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Neutrino Oscillations
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Atmospheric 𝜈 Solar 𝜈

Known
• sin22θ12 = 0.846 ± 0.021
• Δm21

2 = 7.53 ± 0.18 ⋅ 10−5eV2

• sin22θ23 = 0.999−0.018
+0.001

• Δm31
2 = 2.43 ± 0.06 ⋅ 10−3eV2

Unknown
• Δm23

2 sign
• CP δ violation

Known recently sin22θ13 = 0.084 ± 0.005 2

Double Chooz gave the first indication that 𝜽𝟏𝟑 ≠ 𝟎

Source



Nuclear Reactor Neutrinos
 𝝂𝒆 disappearance is directly related with 𝜽𝟏𝟑

P  νe →  νe = 1 − sin
22𝛉𝟏𝟑sin

2 1.27Δm13
2 eV2 L(m)/Eν(MeV)

• Univocal determination of θ13
o No dependence with 𝛿𝐶𝑃
o No dependence with mass hierarchy

• Reactor advantages
o There is no matter effect 
o Pure  𝜈𝑒 beam
o High flux of low energy

sin2θ13

1/Δm13
2
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Double Chooz Experiment

120 mwe

~300 ν/day

December
2014
400 m

300 mwe

~40 ν/day

1 km
April 2011

Chooz, Francia
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FD-I (single detector)
461days

+
FD-II (multi-detectors)

212 days

Reactor B1
B2

Google Earth

ND (multi-detectors)
151 days

Reactor flux error highly 
suppressed with multi-detectors
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Multi-detectors analysis



 𝝂𝒆 + 𝒑 → 𝒆
+ + 𝒏

• Prompt signal: Energy loses + 𝑒+

anihilation

E e+ ≃ E  𝛎𝐞 − 0.8 MeV

• Delayed signal: Neutron capture on
Gadolium (Gd)

8 MeV γ rays

• Alternaly, neutrón capture on
Hidrogen (H) (∼2.2 MeV)

Inverse β decay
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Double Chooz detector
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Outer Veto
Plastic scintillation strips 

𝝂 – Target
10.3 m3 Gd-loaded liquid

scintillator

Ύ - Catcher
22.5 m3 Gd-free liquid 

scintillator 

Buffer
110 m3 non-scintillating 

mineral oil layer. 390 10’’ PMTs

Inner Veto
90 m3 thick liquid scintillator 

layer. 78 8’’ PMTs

Steel shield (FD)
Water shield (ND)



IBD candidates selection
• Preselection
1. Valid trigger (E≥0.4 MeV)

2. Muon veto (Event is a muon if EIV >16MeV o EID >20MeV)

3. Rejection of the events subsequent to a μ (Δt>1000 μs [Gd], 
Δt>1250 μs [H])

4. Rejection of light noise (LN) signals produced in the PMT basis

• Selection

Análisis de Gd Análisis de H

Isolation [-200,600] μs [-800,900] μs 

Prompt energy 0.5<Evis<20 MeV 1.0<Evis<20 MeV

Delayed energy 4.0<Evis<10 MeV 1.3<Evis<3 MeV

Temporal coincidence 0.5<Δt<150 μs 0.5<Δt<800 μs

Distance coincidence ΔR<100cm ΔR<120cm

ANN - > -0.23
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IBD selection
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Good data:MC agreement!

Observed IBD rate: ~40 d-1 (FD) and ~300 d-1 (ND)

Remaining BG are: 
- Accidental coincidence: e.g.) environmental 𝛾 + spallation neutrons n
- Fast neutron: n + p → recoil p + n

- Stopping muon: 𝜇 → 𝑒 + 𝜈 + 𝜈

- (β, n) emitter from spallation products : e.g.) 9𝐿𝑖 → 8𝐵𝑒 + 𝑒 + 𝜈 + 𝑛

(     ) : prompt (delayed) signal



P  υe →  υe = 1 − sin
2 2θ13 sin

2
Δm31
2 L

4E
=

N E XD

N E MC

Single Detector

N E FD

N E ND

Multi Detector

N E Observed = 𝛆𝐭𝐨𝐭 × N E
Exp + N E BG

The detection efficiency is defined as

εtot = εprompt × 𝛆𝐝𝐞𝐥𝐚𝐲 × εvetoes × εproton#

εdelay = εn−captures × εcut × εspill

Expected
neutrino 

flux

Observed neutrino 
candidates

Neutrino 
detection
efficiency

Background

Being

Neutrino detection efficiency
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To estimate the value of 𝜃13 two different analyses are applied

Efficiency correction ratios

𝑐𝜁 =
εDATA FD

εDATAND
or
εDATA

εMC

with 𝜁=each contribution of εdelay



Neutron Sources

• Homogeneously distributed within 
the detector.

• Same neutron physics and event
selection as the oscillation signal

IBD neutrons

Cf-source neutrons

• Point-like fission source emitting ~10 
n/s. Deployed at specific locations 
within the detector

• Selected using delayed coincidence: 
prompt: fission γ; delayed: neutron 
captures
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Gd-fraction
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NGd = N(3.5 < Evis < 10 MeV)
NH = N(1.3 < Evis < 3.5 MeV)

Efficiency fractions at target center to be 
introduced in 𝜃13fit:

𝑐0 =
εn−captures

DATAND

εn−captures
DATA FD

or
εn−captures

DATA

εn−captures
MC

εn−captures =
𝐍𝐆𝐝
𝐍𝐆𝐝 + 𝐍𝐇

Neutrons can be captured on Gd,
H or C nuclei .

The εn−captures allow to study

the fraction of n-captures on
Gd and to estimate the

concentration of Gd in the
𝜈target liquid scintillator. 

Number of Gd 
capture events

Number of H 
capture events

εdelay =

𝜺𝐧−𝐜𝐚𝐩𝐭𝐮𝐫𝐞𝐬 × εcut × εspill

Gadolinium capture efficiency definition



Volume-wide detection (I)
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• The  εcut studies the impact of the neutrino selection criteria.
• Efficiency definition including the selection cuts.
• Only non-neutron delayed events are background (BG). 

Accidental BG is subtracted using an off-time selection.

εdelay = εn−captures × 𝛆𝐜𝐮𝐭 × εspill

εcut =
N(4 < En < 10 MeV ∩ 0.5 < Δt < 150 μs ∩ ΔR < 1m)

N(3.5 < En < 10 MeV ∩ 0.5 < Δt < 800 μs ∩ 0 < ΔR < 1.2m)

Number of IBD candidates

Number of Gd capture events Candidate isolation cuts

IBD cut efficiency definition

𝑐𝑣 =
εcut
DATA FD

εcut
DATA ND

𝑜𝑟
εcut
DATA

εcut
MC

Efficiency fractions in the detector volume 
to  be introduced in 𝜃13 fit.
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Volume-wide detection (II)

• Ideal source to measure the volume-wide selection efficiency.

εdelay = εn−captures × 𝛆𝐜𝐮𝐭 × εspill

▲ Near detector efficiency map for 15 months of ND DATA (Left plot) and 
for a ND MC (Right plot). White dotted lines delimite target, gamma 

catcher and buffer volumes.



Neutron migration
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Spill-in
n from a IBD-event
happening in the
𝛾catcher is captured

on the 𝜈target

Spill-out
n from IBD-event
happening in the
𝜈target is captured in 

the 𝛾catcher

εdelay = εn−captures × εcut × 𝛆𝐬𝐩𝐢𝐥𝐥

• 𝝂Target constitutes the fiducial
volumen in which the occurring
IBD events are selected. 

• Due to neutron migrations
between 𝝂Target and 𝜸-catcher
volumes, the IBDs can be 
captured in either volumes.

Estimated by the comparison of
two MC: Double Chooz MC
(Geant4 + custom thermalization
based on an analytical model) vs
Tripoli-4 (neutron transport code
developed for reactor physics
based on experimental nuclear
data).
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FD-I FD-II ND

BG vetoes (%) 0.11 (0.11) 0.09 (0.09) 0.02 (0.02)

Gd fraction (%) 0.25 (0.14) 0.26 (0.15) 0.28 (0.19)

IBD selection (%) 0.21 (0.21) 0.16 (0.16) 0.07 (0.07)

Spill in/out (%) 0.27 (0) 0.27 (0) 0.27 (0)

Proton number (%) 0.30 (0) 0.30 (0) 0.30 (0)

Total (%) 0.49 (0.26) 0.47 (0.22) 0.38 (0.15)

Double Chooz Preliminary

Numbers in parentheses are uncorrelated uncertainties 
in multi-detectors analysis (FD-I, FD-II and ND)

Summary detection systematics

Neutron detection efficiency uncertainty:
0.34% for FD-I (previous analysis FD-I 0.53%)
0.41% for FD-II and 0.40 % for ND



Multidetector fit results

• Best-fit: sin22θ13=0.111 ± 0.018 (stat.+syst.) (χ2/dof = 128.8/120)

• Non-zero θ13 observation at 5.8σ C.L.

FD-I FD-II ND
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• Spectral distortion between 4 – 6 MeV.
– Scales with reactor power.
– Also observed in the Daya Bay and RENO experiments.
– Unaccounted  νe component in the reactor flux model.
– Out of the oscillation range. θ13 unaffected.

Single detector analysis:
sin2 2θ13 = 0.090−0.029

+0.032



±0.030

±0.018 (This result)

±0.010 (~5x years)

dominated by statistics for ~10years

Expected Future Improvements
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IBD

target

IBD

target

IBD (Gd) IBD (Gd + H)
Current analysis (Gd-only) 

is statistically limited

→ Inclusion of H-capture 

event (Gd+H analysis!)

Improve statistics by almost 
factor 3!



Conclusions

• Double Chooz is taking data with 2 detectors since beginning 
of 2015

• Preliminary result: 𝐬𝐢𝐧𝟐 𝟐𝛉𝟏𝟑 = 𝟎. 𝟏𝟏𝟏 ± 𝟎. 𝟎𝟏𝟖
(stat.+syst.) ( Previous analysis: sin2 2θ13 = 0.090−0.029

+0.032 )
• Reactor flux uncertainty strongly suppressed to < 0.1%

• Other systematic uncertainties ≤ 0.5%

• Completely new analysis since Moriond 2016 (Gd+H) in 
progress ⇒ Update results soon

• Improved statistics. Since March 2016: 5x more statistics in 3 
months 

• New result with improved sensitivity! 
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Thank you!



Back-up
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Double Chooz Collaboration
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Uncertainties in multi-detectors 
analysis

Signal statistics

Reactor flux (SD)

Reactor flux (MD)

FD-I – FD-II relative

Detection & E (SD)

Detection & E (MD)

Background

BG (after R+S fit)

• Systematic errors suppressed with two detectors and in rate+shape fit

⇒ All systematic uncertainties below < 0.4% (after R+S fit)

• Current precision (9 months ND) is limited by the statistical uncertainty

SD: single detector
MD: relative uncertainties

in multiple detectors
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Double Chooz θ13 in the world

• DC θ13 is higher than other reactor θ13 by ~30% (1.4σ wrt Daya Bay)

• Long baseline (T2K, NOvA) weakly favors higher θ13 than reactor average

• Reactor θ13 is key parameter to solve CP-violation and mass hierarchy

World θ13 comparison

Reactor 
vs. T2K

published

preliminary

Daya Bay 1σ

Double Chooz 1σ

arXivL1601.05522 
(accepted by PRL)

DC new θ13
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single detector

Reactor 
vs. NOvA

PRD91 072010 (2015)


