Measurement of the neutrino mixing angle θ13 in the Double Chooz experiment

EXCELENCIA MARÍA DE MAEZTU Diana Navas Nicolás Taller de Altas Energías September 2016

Neutrino Oscillations

Known

- $\sin^2 2\theta_{12} = 0.846 \pm 0.021$ $\Delta m_{21}^2 = (7.53 \pm 0.18) \cdot 10^{-5} eV^2$ Δm_{23}^2 sign CP δ violation
- $\sin^2 2\theta_{23} = 0.999^{+0.001}_{-0.018}$
- $|\Delta m_{31}^2| = (2.43 \pm 0.06) \cdot 10^{-3} \text{eV}^2$

Unknown

Double Chooz gave the first indication that $\theta_{13} \neq 0$

Known recently $\sin^2 2\theta_{13} = 0.084 \pm 0.005$

Nuclear Reactor Neutrinos

 $\overline{\nu}_e$ disappearance is directly related with θ_{13} $P(\overline{\nu}_e \rightarrow \overline{\nu}_e) = 1 - \sin^2 2\theta_{13} \sin^2 [1.27\Delta m_{13}^2 (eV^2)L(m)/E_{\nu}(MeV)]$

- Univocal determination of θ_{13}
 - \circ No dependence with δ_{CP}
 - No dependence with mass hierarchy
- Reactor advantages
 - o There is no matter effect
 - \circ Pure $\bar{\nu}_e$ beam
 - High flux of low energy

Double Chooz Experiment

 De
 Survival Probability

 0
 8
 1

0.4

0.2

0

Multi-detectors analysis

Reactor B1

ND (multi-detectors) 151 days

Reactor flux error highly suppressed with multi-detectors

FD-I (single detector) 461days

FD-II (multi-detectors) 212 days

Google Earth

Inverse β decay

 $\overline{\nu}_e + p \rightarrow e^+ + n$

• **Prompt signal:** Energy loses + *e*⁺ anihilation

 $E(e^+) \simeq E(\bar{\nu}_e) - 0.8 \text{ MeV}$

• **Delayed signal:** Neutron capture on Gadolium (Gd)

8 MeV y rays

 Alternaly, neutrón capture on Hidrogen (H) (~2.2 MeV)

Double Chooz detector

Outer Veto Plastic scintillation strips

ν – Target
 10.3 m³ Gd-loaded liquid scintillator

'Y - Catcher 22.5 m³ Gd-free liquid scintillator

Buffer 110 m³ non-scintillating mineral oil layer. 390 10" PMTs

Inner Veto 90 m³ thick liquid scintillator layer. 78 8" PMTs

> Steel shield (FD) Water shield (ND)

IBD candidates selection

Preselection

- 1. Valid trigger (E≥0.4 MeV)
- 2. Muon veto (Event is a muon if $E_{IV} > 16 MeV \circ E_{ID} > 20 MeV$)
- 3. Rejection of the events subsequent to a μ (Δ t>1000 μ s [Gd], Δ t>1250 μ s [H])
- 4. Rejection of light noise (LN) signals produced in the PMT basis

Selection

	Análisis de Gd	Análisis de H
Isolation	[-200,600] μs	[-800,900] μs
Prompt energy	0.5 <e<sub>vis<20 MeV</e<sub>	1.0 <e<sub>vis<20 MeV</e<sub>
Delayed energy	4.0 <e<sub>vis<10 MeV</e<sub>	1.3 <e<sub>vis<3 MeV</e<sub>
Temporal coincidence	0.5<Δt<150 μs	0.5<Δt<800 μs
Distance coincidence	ΔR<100cm	ΔR<120cm
ANN	-	> -0.23

IBD selection

Good data:MC agreement!

Observed IBD rate: ~40 d⁻¹ (FD) and ~300 d⁻¹ (ND)

Remaining BG are:

- Accidental coincidence: e.g.) environmental γ + spallation neutrons n
- Fast neutron: $n + p \rightarrow recoil p + n$
- Stopping muon: $\mu \rightarrow e + \nu + \nu$
- (β , n) emitter from spallation products : e.g.) ${}^{9}Li \rightarrow {}^{8}Be + e + \nu + n$

Neutrino detection efficiency

To estimate the value of θ_{13} two different analyses are applied

The detection efficiency is defined as

$$\varepsilon_{\text{tot}} = \varepsilon_{\text{prompt}} \times \varepsilon_{\text{delay}} \times \varepsilon_{\text{vetoes}} \times \varepsilon_{\text{proton#}}$$

$$\varepsilon_{delay} = \varepsilon_{n-captures} \times \varepsilon_{cut} \times \varepsilon_{spill}$$

Efficiency correction ratios

$$c_{\zeta} = \frac{\varepsilon^{\text{DATA FD}}}{\varepsilon^{\text{DATA ND}}} \text{ or } \frac{\varepsilon^{\text{DATA}}}{\varepsilon^{\text{MC}}}$$
with ζ =each contribution of $\varepsilon_{\text{delay}}$

Neutron Sources

IBD neutrons

- **Homogeneously** distributed within the detector.
- Same neutron physics and event selection as the oscillation signal

Cf-source neutrons

- Point-like fission source emitting ~10 n/s. Deployed at specific locations within the detector
- Selected using delayed coincidence: prompt: fission γ; delayed: neutron captures

Gd-fraction

Volume-wide detection (I)

 $\varepsilon_{\text{delay}} = \varepsilon_{\text{n-captures}} \times \varepsilon_{\text{spill}}$

- The ϵ_{cut} studies the **impact of the neutrino selection criteria**.
- Efficiency definition including the selection cuts.
- Only non-neutron delayed events are background (BG). Accidental BG is subtracted using an off-time selection.

Volume-wide detection (II)

$$\varepsilon_{\text{delay}} = \varepsilon_{\text{n-captures}} \times \varepsilon_{\text{cut}} \times \varepsilon_{\text{spill}}$$

▲ Near detector efficiency map for 15 months of ND DATA (Left plot) and for a ND MC (Right plot). White dotted lines delimite target, gamma catcher and buffer volumes.

Neutron migration

 $\varepsilon_{\text{delay}} = \varepsilon_{\text{n-captures}} \times \varepsilon_{\text{cut}} \times \varepsilon_{\text{spill}}$

- vTarget constitutes the fiducial volumen in which the occurring IBD events are selected.
- Due to neutron migrations between νTarget and γ-catcher volumes, the IBDs can be captured in either volumes.

Estimated by the **comparison of two MC**: Double Chooz MC (Geant4 + custom thermalization based on an analytical model) vs Tripoli-4 (neutron transport code developed for reactor physics based on experimental nuclear data).

Summary detection systematics

Double Chooz Preliminary

	FD-I	FD-II	ND
BG vetoes (%)	0.11 (0.11)	0.09 (0.09)	0.02 (0.02)
Gd fraction (%)	0.25 (0.14)	0.26 (0.15)	0.28 (0.19)
IBD selection (%)	0.21 (0.21)	0.16 (0.16)	0.07 (0.07)
Spill in/out (%)	0.27 (0)	0.27 (0)	0.27 (0)
Proton number (%)	0.30 (0)	0.30 (0)	0.30 (0)
Total (%)	0.49 (<mark>0.26</mark>)	0.47 (<mark>0.22</mark>)	0.38 (<mark>0.15</mark>)

Numbers in parentheses are uncorrelated uncertainties in multi-detectors analysis (FD-I, FD-II and ND)

Neutron detection efficiency uncertainty:			
0.34% for FD-I (previous analysis FD-I 0.53%)			
0.41% for FD-II and 0.40 % for ND			

Multidetector fit results

- Best-fit: $sin^2 2\theta_{13} = 0.111 \pm 0.018$ (stat.+syst.) (χ^2 /dof = 128.8/120)
 - Non-zero θ_{13} observation at 5.8 σ C.L.

Double Chooz Preliminary

- Spectral distortion between 4 6 MeV.
 - Scales with reactor power.
 - Also observed in the Daya Bay and RENO experiments.
 - Unaccounted $\overline{\nu}_e$ component in the reactor flux model.
 - Out of the oscillation range. θ_{13} unaffected.

Single detector analysis: $\sin^2(2\theta_{13}) = 0.090^{+0.032}_{-0.029}$

Expected Future Improvements

target

target

 → Inclusion of H-capture event (Gd+H analysis!)
 Improve statistics by almost factor 3!

Conclusions

- Double Chooz is taking data with 2 detectors since beginning of 2015
- Preliminary result: $\sin^2(2\theta_{13}) = 0.111 \pm 0.018$ (stat.+syst.) (Previous analysis: $\sin^2(2\theta_{13}) = 0.090^{+0.032}_{-0.029}$)
 - Reactor flux uncertainty strongly suppressed to < 0.1%
 - Other systematic uncertainties $\leq 0.5\%$
- Completely new analysis since Moriond 2016 (Gd+H) in progress ⇒ Update results soon
 - Improved statistics. Since March 2016: 5x more statistics in 3 months
 - New result with **improved sensitivity**!

Thank you!

Back-up

Double Chooz Collaboration

Uncertainties in multi-detectors analysis

- Systematic errors suppressed with two detectors and in rate+shape fit
 ⇒ All systematic uncertainties below < 0.4% (after R+S fit)
- Current precision (9 months ND) is limited by the statistical uncertainty

Double Chooz 013 in the world

- $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$
- Long baseline (T2K, NOvA) weakly favors higher θ_{13} than reactor average
- Reactor θ_{13} is key parameter to solve CP-violation and mass hierarchy