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I. INTRODUCTION

The present proposal was largely stimulated by the recent anomalous

mesons. It

results of Adair et al., on the coherent regeneration of KO1

is the purpose of this experiment to check these results with a precision

far transcending that attained in the previous experiment. Other results

to be obtained will be a new and much better limit for the partial rate

+ -—
of Ko2 + 7T 4+ 7 , a new limit for the presence (or absence) of neutral

+ -
currents as observed through K, + y + p . In addition, if time permits,

2

the coherent regeneration of Kl's in dense materials can be observed
with good accuracy.
II. EXPERIMENTAL APPARATUS

Fortuitously the equipment of this experiment already exists in

operating condition. We propose to use the present 30° neutral beam at
the A.G.S5. along with the di-pion detector and hydrogen target currently
being used by Cronin, et al. at the Cosmotron. We further propose that
this experiment be done during the forthcoming pu-p scattering experiment
on a parasitic basis.

The di-pion apparatus appears ideal for the experiment. The energy
resolution is better than 4 Mev in the m* or the Q value measurement.
The origin of the decay can be located to better than 0.1 inches. The 4
Mev resolution is to be compared with the 20 Mev in the Adair bubble
chamber. Indeed it is through the greatly improved resolution (coupled
with better statistics) that one can expect to get improved limits on

the partial decay rates mentioned above.

IIT. COUNTING RATES

We have made careful Monte Caglo calculations of the counting rates
expected. For example, using the 301 beam with the detector 60-ft. from
the A.G.S. target we could expect 0;6 decay events per lOll circulating

protons if the K, went entirely to two pions. This means that one can
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set a limit of about one in a thousand for the partial rate of K2 > %

in one hour of operation. The actual limit is set, of course, by the

number of three—body K, decays that look like two—-body decays. We have

2

not as yet made detailed calculations of this. However, it is certain

that the excellent resolution of the apparatus will greatly assist in
arriving at a much better limit.
If the experiment of Adair, et al. is correct the rate of coherently

regenerated K.'s in hydrogen will be approximately 80/hour. This is to

3
be compared with a total of 20 events in the original experiment. The
apparatus has enough angular acceptance to detect incoherently produced
Kl's with uniform efficiency to beyond 15°. We emphasize the advantage
of being able to remove the regenerating material (e.g., hydrogen) from
the neutral beam.

IV. POWER REQUIREMENTS

The power requirements for the experiment are extraordinarily modest.

We must power one 18-in. x 36-in. magnet for sweeping the beam of charged
particles. The two magnets in the di-pion spectrometer are operated in

series and use a total of 20 kw.

= Cronin & Fitch, Nobel Prize, 1980
= 3 generations, Kobayashi & Maskawa, Nobel Prize, 2008



Tensions with the SM
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CKM fit in the SM
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Long B meson lifetime




B. oscillation — good time resolution
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Semileptonic CP asymmetry
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Time dependence (e*e)
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Time dependence (pp)
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CP asymmetry in B—-J/{ K
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CP asymmetries in “penguin modes”
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Sensitivity to NP in B mixing
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B — D*fv decay distributions
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FIG. 6: The measured w dependence of F(w)|Vy| (data
points) compared to the theoretical function with the fitted
parameters (solid line). The experimental uncertainties are
too small to be visible.
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R(D*)

R(D®™) measurements
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Source of richness: Yukawas + m,

—
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How would pattern change if m,, = 50 GeV?



Bounds on (non)degenerate squarks
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