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@ What do we do?

o We study QCD at low energies using Green functions.
@ What do we need?
o Chiral perturbation theory (xPT) and Resonance chiral theory (RxT).
@ What is it?
o Effective description low-energy QCD.
o xPT for E < M,.
e Spontaneous breaking of the chiral SU(3); x SU(3)r symmetry down to
SU(3)y in QCD leads to the presence of Goldstone bosons.

o We identify them with the octet of pseudoscalar mesons (7, K,n) as the
lightest hadronic observable states.

o RxT for M, < E <2GeV.

@ RxT increases the number of degrees of freedom of xPT by including massive
U(3) multiplets of vector V(17 7), axial-vector A(11%), scalar S(0T+) and
pseudoscalar P(0~1) resonances.

o What is it good for?
e To study important theoretical and phenomenological aspects of QCD.



Green functions of chiral currents

@ QCD introduces an octet of noether currents:
e vector and axial-vector currents:

Vi =q@)vT(z), AL =7@)ynyTq(z),
o scalar and pseudoscalar densities:
S5 =q@)T%(z),  P*=iq(x)yT"q(x).

@ The amplitudes of physical processes can be computed using LSZ reduction
formula from the Green functions, the time ordered products of quantum
fields (the group and Lorentz indices are suppresed):

/d4x1 /d4:c2 eiP1e1+paza) <0|T[(91(x1)(92($2)03(0)] |0>

@ Only five nontrivial Green functions in the odd-intrinsic parity sector of QCD.
o VVP,VAS,AAP,VV A and AAA.



How to calculate Green functions?

@ We assume the saturation of dynamics with the lightest resonances.
@ We restrict ourselves only to the three-point Green functions at tree level.
@ Ingredients at the LO:

F2
‘CglgT = T(uuuﬂ + X4
F iG FA
6(4) ,U«V + v v H, + A v i
. idm,
o calSuu) + em(Sx4) +idm{Px-) + JE(P) (-

@ At the NLO, relevant Lagrangian in the odd-intrinsic parity sector, was
formulated for the first time in [K. Kampf and J. Novotny '11]

Z Z KX O ape!?.

e X stands for the single-resonance fields V, A, S, P, double-resonance fields
VV,AA,SA, SV, VA, PA, PV and triple-resonance fields VV P,V AS, AAP.
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How to calculate Green functions?

@ Example: a set of operators with one vector resonance field:

“(
WV (ug f27uP —uP Fooug)) | 16 | (VA {V 7 uo})
VI (FouguP — uPug fo0)) || 17 | (VE{V, f27, uP})

(Vi {x—, u*uP}) 18 (VFuuP) (x-)

i 0} vas i O} vas

1 | iV (h*usuP — uPush?)) || 10 (VI ux_uP)

2 | i(VF (ugh®uf —uPh*ouy)) || 11 (V"“’{fjfp7 ffa}>gpg
3 | (VA (uguPh®® — hoouPu,)) || 12 (V“"{fﬁp,hﬂ"})gpa
4 Ve, Vo xJu?) 13| WV ()

5 (V27 upul]) 14 <V‘“’{f&ﬂ X1
6 | iV (77w ug —ugaP o)) | 15 | VR LI xal)

7

8

9

@ Topology of the Feynman diagrams (the crossing is implicitly assumed):

,
~®




Determination of the couplings

@ Reminder:

E%?) = Z Z nf@ﬂuaﬁa“”aﬂ .

X 1

° Egj): 67 operators and 67 corresponding unknown couplings % in total.
o Three-point Green functions contain 32 couplings k;* together.
o Not every coupling can be determined.

@ How to determine the coupling constants?

High-energy behavior of Green functions.

Brodsky-Lepage behavior of the transition formfactor.

Matching calculations in RxT with xPT.

Experiments.
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Operator Product Expansion (OPE)

@ OPE is a framework to study short-distance behaviour of Green functions.
o Formalism independent - purely mathematical property (no Lagrangians, no

Feynman diagrams etc.).
e The OPE is equivalent to an assumption that at large external momentum p,

the two-point Green function of the operators above can be rewritten in the

form
A@)B(y) = i:cu(x 0o (25Y).
i/d4:c e (0|T[A(z) B(0)]|0) = ZCAB %)(0/00) .
@ QCD condensates Op with dimension D < 6:
Op=1, Os = (0[go,, G*¢|0) ,
= (0[gq|0) , O = (0[(qTq)(qTq)|0) ,

(94 = (0lGG*"|0),  OF = (0|GGLG0).

o I' stands for a combination of {14, 5, v",vs7*, 0"} and {13,7}.



OPE for three-point Green functions: Example on V'V P

@ Vector currents V/i'(p), V2(q) and pseudoscalar density P¢(r), r = —p —q.
o Ward identities, P, C and Lorentz invariance gives the structure
(HVVP(p7Qa )) = HVVP(p q r )dabcg,uu(p)(q) .

@ All three momenta are considered to be large.

@ OPE is easily obtained with two contractions as the lowest order contribution
(only the quark condensate contributes):

(0] — &)
@ The result: Iy p(p?, ¢%,r%) at high energies behaves as

B0F2 p2+q2+7”2
2)\4 p2q27’2

OTE, (Ap)2, (Ag)%; (Ar)?) = + o(j) for A — oo

@ In a condensed notation:

HSE}% (+)+7+)’ Hgi}g‘ ~ (+’_7_) ) Hgi];jj ~ (+7+’_)'



V'V P Green function

@ Reminder:

abe abe
(vap(p,Q;T))W =yvp(P®, % r)d™ e m)(q) -

e Our task is to calculate ITyv p(p?, ¢%,7%) using our Lagrangian E% and
determine the couplings k% .
o \PT
e Comparison with the calculation in xPT leads to an isolation of two
low-energy constants C¥ and Cyy in terms of kX couplings.

e OPE
e High-energy behaviour dictates the coupling constants constraints:
oo Ne ww o Ne v Ne
256v2r2Fy 0 T T 3Ry T 642 Ry
I{VV _ F2 + 16ﬁdeVK/§V _ NCM‘Q/ 8I<.',VV . K}VV _ F2
? 32F2 512m2F2°  ©? 3 8F2

° Hgi‘,z;,(pQ,qQ,TQ): substituing the constraints back into ITyv e (p?, ¢°,72).



V'V P Green function: ffg‘fﬂ formfactor

e RxT .
@ The transition waaw formfactor:

22
RxT RxT
F‘II'OX—)’Y'\/(p27q27T2) = 3BOFHV)‘</P(p27q27T2)'

@ The Brodsky-Lepage behaviour for large momentum [G. P. Lepage and S. J.
Brodsky '80, '81]:

1
fggw((), —Q%,m2) ~ P for Q% — .
@ B-L behaviour leads to the constraint
WPV = P
32v/2d,, Fy

o BABAR measurement shows phenomenological disagreement with this
condition that leads to the deviation with dg;, = —0,055 + 0.025,

2
PV _ F

WPV = S (14 6pL).
s 32\@deV( pL)
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V'V P Green function: fT formfactor
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Figure: A plot of BABAR (green) and CLEO (blue) data fitted with the formfactor

]-'RXWT (0, —Q%;0) using the modified Brodsky-Lepage condition. The full black line
represents fit with dgr, = —0.055, and blue dotted line is a fit with standard dg1, = 0.
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V'V P Green function: Decays of 7(1300)

@ Two decay channels studied: 7(1300) — ~~ and 7(1300) — p~.

ABXT o 8V2Fy (2V2kEY MY — FyrVVE
7(1300) vy — € 3 ME )

ARXT _ 4\/5 \/iligvM‘z/ — FVK'/VVP
m(1300)—py _63MV M‘2/ :

o Belle collaboration [K. Abe et al. '06] gives I'z(1300)— < 72€V which leads

to the estimate k¥V¥ ~ (—0.57 £ 0.13) GeV .
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Figure: The connection of decay widths for 7(1300) — v+ and 7(1300) — p~.
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V'V P Green function: Decays of 7(1300)
@ Two decay channels studied: 7(1300) —;ﬂw(BOO) — py.

RxT 28V2Fy (2 sVYIMe — FysVVE
'A7r(1300)4>'y’y =e 3 Mé ’
ARXT — e 4\/5 < g’V ‘2/ — FVI{,VVP>

7(1300)— py 3My l | M‘2/ .

o Belle collaboration [K. Abe et al. '06] gives I'z(1300)— < 72€V which leads

to the estimate k¥V¥ ~ (—0.57 £ 0.13) GeV .
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Figure: The connection of decay widths for 7(1300) — v+ and 7(1300) — p~.
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V'V P Green function: The muon g — 2 factor

@ Hadronic contributions: hadronic light-by-light scattering.
e The main source of theoretical error in the SM prediction.
The four point Green function (VVVV) can be simplified into:

o m* and K% loops,
o 7%, m,n exchanges: the (VV P) case etc.

Using the fully off-shell FXXT  (p2, 42, 72) formfactor we get:

w0y
ke = (65.8+£1.2) - 1071
@ The updated result [P. Roig, A. Guevara and G. L. Castro '14]:

an’ = (66.6+2.1)- 1071
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V'V A Green function

@ The Ward identities restrict the general decomposition of the tensor part of
V'V A into four terms

abc

(Myva(p,a;r)),,, = T, (p, ¢ 7).

1 2 3
Wuwp (P 57) = WLE W (p)(@)Tp + w; )H/(}V)p + wgﬂ)ﬂfﬁ,)p + w; )H/(LSV)/J :

@ The tensor part is nontrivial [M. Knecht, S. Peris, M. Perrottet and E. de

Rafael '04]
2, 2 o 2, 2 2
1 p +q —r p +q —r
HLV)p = Pv€pup(p)(a) — uErp(p)(a) — 2 Euv(p)(@)Tp T B Euvp(p—q) »

(2) P2 - q2
oy = ey (P — a)p + 2 Epv(p)(@)Te >

2, 2 2
3 p+qg —r
H/(w)p = DPv€up(p)(a) T WCup(p)(a) — 2 Epvp(r) -
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V'V A Green function

o Extracted formfactors [T. Kadavy, K. Kampf and J. Novotny '16]:

— Nc
wy, = W )
Wl — 2V2Fy [z (07 + ¢° - 2M7) — V2Fy kY]
(p? — MP)(q* — M) 7
W) = _2V2Fy (p? — ¢)2nty + i — Ri7)
(p* — M) (g% — M)

W8 2V2F (0 — &)
T - MP)(¢? - Mp)

V2F kYA
2/»4;}/1—1—25‘{2—5}/7—75 .
(

@ Phenomenologically important formfactor wr(Q?):
wr(Q%) = —167° [wi (-Q%,0,-Q%) + wi¥ (-Q*,0,-Q")] ,

Ne 647 Fy 2 v v Fary? 178%
= [l N A 2 ——— | — F .
MZ T ME(QT 1 M3 [Q VR0t + i) + Q@+ M2 v
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V'V A Green function: Coupling constants constraints

o Expand wr(Q?) in terms of Q? up to O(é)
o Why?
o Soft-wall AdS/QCD and OPE [J. J. Sanz-Cillero '12] and [P. Colangelo, F. De
Fazio, J. J. Sanz-Cillero, F. Giannuzzi and S. Nicotri '12]:

oy Ne 1287‘(3asx<6q>2 1
e Two large momenta only!
@ Comparison leads to a system of equations:

N,
m+\/§(l€¥1+5¥2) :0,
FyrYY — Far¥4 v v N,
M—?/ +\/§("€11 + ki2) = _m7
FyrY" — Fard* v v va M3
_— 2 - F —= =0
M‘Q/ + f(’¢11 + "ilz) AR5 Mé s
FyryV — Fard* v v va M3 M3 2rax(q9)*
o VA eh) - Fasstym (1 g ) = -
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V'V A Green function: Coupling constants constraints

e Expand wr(Q?) in terms of Q2 up to O(é)
o Why?

o Soft-wall AdS/QCD and OPE [J. J. Sanz-Cillero '12] and [P. Colangelo, F. De
Fazio, J. J. Sanz-Cillero, F. Giannuzzi and S. Nicotri '12]:

oy Ne 1287‘(3asx<6q>2 1
e Two large momenta only!
@ Comparison leads to a system of equations:

N,
m+\/§(lﬁ¥1+5¥2) :0,
FyryY — FarY4 v v N,
T YRR = g
F K,VV - F K,VA M2
% —&-\/5(%}/1 —|—Ku¥2) —FAK})/AM? =0,
Fyr¥V — Far¥* v v va M3 M3 2mas x(qq)°
[ Y2 en) - Fas (14 ) = SR
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V'V A Green function: Coupling constants constraints

@ It is possible to extract the following coupling constants constraints:

N N.M ja
1% v o_ c vV _ cy vA _ VvV
e = g, Gam2M2FZ P Ty

e Since it is not possible to solve the system of equations completely, the
relevance of the constraints should be taken carefully!

o Determination of xY4:

o Numerically: k¥4 = —0.086.
o From the decay f1(1285) — py: k¥ * = —0.062 & 0.030.

@ Using the constraints for V'V P we can also determine:

ol (e N el P 0 )
64F2 gm2M3 )’ P 32/2dm Fy 8m2F2 \ M3
o Reminder: BABAR dictates k¥ = —%(1 + BL) with the value

oL = —0,055 £ 0.025 from VV P.
@ However, our prediction from V'V A gives gy, = —1.342.
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RxT

V'V A Green function: F formfactor revisited

m0—yy

Q%Fy,[GeV]

QGev?]

Figure: A plot of BABAR (green), BELLE (red) and CLEO (blue) data fitted with the
formfactor Fﬁ,’fYT,Y(O, —Q%;0) using the modified Brodsky-Lepage condition. The full
black line represents our fit with dgr, = —1.342, and the full brown line is a fit using the
LMD formfactor. The dashed line stands for g, = —0.055 and the dot-dashed line for
oL = 0.
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V'V A Green functions: OPE

@ V'V A does not have the LO contribution to the OPE with all three momenta
large, i.e.

(0] —@—@~—@— [0) =0.

@ Therefore, one needs to include other contributions from QCD condensates
[T. Kadavy, K. Kampf and J. Novotny '16]:

S500;
OV,

00py

D=3
D=4
D=5




Conclusion

@ Some properties of low-energy QCD and Green functions were summarized.

@ We study Green functions in the odd-intrinsic parity sector, calculated in the
NLO, i.e. up to O(p%).

@ Properties of Green functions and their coupling constants are studied by:

High-energy behavior of Green functions.

Brodsky-Lepage behavior of the transition formfactor.

Matching calculations in RxT with xPT.

Experiments.

@ Two specific correlators were shown:
o VVP
-, RxT
@ Transition form factor }'WOXHW (p?,q2,72), decays of w(1300) and the
contribution to the g — 2 factor were shown.

e VVA

o Newest results were presented.
o OPE with two large momenta is obviously inconsistent with reality, OPE with
all three large momenta is needed (and in progress).



Thank you for your attention!

Questions?



