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The Baryon Asymmetry of the Universe (BAU)

The present Universe: Baryons vastly more numerous than antibaryons

Before proposing mechanisms, what is needed to generate the BAU
(so-called baryogenesis)?

— Sakharov conditions (necessary, not sufficient):
@ Baryon number violation (obvious)

@ C and CP violation (differentiates between particle and anti-particle)
© Thermal inequilibrium (to avoid baryon wash-out)
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The BAU — Electroweak Baryogenesis (EWBG)

Electroweak Baryogenesis:
o Electroweak scale T ~ 100 GeV
@ Electroweak Phase Transition (EWPT):

5U(2)L X U(l)y — U(]-)EM

@ Symmetry broken when scalar fields acquire non-zero VEVs (Higgs
mechanism) and asymmetry is generated
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The BAU — Electroweak Baryogenesis (EWBG)

EWPT: Needs to be strongly first order (( = v¢/T¢ 2 1, rule of thumb)
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Figure 1: A strongly first order phase transition

Standard Model (SM): Not enough CP violation + if EWPT first order,
then m, < 70 GeV = BSM physics needed!
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Two-Higgs-Doublet Models — Tree Level Potential

Motivation: Minimal extension of the SM — e.g., more sources for CP
violation

Define SU(2), doublets ®(x) = (7 (x), ®%(x)) " for i € {1, 2} with
hypercharge +1/2

= Viree (®1,P2) =
m2, 0101 + m2,dl0, <m$2q>jq>2 n H.C.> + %Al (cb{cbl)z +
-1-%)\2 (¢g¢2)2 N (cbjcbl) (¢§¢2) TV (cb}cbz) (cbgcbl) +
n (;As (9102)" + [r6 (9f01) + 7 (0h02)] (]02) + H-C-)

where m2,, m3,, A1, A2, A3, Ag € R and s, A\g, A7, m3, € C
— New sources for CP violation (explicit)!
Note: Many new parameters = Parameter space scans
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Two-Higgs-Doublet Models — Vacuum Expectation Values

(VEVs)

In EWPT, the two scalar fields acquire VEVs:

(®1) = \% ( el 2055 )  (®2) = \% ( efﬁzginﬂ )

where v = 1/(v/2GF)? ~ 246 GeV and j3 € [0, 7/2]. Non-zero phases
e’y = yet another source for CP violation (spontaneous)! However,
assume §; =0

Define new parameter: tan 8 = %
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Two-Higgs-Doublet Models — Particles

Particles: Note 8 d. o. f. in ®1>
e G* and G° Goldstone modes: give mass to W* and Z (8 —3 =5)
o hi, hy, h3, and H* physical Higgs states with my, < mjy, < m,
(5-5=0)
One of h; must have m;, = 125 GeV!

Mass matrix for neutral scalars: 3 x 3, diagonalized by angles a, ay and
ac (B — a, ap and a, physically interesting)
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Two-Higgs-Doublet Models — Yukawa Sector

~ Ly = Q <77{3¢1 + 772D¢2) dr + QL (77{]&91 + 775162) urg + H.C.

Yukawa matrices nf € C3*3, the scalar field ®; = —io ®7
Remark: Theorem by Glashow and Weinberg — No FCNCs if given
fermion only couples to one Higgs doublet = Symmetry

Zy : ®;+ (—1)*1d; and fp — (&1) fr. Note that Z, : £ — L requires
m?5, X6, A\7 =0 == Different types (I and 1)
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Two-Higgs-Doublet Models — Effective Potential

The full potential can be written at T = 0, with ith loop correction given
by V(i) (®1, ®2),

V (®1,92) = Vigee (P1,P2) + Z i) (®1,®2)
i=1

Want temperature dependent potential (1-loop at least). Use 1-loop
thermally corrected effective potential

V(®1,92, T) = Viree (P1,P2) + V(1) (1, P2) + VT (1, P2)
VT (¢17¢2) T)

where V7 (1, d5) are counterterms and

Vi) (1, 92) =

m? (d1, ) 3
64

. o0
Vi (01,05, T) = T4 E :|:2n7’1_/ dx x°In (1 Fe X2+m,-2(¢17¢2)/T2)
: 0
1
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Constraints — Theoretical and Experimental

A "good” point in parameter space:
EWPT:

o (=vc/Tc 21

Theoretical constraints:
@ Positivity, unitarity and perturbativity at tree level
@ Global minimum at tree level

Experimental constraints:

@ Higgs physics (from searches and discovery): HiggsBounds and
HiggsSignals

@ Electroweak physics (Oblique parameters S, T and U define how
"SM like" a model is, with (S, T, U) = (0, 0, 0) for the SM. Ellipse
of 90% CL)

@ Electric dipole moment searches for electron
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Parameter space scans:

@ Phenomenological basis:

R m%z
{mhia Mmpy+, &, Op, O, tanﬂu V= ( ) >\67 >\7

2vivp )

mp, = 125 GeV
mp, € (125, 900) (GeV)

‘me’Hi — mj, | < v? (motivated by oblique parameters)
v e (-5, 5)
tan g € (1/2, 10)
Explicitly C'P violating
Broken Z:
o )\, A7 = 0 (soft) and m2, # 0, or \g, A7, m3, # 0 (hard)
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Results — Soft Z, breaking

® X\, \7 =0

@ « not independent parameter
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Figure 2: The distribution of ¢
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Results — Soft Z, breaking

log'“(tanp)
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Figure 3: (a) tan S as a function of cos (S — «), and (b) The strength of the
EWPT, ¢, as a function of my+

September 14, 2016 14 / 23

Nils Hermansson Truedsson (LU) TAE 2016



Results — Soft Z, breaking

Figure 4: The strength of the EWPT, (, as a function of (a) my and (b) m,.

== Prediction: mp,, and my= must be 2 400 GeV. Consistent with
flavour physics constraints

No clear correlation between ¢ and other parameters
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Results — Soft Z, breaking

B L

log'°(tanp)

Figure 5: (a) tan S as a function of cos (8 — «), and (b) The strength of the
EWPT, ¢, as a function of my+

Low tan 8 good, consistent with baryon asymmetry. Here lower than for
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Conclusions and Outlook

@ Distribution of ¢ shows that 2HDMs indeed can support strongly first
order EWPT

o Exist regions in parameter space with points having strongly first
order EWPT and satisfying the other imposed constraints

= There seems to be hope for 2HDMs to explain the BAU through
EWBG!

Other interesting things to do:
@ Lowest neutral scalar mass < 125 GeV
Include thermally corrected masses

Cosmological implications of several minima of potential

Study the exact dynamics during generation of baryon asymmetry to
see whether or not 2HDMs actually can produce the BAU
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Thank you for listening!
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Backup — Electroweak Baryogenesis

Figure 6: Bubbles of broken phase nucleate and start expanding.

EWBG:

(i) Scattering + CP viol. = Asymmetries in number densities

(ii) Biased sphaleron transitions = Apg # 0

(iii) Baryons go inside bubbles + suppressed sphaleron transitions = BA
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Backup — The Different Types

Type |

pf =kFcotp, VF
fR0—> fR, Vf

Type 1l

pP = —kPtanp
pY = kY cot 8
Urp — UR

dR — —dR
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Backup — Oblique Parameters and Small Mass Squared

Differences

\'
K

1

-
Il

= ~121 [F (mili’ miz) +F (mili’ m%3) - F (mflz’ mfn)] +
Ria [F (e, miy) + F (e, mi,) = F (mi,, mi,)] +
"?\)3%3 [F (mili’ m/271) +F (mili’ m/272) - F (m%ﬁ’ m/272)]
where
G2 S1¢2 52
RT = R3 = — (C1$253 + $1C3) C1C3 — 515253 C2S3
—casc3+ 5153 — (1S3 +51563) c3

and e.g., ¢; = cos; («; depends on a, ap, ac and )
— Need small mass differences! ‘m%3 ot — m,272‘ <v?
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Backup — eEDM

The electron EDM is given by 7 and P violating low energy effective
operators and the corresponding Lagrangian can be written

de
EEff —i > €ouyse FHY

Conventionally a dimensionless EDM §, = _2‘;22Z§ is defined, which can be

calculated from 2-loop Barr-Zee diagrams such that
h hz h hZ h hZ
be = (0)T7 + ()2 + (o)L + (8e)iZ2 + (56)/70 + (512 +

+(6e)H W:F’Y_’_((s )Z:ZW:F'Y

where, e.g., the top contribution in the hy~y channel is given by
((5 )h’W*_NCQthe 641 22 Zt Cthel+g(Zt) Ctlce/]

and ¢ ; and &r; are couplings, zl = mt/mh and f as well as g are loop
functions.
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Backup — Angles

Type II:

A 0

L I B I B e

log(Isin(oy,)l)
N
T
1
log(Isin(ec;)l)
N
T

[ E

: ;
1 2 1
og(tan(p)) log(tan(p))
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Figure 7: (a) log™ (sin a), and (b) log™ (sin ac) plotted against log!® (tan j3)
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