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PURPOSE
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• Study and understand the e↵ects of non-metricity on fermions
and calculate the generic corrections to the Hamiltonian
for spinors in a torsion-free non-Riemannian spacetime.

• Calculate the corrections for the Hydrogen atom Hamiltonian in a
torsion-free non-Riemannian spacetime.
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No studies in a non-Riemannian background have been done.

Study of the Hydrogen atom in a Riemannian
background by L.Parker.
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MECHANICS, LIGHT & GRAVITATION

Galileo

Principle of Relativity

Realized through Galilean transformations

Absolute space and time for all observers
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MECHANICS, LIGHT & GRAVITATION
Newton

~

F = m~̈x

~gm = �G

m~r

r

3
; ~

Fg(~g,m) = m~g

Galilean

transformations

Principle of Relativity through
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MECHANICS, LIGHT & GRAVITATION
Newton

~

F = m~̈x

~gm = �G

m~r

r

3
; ~

Fg(~g,m) = m~g

Maxwell

F = dA ; Div(F ) = µ0J

Lorentz

transformations

Galilean

transformations

Principle of Relativity through



Galilean Transformations

+
Electromagnetism

Principle of Relativity

Fundamental Problem



MECHANICS, LIGHT & GRAVITATION
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Einstein

Keep Relativity principle

Speed of light is absolute for all observers

Special Relativity

Space and time are no longer absolute

Not compatible with

Newtonian Gravity

Equivalence Principle

General
Relativity



MECHANICS, LIGHT & GRAVITATION
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Rµ⌫ � 1

2
Rgµ⌫ =

8⇡G

c4
Tµ⌫

Trajectories of freely falling particles are geodesics in spacetime

S =
4⇡G

c

4

Z
¯

d

4
xR

�S = 0

(Their Action is just given by the length of their worldlines)

Spacetime becomes dynamical and is represented

by a Riemannian manifold
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• There was only Riemannian Geometry at the time: rg = 0.

• Posible generalizations include non-metricity and torsion.

• Torsion is needed when taking into account fermions as

sources of gravity (Einstein-Cartan theory)

• Non-metricity rµg↵� ⌘ �Qµ↵� could be helpful in dealing

with some problems.

WHY CONSIDERING NON-METRICITY



WHY CONSIDERING NON-METRICITY
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• f(R) theories could solve some singulartiy problems.

• It has been found that defects in a crystal structure can be

described by an e↵ective non-Riemannian geometry.

• Quantum fluctuations could be analog to defects in crystals

and could be explained (in scales where GR breaks down)

by a metric-a�ne e↵ective field theory.
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THE DIRAC EQUATION

Bohr Quantization

Rules

Electromagnetism fails in predictng atomic spectra.

{Predicts Hydrogen spectrum

Contradicts classical physics

Quantum Mechanics
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THE DIRAC EQUATION

Bohr Quantization

Rules

Electromagnetism fails in predictng atomic spectra.

{Predicts Hydrogen spectrum

Contradicts classical physics

The Dirac

Equation

(�µ@µ +m) = 0 {�µ, �⌫} = 2⌘µ⌫I

Relativistic wavefunction equation

�����! Ho

D

= �0
�
i�k@

k

+m
�

Ho

D

 ⌘ i@0 

Hermiticity �! (�0)† = �0 ; (�k)† = ��k
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THE DIRAC EQUATION

(�µ@µ +m) = 0 {�µ, �⌫} = 2⌘µ⌫I

(What about description by non-inertial observers?)

The background space does not need

to be Minkowski!!
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GENERALIZED DIRAC EQUATION
• The lorentz group is now a local symmetry group.

• Spinor fields are elements under which the spin rep. of

the Lorentz group SO(1, 3) acts.

• �µ
is an element of the vector rep.of SO(1, 3) whose

components are elements of the spin rep. of the

Lorentz group.

Covariant Dirac equation

(�µrµ +m) = 0 {�µ, �⌫} = 2gµ⌫I

rµ = (@µ � �µ) �! �µ is the spinor connaction.
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GENERALIZED DIRAC EQUATION

ea ⌘ ba
µ@µ ; ba

⌫baµ = �⌫µ

@µ ⌘ baµea ; bb
µbaµ = �ab

Vierbein �!
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GENERALIZED DIRAC EQUATION

(�µrµ +m) = 0 {�µ, �⌫} = 2gµ⌫I
ea ⌘ ba

µ@µ ; ba
⌫baµ = �⌫µ

@µ ⌘ baµea ; bb
µbaµ = �ab

Vierbein �!

Choice of verbein:�! gab ⌘ ba
µbb

⌫gµ⌫ = ⌘ab

�a ⌘baµ�
µ

{�a, �b} = 2gabI = 2⌘abI
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THE SPINOR CONNECTION

Rep. theory of Lie groups

[ba
µ�a (@µ + �µ) +m] = 0 {�a, �b} = 2⌘abI

�µ = � i

2
�abb

a
⌫g

⌫⇢rµb
b
⇢

The spinor connection and the vierbein accounts for the e↵ects

of the background geometry on fermions.
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THE SPINOR CONNECTION

[ba
µ�a (@µ + �µ) +m] = 0 {�a, �b} = 2⌘abI

The spinor connection and the vierbein accounts for the e↵ects

of the background geometry on fermions.

Dirac álgebra and manipulations explicit the role of non-metricity:

�µ =
1

4
�a�bba

⌫g⌫⇢rµbb
⇢ � 1

8
Qµa

aI

Riemannian Non-Riemannian
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THE SPINOR CONNECTION

Dirac álgebra and manipulations explicit the role of non-metricity:

�µ =
1

4
�a�bba

⌫g⌫⇢rµbb
⇢ � 1

8
Qµa

aI

�EM
µ = �iqAµI

Riemannian Non-Riemannian

• Concerning the Dirac structure, the non-Riemannian term is

analog to a as a gauge field:
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GENERALIZED DIRAC EQUATION

[ba
µ�a (@µ + �µ) +m] = 0 {�a, �b} = 2⌘abI

HD ⌘ i@0 H
I

⌘ H
D

�Ho

D
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GENERALIZED DIRAC EQUATION

[ba
µ�a (@µ + �µ) +m] = 0 {�a, �b} = 2⌘abI

HD ⌘ i@0 H
I

⌘ H
D

�Ho

D

The general interaction Hamiltonian has the Dirac structure:

HI = BI+ Uc�
c + Sab�

a�b + Tabcd�
a�b�c�d

B,Uc, Sab, Tabcd Contain all the geometric informaton
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NON-RIEMANNIAN ELECTROMAGNETISM

The corrections to the Hydrogen Hamiltonian also come
from the electromagnetic field in curved spaces.

Torsion-free spaces + Lorenz gauge rµAµ
= 0

gµ�rµr�A↵ �R↵
�A� =� µ0J↵ �Qµ

µ�r�A↵ +Qµ�
↵F�µ�

� (rµQ↵
µ�)A� �Q↵

µ�rµA� + Pµ�
µ↵A�

Maxwell Equations
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• Generic corrections from HD
I .

• Corrections from the Electromagnetic Hamiltonian.

Aµ = A(0)
µ +A(1)

µ

A(1)
µ vanishing in the flat limit.

Flat solution Correction

NON-RIEMANNIAN ELECTROMAGNETISM

Computation of A(1)
µ needs a choice of coordinates.



R↵�µ⌫ Q↵µ⌫
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EXPANSION IN TERMS OF      AND     

Highest order observable e↵ects are of order lower than
O(Rk�µ⌫

2, Ql⇢�
2, Qkµ⌫Rk�µ⌫ , @�Rk�µ⌫ , @�⇢Qkµ⌫)

gµ⌫ = ⌘µ⌫ +Qkµ⌫y
k � 1

2

✓
@mQkµ⌫ +

1

3
P⌫mµk +

2

3
Rµk⌫m

◆
ykym

Non-Riemannian

Expansion of ba
µ
, �

↵
µ⌫ and �µ.

Finding the corrections in the Hydrogen atom Hamiltonian
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CORRECTIONS FOR THE HYDROGEN CASE          

HI = BI+ Uc�
c + Sab�

a�b + Tabcd�
a�b�c�d
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CONSERVED CURRENT AND PERTURBATION THEORY

Perturbation theory �! Need for defining a well behaved

scalar product in spinor space.
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CONSERVED CURRENT AND PERTURBATION THEORY

�! rµ ̄ = (@µ + �µ) ̄
rµ = (@µ � �µ) , 2 Sp

¯ ⌘  †�0 2 Sp⇤
(dual of Sp)}

rµj
µ ⌘ rµ ̄�

µ = 0 ! rµ�
µ = 0

rµ�
↵ =

1

2
Qµ⌫

↵�⌫

rµj
µ = 0 ! Qµ⌫

µ = 0 ⌫ = 0, 1, 2, 3

Restriction in the possible non-metric spaces conserving fermion charges.
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CONSERVED CURRENT AND PERTURBATION THEORY

• This condition may be satisfied, restricting the possible

e↵ective geometries.

• Arbitrary e↵ective geometries would allow C violation

scenarios.

• Definition of a proper perturbation theory in arbitrary

spaces needs to be further studied.

rµj
µ = 0 ! Qµ⌫

µ = 0 ⌫ = 0, 1, 2, 3



CONCLUSIONS

• General corrections to the Hamiltonian due to non-metricity
have been computed. Also for the Hydrogen atom case.

• Non-metricity entering the spinor connection as a SM gauge
field is an interesting feature to considered.

• Definition of appropriate perturbation theory in non-metric
backgrounds has to be worked. Then the corrections to the
Hydrogen energy levels computed.

• Restrictions from the conservation of jµ =  †�0�µ in the
possible e↵ective spacetime geometries have to be analized.

• Possible scenarios of C violation in arbitraryly non-metric
backgrounds should be studied.
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THANK
YOU
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GENERALIZED DIRAC EQUATION

[ba
µ�a (@µ + �µ) +m] = 0 {�a, �b} = 2⌘abI

HD ⌘ i@0 H
I

⌘ H
D

�Ho

D

HD = �i�0 � ig00
�1

�0�k (@k + �k)� ig00
�1

�0m

HI =� i�0 � ig00
�1

ba
0�b

k�a�b�k � i
⇣
g00

�1
ba

0 + �a
0
⌘
�b

k�a�b@k�

� i
⇣
g00

�1
ba

0 + �a
0
⌘
�am
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FERMI COORDINATES

• Corrections in terms of

curvature and non-metricity

• Conditions for observation

}�! Choice of

coordinates

Fermi Coordinates

• Adapted to the atom’s worldline ! natural for observing

• Geodesic coordinates ! Simplify the expansion in terms of

Q↵µ⌫ and R↵�µ⌫
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EXPANSION OF THE GENERIC CORRECTIONS

HI = BI+ Uc�
c + Sab�

a�b + Tabcd�
a�b�c�d

The expansion of the coe�cients is:

U0 = � i

2


Q00

l yl +

✓
1

2
@lQ00

m +
1

3
R0m0l

◆
ylym

�

Uk = � i

2


Qlk

0yl +

✓
1

2
@lQmk

0

◆
� 1

3
Rkm0ly

lym
�

Sk0 =� i

8

✓
�1

2
@0Qm0k +R0k0m

◆
ym

S00 =� i

8

✓
�1

2
@0Qm00 +R000m

◆
ym

Skl =� i

2

✓
�1

8
@0Qmlk +

1

4
Rlk0m

◆
ym +

✓
Qmk

0ym +

✓
1

2
@nQmk

0 � 1

3
Rkn0m

◆
ymyn

◆
@l

�

S0k =� i

2

✓
�1

8
@0Qmk0 +

1

4
R0k0m

◆
ym � 1

4

�
Qka

a + @lQ
a
kay

l
�
+

✓
Ql

00yl +

✓
1

2
@lQm

00 +
1

3
R0l0m

◆
ymyl

◆
@k

�
B =

i

8
@kQ0a

ayk

Tkbcd = Ta0cd = 0
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CORRECTIONS FOR THE HYDROGEN CASE          

A(0)
µ = qr�1�0µ

The flat solution is the Coulomb field centered in the nucleus

Introducing the flat solution in the Maxwell equations

one gets a di↵erential equation for the correction A(1)
µ

�ij@ijA(1)
0 =� qr�5

⇥
Aijky

iyjyk +Bijkly
iyjykyl

⇤
+�

+ Cqr�1 � qr�3
⇥
Dijy

iyj + Eiy
i
⇤

�ik@ikA
(1)
j = �qr�3

⇥
Hjiky

iyk +Kjiy
i
⇤
� qr�1Lj
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A(1)
0 =


1

12
Aklmykylym +

1

18
Bklmny

kylymyn
�
r�3 +


1

12
Aklm

�
�klym + �kmyl + �mlyk

�
�

� 1

36
Bklmn

�
�klymyn + �kmylyn + �knylym + �lmykyn + �lnykyn + �mnykyl

�
+

+
1

4
Dkly

kyl +
1

2
Eky

k

�
r�1 +


1

18
Bklmn

�
�kl�mn + �km�ln + �kn�lm + �lm�kn+

+�ln�km + �nm�kl
�
� 1

2
C � 1

4
Dkl�

kl

�
r

A
(1)
k =


1

4
Hklmykylym +

1

2
Kkny

kyl
�
r�1 +


1

2
Lk � 1

4
Hklm�lm

�
r

All tensors appearing are functions of R↵�µ⌫ , Q↵µ⌫

and @�Q↵µ⌫ in the nucleus.

CORRECTIONS FOR THE HYDROGEN CASE          
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CORRECTIONS FOR THE HYDROGEN CASE          
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CORRECTIONS FOR THE HYDROGEN CASE          

Order zero terms


