \to X)}{\mathrm{BR}(H \to X)_{SM}} = \frac{\Gamma_{h_1 \to X}}{\Gamma_{h_1}} \frac{\Gamma_{H,SM}}{\Gamma_{H \to X,SM}} \\ &= \frac{\cos^2 \theta \Gamma_{H,SM}}{\cos^2 \theta \Gamma_{H,SM} + \Gamma_{h_1 \to h_2 h_2}} = \frac{1}{1 + \frac{\Gamma_{h_1 \to h_2 h_2}}{\cos^2 \theta \Gamma_{H,SM}}} \,. \end{split}$$

All the strengths are identical

$$\mu = \cos^2\theta \times \frac{1}{1 + \frac{\Gamma_{h_1 \to h_2 h_2}}{\cos^2\theta \Gamma_{H,SM}}} = \frac{\cos^4\theta}{\cos^2\theta + \frac{\Gamma_{h_1 \to h_2 h_2}}{\Gamma_{H,SM}}}.$$

Results of the fit (χ^2)

$$\cos \theta = 0.99 \pm 0.01$$
, $\Gamma_{h_1 \to h_2 h_2} = 0$, $\chi^2 / \text{d.o.f.} = 0.55$

Overview

- Introduction
 - Standard Model
 - Motivation
- 2 Higgs singlet extension
 - The model
 - Phenomenology and fits
 - Heavy scenario
 - Light scenario
- The Aligned Two Higgs doublets

- Scalar potential and symmetry breaking
- Yukawa sector
- Phenomenology and Higgs signal strengths
- Global fits in the A2HDM
 - Light CP-even Higgs with H^{\pm} loop
 - Light CP-odd Higgs
- 4 Conclusions

A2HDM. Scalar potential and symmetry breaking

A doublet with the same quantum numbers of the SM one is added

$$\phi_1 = \begin{bmatrix} \phi_1^{(+)} \\ \phi_1^{(0)} \end{bmatrix} \,, \qquad \phi_2 = \begin{bmatrix} \phi_2^{(+)} \\ \phi_2^{(0)} \end{bmatrix} \,.$$

General form of the vev

$$\left\langle 0 \right| \phi_1 \left| 0 \right\rangle = rac{1}{\sqrt{2}} \left[egin{matrix} 0 \\ v_1 e^{i heta_1} \end{matrix}
ight] \,, \qquad \left\langle 0 \right| \phi_2 \left| 0 \right\rangle = rac{1}{\sqrt{2}} \left[egin{matrix} 0 \\ v_2 e^{i heta_2} \end{matrix}
ight] \,.$$

ullet U(1) transformation to eliminate one of the phases

$$\left\langle 0\right|\phi_{1}\left|0\right\rangle =\frac{1}{\sqrt{2}}\begin{bmatrix}0\\v_{1}\end{bmatrix}\;,\qquad\left\langle 0\right|\phi_{2}\left|0\right\rangle =\frac{1}{\sqrt{2}}\begin{bmatrix}0\\v_{2}e^{i\theta_{2}-\theta_{1}}\end{bmatrix}=\frac{1}{\sqrt{2}}\begin{bmatrix}0\\v_{2}e^{i\varepsilon}\end{bmatrix}\;.$$

A2HDM. Scalar potential and symmetry breaking

• SU(2) transformation in the scalar space $(\phi_1, \phi_2) \rightarrow$ just one of the doublets acquire a vev

$$\begin{bmatrix} \Phi_1 \\ -\Phi_2 \end{bmatrix} = \frac{1}{v} \begin{bmatrix} v_1 & v_2 \\ v_2 & -v_1 \end{bmatrix} \begin{bmatrix} \phi_1 \\ e^{-i\varepsilon}\phi_2 \end{bmatrix} = \frac{1}{v} \begin{bmatrix} v_1\phi_1 + e^{-i\varepsilon}v_2\phi_2 \\ v_2\phi_1 - e^{-i\varepsilon}v_1\phi_2 \end{bmatrix} \,,$$

with $v^2 = v_1^2 + v_2^2$.

Excitations over the vacuum

$$\Phi_1 = \begin{bmatrix} G^+ \\ \frac{1}{\sqrt{2}} (v + S_1 + iG^0) \end{bmatrix}, \qquad \Phi_2 = \begin{bmatrix} H^+ \\ \frac{1}{\sqrt{2}} (S_2 + iS_3) \end{bmatrix}.$$

$$\begin{split} V &= \mu_{1}^{2}(\Phi_{1}^{\dagger}\Phi_{1}) + \mu_{2}^{2}(\Phi_{2}^{\dagger}\Phi_{2}) + \left[\mu_{3}\Phi_{1}^{\dagger}\Phi_{2} + \mu_{3}^{*}\Phi_{2}^{\dagger}\Phi_{1}\right] \\ &+ \lambda_{1}(\Phi_{1}^{\dagger}\Phi_{1})^{2} + \lambda_{2}(\Phi_{2}^{\dagger}\Phi_{2})^{2} + \lambda_{3}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2}) + \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1}) \\ &+ \left[(\lambda_{5}\Phi_{1}^{\dagger}\Phi_{2} + \lambda_{6}\Phi_{1}^{\dagger}\Phi_{1} + \lambda_{7}\Phi_{2}^{\dagger}\Phi_{2})(\Phi_{1}^{\dagger}\Phi_{2}) + \text{h.c.} \right]. \end{split}$$

A2HDM. Scalar potential and symmetry breaking

Mass terms

$$V_2 = M_{H^\pm}^2 H^+ H^- + \frac{1}{2} \begin{bmatrix} S_1, & S_2, & S_3 \end{bmatrix} \mathcal{M} \begin{bmatrix} S_1 \\ S_2 \\ S_3 \end{bmatrix} \,, \label{eq:V2}$$

Mass matrix

$$\lambda_i^I \equiv \Im(\lambda_i), \lambda_i^R \equiv \Re(\lambda_i)$$

$$\mathcal{M} = \begin{bmatrix} 2\lambda_1 v^2 & v^2 \lambda_6^R & -v^2 \lambda_6^I \\ v^2 \lambda_6^R & M_{H^\pm}^2 + v^2 (\frac{\lambda_4}{2} + \lambda_5^R) & -v^2 \lambda_5^I \\ -v^2 \lambda_6^I & -v^2 \lambda_5^I & M_{H^\pm}^2 + v^2 \Big(\frac{\lambda_4}{2} - \lambda_5^R\Big) \end{bmatrix} \,.$$

$$\begin{bmatrix} h \\ H \\ A \end{bmatrix} = \mathcal{R} \begin{bmatrix} S_1 \\ S_2 \\ S_3 \end{bmatrix} \xrightarrow{\text{CP-conserving limit}} \begin{bmatrix} h \\ H \end{bmatrix} = \begin{bmatrix} \cos \tilde{\alpha} & \sin \tilde{\alpha} \\ -\sin \tilde{\alpha} & \cos \tilde{\alpha} \end{bmatrix} \begin{bmatrix} S_1 \\ S_2 \end{bmatrix} ,$$

$$A = S_3 .$$

A2HDM. Yukawa sector

 \bullet The new doublet has the same quantum numbers as the one of the SM \Rightarrow more terms in the Yukawa Lagrangian

$$\begin{split} \mathcal{L}_{Y} &= -\bar{\mathbf{Q}}_{L}'(\mathbf{\Gamma}_{1}\phi_{1} + \mathbf{\Gamma}_{2}\phi_{2})\mathbf{d'}_{R} - \bar{\mathbf{Q}}_{L}'(\mathbf{\Delta}_{1}\tilde{\phi}_{1} + \mathbf{\Delta}_{2}\tilde{\phi}_{2})\mathbf{u'}_{R} \\ &- \bar{\mathbf{L}}_{L}'(\mathbf{\Pi}_{1}\phi_{1} + \mathbf{\Pi}_{2}\phi_{2})\mathbf{l'}_{R} + \mathrm{h.c.} \end{split}$$

• In the Higgs basis

$$\mathcal{L}_{Y} = -\frac{\sqrt{2}}{v} \left(\mathbf{\bar{Q}}'_{L} (\mathbf{M}'_{d} \Phi_{1} + \mathbf{Y}'_{d} \Phi_{2}) \mathbf{d}'_{R} - \mathbf{\bar{Q}}'_{L} (\mathbf{M}'_{u} \tilde{\Phi}_{1} + \mathbf{Y}'_{u} \tilde{\Phi}_{2}) \mathbf{u}'_{R} \right.$$
$$\left. - \mathbf{\bar{L}}'_{L} (\mathbf{M}'_{I} \Phi_{1} + \mathbf{Y}'_{I} \Phi_{2}) \mathbf{l}'_{R} + \text{h.c.} \right)$$

- $oldsymbol{\mathsf{M}}_a'$ can be diagonalized by performing transformations in the fields and introducing the CKM matrix
- Nothing guarantees us that the matrices \mathbf{Y}'_a will be diagonal \Rightarrow it can give flavour changing neutral currents (FCNC)

A2HDM. Yukawa sector

ullet To avoid FCNC we require that \mathbf{Y}_a' and \mathbf{M}_a' are aligned in flavour space

$$\Gamma_2 = \varepsilon_d e^{-i\varepsilon} \Gamma_1 \,, \qquad \Delta_2 = \varepsilon_u^* e^{i\varepsilon} \Delta_1 \,, \qquad \Pi_2 = \varepsilon_I e^{-i\varepsilon} \Pi_1 \,.$$

And we have

$$\mathbf{Y}_{a}^{\prime}=\varsigma_{a}^{(*)}\mathbf{M}_{a}^{\prime}\,,$$

Yukawa Lagrangian

$$\begin{split} \mathcal{L}_{Y} &= -\frac{\sqrt{2}}{v} H^{+} \left\{ \bar{u}(x) [\varsigma_{d} V \mathbf{M}_{d} \mathcal{P}_{R} - \varsigma_{u} \mathbf{M}_{u}^{\dagger} V \mathcal{P}_{L}] d(x) + \varsigma_{l} \bar{\nu}(x) \mathbf{M}_{l} \mathcal{P}_{R} I(x) \right\} \\ &- \frac{1}{v} \sum_{\omega^{0}, f} y_{f}^{\varphi^{0}_{i}} \varphi^{0}_{i} [\bar{f}(x) \mathbf{M}_{f} \mathcal{P}_{R} f(x)] + \text{h.c.} \,. \end{split}$$

A2HDM. Yukawa Sector

Consequences of the alignment

- All the couplings scalars-fermions are proportional to the masses
- The Yukawas are diagonal in flavour

- The only contribution to interactions changing flavour is given by the CKM matrix
- There is only three new parameters, ς_f (in general complex)
- The couplings satisfy universality among generations

A2HDM. Phenomenology and Higgs signal strengths

$$A2HDM: rac{2m_V^2}{v}\mathcal{R}_{i1}$$

$$arphi_i^0(ec{p_1}) - \cdots - \mathcal{N}_{i}^0(ec{p_2}), r_2, \mu$$

$$SM: rac{2m_V^2}{v} \qquad V(ec{p_3}), r_3, \mu$$

A2HDM. Fit of light CP-even Higgs with H^{\pm} loop

• With the signs of yu and $\cos\tilde{\alpha}$ chosen as in the SM and in the CP-conserving limit

Results of the fit

$$\cos \tilde{\alpha} = 0.98^{+0.02}_{-0.05}, \qquad C^{h}_{H^{\pm}} = (-0.03^{+0.70}_{-0.61} \cup 12.68^{+0.70}_{-0.67}),$$

 $y^{h}_{u} = 0.98 \pm 0.08, \quad |y^{h}_{d}| = 0.84^{+0.08}_{-0.09}, \quad |y^{h}_{l}| = 0.97^{+0.14}_{-0.16}.$

with $\chi^2/\text{d.o.f} = 0.59$

$$C_{H^{\pm}}^{\varphi_i^0} = \frac{v^2}{2M_{H_{\pm}}^2} \lambda_{\varphi_i^0 H^+ H^-} \mathcal{A}(x_{H_{\pm}}).$$

A2HDM. Fit of light CP-even Higgs with H^{\pm} loop

A2HDM. Fit of light CP-even Higgs with H^{\pm} loop

A2HDM. Fit of light CP-odd Higgs

- $\mathcal{R}_{31} = 0$ so A does not couple to bosons at tree level
- $\bullet \ \mu_{bbV}^A = \mu_{\tau\tau V}^A = \mu_{\gamma\gamma jj}^A = \mu_{VV}^A = \mu_{VVjj}^A = 0$

Results of the fit

$$|y_u^A| = 0.84 \pm 0.07$$
, $|y_d^A| = 0.34^{+0.10}_{-0.08}$, $|y_l^h| = 0.35^{+0.09}_{-0.12}$.

with $\chi^2 / \text{d.o.f.} = 11.6$

Overview

- Introduction
 - Standard Model
 - Motivation
- 2 Higgs singlet extension
 - The model
 - Phenomenology and fits
 - Heavy scenario
 - Light scenario
- The Aligned Two Higgs doublets

- Scalar potential and symmetry breaking
- Yukawa sector
- Phenomenology and Higgs signal strengths
- Global fits in the A2HDM
 - Light CP-even Higgs with H^{\pm} loop
 - Light CP-odd Higgs

Conclusions

- \bullet Motivation for the study of extensions \to aspects of nature not explained only by the SM + freedom to extend the scalar sector
- Singlet extension: A real bosonic singlet invariant under all the SM quantum number \rightarrow 2 scalars (Higgs-like)
- A2HDM: Two doublets with the same quantum numbers as the Higgs doublet \to 3 scalar neutral particles $(\{S_i\}_{i=1,2,3})+2$ charged particles H^{\pm}
- Statistical analysis of the models with the LHC data. Best fit A2HDM, CP-even
- Interesting aspects of the models: CP-violation, dark matter...

A2HDM. Yukawa sector

• $y_f^{\varphi^0}$ are the couplings for the physical fields

$$y_{d,I}^{\varphi_i^0} = \mathcal{R}_{i1} + (\mathcal{R}_{i2} + i\mathcal{R}_{i3})\varsigma_{d,I}, \qquad y_u^{\varphi_i^0} = \mathcal{R}_{i1} + (\mathcal{R}_{i2} - i\mathcal{R}_{i3})\varsigma_u^*.$$

With the relations

$$\begin{split} \sum_{i=1}^{3} (y_f^{\varphi_i^0})^2 &= 1 \,, \quad \sum_{i=1}^{3} |y_f^{\varphi_i^0}|^2 = 1 + 2|\varsigma_f|^2 \,, \quad \sum_{i=1}^{3} y_f^{\varphi_i^0} \mathcal{R}_{i1} = 1 \,, \\ \sum_{i=1}^{3} y_{d,l}^{\varphi_i^0} \mathcal{R}_{i2} &= \varsigma_{d,l} \,, \qquad \sum_{i=1}^{3} y_u^{\varphi_i^0} \mathcal{R}_{i2} = \varsigma_u^* \,, \\ \sum_{i=1}^{3} y_{d,l}^{\varphi_i^0} \mathcal{R}_{i3} &= i\varsigma_{d,l} \,, \qquad \sum_{i=1}^{3} y_u^{\varphi_i^0} \mathcal{R}_{i3} = -i\varsigma_u^* \,. \end{split}$$

A2HDM. Phenomenology and Higgs signal strengths

$$\begin{split} \mu_{bb}^{\varphi_{i}^{0}} &= C_{gg}^{\varphi_{i}^{0}} \left[\Re(y_{d}^{\varphi_{i}^{0}})^{2} + \Im(y_{d}^{\varphi_{i}^{0}})^{2} \beta_{b}^{-2} \right] \rho(\varphi_{i}^{0})^{-1}, \\ \mu_{\gamma\gamma}^{\varphi_{i}^{0}} &= C_{gg}^{\varphi_{i}^{0}} C_{\gamma\gamma}^{\varphi_{i}^{0}} \rho(\varphi_{i}^{0})^{-1}, \\ \mu_{\tau\tau}^{\varphi_{i}^{0}} &= C_{gg}^{\varphi_{i}^{0}} \left[\Re(y_{l}^{\varphi_{i}^{0}})^{2} + \Im(y_{l}^{\varphi_{i}^{0}})^{2} \beta_{\tau}^{-2} \right] \rho(\varphi_{i}^{0})^{-1}, \\ \mu_{\gamma\gamma jj}^{\varphi_{i}^{0}} &= (\mathcal{R}_{i1})^{2} C_{\gamma\gamma}^{\varphi_{i}^{0}} \rho(\varphi_{i}^{0})^{-1}, \\ \mu_{bbV}^{\varphi_{i}^{0}} &= (\mathcal{R}_{i1})^{2} \left[\Re(y_{d}^{\varphi_{i}^{0}})^{2} + \Im(y_{d}^{\varphi_{i}^{0}})^{2} \beta_{b}^{-2} \right] \rho(\varphi_{i}^{0})^{-1}, \\ \mu_{VV}^{\varphi_{i}^{0}} &= C_{gg}^{\varphi_{i}^{0}} (\mathcal{R}_{i1})^{2} \rho(\varphi_{i}^{0})^{-1}, \\ \mu_{\tau\tau V}^{\varphi_{i}^{0}} &= (\mathcal{R}_{i1})^{2} \left[\Re(y_{l}^{\varphi_{i}^{0}})^{2} + \Im(y_{l}^{\varphi_{i}^{0}})^{2} \beta_{\tau}^{-2} \right] \rho(\varphi_{i}^{0})^{-1}, \\ \mu_{VV jj}^{\varphi_{i}^{0}} &= (\mathcal{R}_{i1})^{4} \rho(\varphi_{i}^{0})^{-1}, \end{split}$$

Phenomenology and fits. Heavy scenario

A2HDM. Fit light CP-even Higgs without H^{\pm} loop

Fit results yu > 0 and $\cos \tilde{\alpha} > 0$

$$\cos \tilde{\alpha} = 0.98^{+0.02}_{-0.06}, y^h_u = 0.98 \pm 0.08, |y^h_d| = 0.84^{+0.08}_{-0.09}, |y^h_l| = 0.97^{+0.14}_{-0.16},$$

amb $\chi^2/\text{d.o.f} = 0.47$.

Fit results yu < 0 i $\cos \tilde{\alpha} > 0$

$$\cos \tilde{\alpha} = 0.83 \pm 0.06, y_u^h = -0.83 \pm 0.06, |y_d^h| = 0.87^{+0.08}_{-0.09}, |y_l^h| = 1.12^{+0.15}_{-0.18},$$

amb $\chi^2/\text{d.o.f} = 2.96$.

A2HDM. Fit light CP-even Higgs without H^{\pm} loop

A2HDM. Fit light CP-even Higgs without H^{\pm} loop

A2HDM. Discrete \mathcal{Z}_2 symmetries

Model	Sd	Su	SI
Type I	$\cot eta$	$\cot \beta$	$\cot \beta$
Type II	- $ aneta$	$\cot eta$	$-\tan eta$
Type X	$\cot eta$	$\cot eta$	$-\tan eta$
Type Y	- $ aneta$	$\cot \beta$	$\cot \beta$
Inert	0	0	0

Table : CP-conserving 2HDMs based on discrete \mathcal{Z}_2 symmetries, being $\tan\beta \equiv v_2/v_1$