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Beyond the Standard Model



Outline:

• The Standard Model: symmetries, consistency, and 
reasons for improvement

• Grand Unified Theories

• The strong CP-problem and axions

• The hierarchy problem and possible solutions:

Supersymmetry, Composite Higgs, Extra Dimensions, …



What you must know:
There is a relatively simple QFT that explains “almost” all data: 

● Vector bosons: Introduced by a gauge sym.:  SU(3)xSU(2)xU(1)

3 families of {
 The SM:

● Scalar:          

● Fermions (Matter):

+  Gravity (General Relativity)

Q
EM

=Y
/2

+T
3QL : (3, 2, 1/3)

uR : (3, 1, 4/3)
dR : (3, 1,�2/3)

lL : (1, 2,�1)
eR : (1, 1,�2)

H : (1, 2, 1)

Determined by 
Lorentz + Dynamics!



Weinberg’s Book 1, page 246:

To have 2 DOF of a spin=1 object properly transforming 
         under the Lorentz Group ➠ Gauge Symmetry

Apart from Spacetime Symmetries,  
in the SM symmetries are not imposed

To have 2 DOF of a spin=2 object properly transforming 
     under the Lorentz Group ➠ Invariance under x-transformations



Relatively simple Lagrangian for the SM:

+|DµH|2

+V (H)

+Y ij
u Q̄i

LH̃uj
R + Y ij

d Q̄i
LHdj

R + Y i
e l̄iLHei
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+iQ̄i
L/DQi
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R/Dui
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R/Ddi

R + il̄iL/DliL + iēi
R/Dei

R

Only terms whose dimensions are ≤ 4

Using dimensional analysis with               ~ = c = 1

in fact, not all of them!!



[L] = M4

[H] = [Aµ] = M

[�] = M3/2

[S =
Z
L d

4
x] = M

0

[�µ] = M

Using dimensional analysis with               ~ = c = 1



Apart from kin. terms + masses, it gives interactions:

Gauge:

Yukawa:

Self-Higgs:

h

h h

h

λ

h

f

f

f

f

A ,   ...

Yf

g

g,Yf, λ= dimensionless 
couplings



“Coulomb phase” “Confining phase” “Higgs phase”
V(r) ⇠ 1

r
V(r) ⇠ r

responsible 
for atoms, ...

responsible 
for nuclei

responsible 
for sun’s ignition

pp → D + e+ + νe 

Nature has been very kind to us 
providing interactions in 3 different “phases” 

at large distances

V(r) ⇠ e�r

EM 
interaction

Strong  
interaction

Weak  
interaction

& Gravity



??

Only one unknown parameter:   
                                The Higgs mass (or λ)

Before LHC:



4th of July of 2012  
LHC marked a milestone in particle physics

A Higgs-like 
 state discovered:

LHC most relevant piece of data so far: mH ⇡ 125 GeV

Really shook the 
theory community



All data quite compatible with the SM Higgs predictions

S. Donato (UZH) Higgs boson results from the LHC Run-1 19

Higgs coupling 't

● We can allow the Higgs boson to have 
BSM decays, i.e.:
– decay to weakly interacting stable 
particles (e.g. dark matter);

– decay to channels not searched      
(e.g. H ? cc);

– decay with unexpected topology    
(e.g. H ? XX ? ??).

● Fit performed constraining |kV|<1.

● The BSM decay changes the global 
Higgs width: 
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i =
gHii

gSMHii
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Couplings vs mass

y=kF
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v
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● The dependence of 
couplings vs particle    
mass have been checked 
using:
–              (fermions);
–              (bosons);

(v = 246 GeV).
● Data "tted directly using 
two degrees of freedom [1]:   
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A better perspective to understand how close 
experimental data is to the SM Higgs predictions: 

SM Higgs 
prediction
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SM Higgs 
prediction

generic scalar
prediction
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Like Ulysses that revealed himself  
by shooting an arrow through twelve axe rings



Light state:   m2
H = �v2

~  0.26 (perturbative coupling)

Origin of the self-interaction → weakly-coupled theory)(
mH ⇡ 125 GeV

What the Higgs mass

tells us?

?125 GeV



Accidental global symmetries of the SM
(symmetries of the dimension-4 operators)

We didn’t ask for them, but they are there!

1) Baryon number B: � ! eiB��

B=1/3 (quarks), B=0 (leptons, Higgs)

Proton  B=1:   Cannot decay to leptons

2) Lepton number Le, Lμ, Lτ:

Le =1 (for e), Lμ=1,(for μ), Lτ =1,(for τ)  (zero for the rest)

μ cannot decay to e+photon

caveat: This symmetry is “anomalous” and proton 
could decay but with an extremely small rate



Some accidental symmetries are approximate
 (broken by small couplings)

1) Custodial symmetry: 

● In the limit  Yf = 0 and g’ = 0

Extra global SU(2):  ( H , iσ2 H* )  being a doublet

when H gets a VEV:    SU(2)L x SU(2)→ SU(2)custodial

(W⁺,W⁻,Z) are a triplet of SU(2)custodial   ➠  mW = mZ

m2
W

m2
Zc2

�W

⌘ � ' 1.0● For Yf≠0 and g’≠0:

m2
W

m2
Zc

2
✓W

' 1.0



2) Family symmetry:

In the limit all Yf = 0:

U(3)Q x U(3)u x U(3)d x U(3)L x U(3)e

In the limit Yf = 0 for 1st + 2nd family:

U(2)Q x U(2)u x U(2)d x U(2)L x U(2)e

➠ Reason for small K-K mixing
_



Higher-dimensional operators

Why not?



Why we don’t include terms like  (Wµ�Wµ�)2

They are allowed by symmetries!

?

It has dim=8, so in the Lagrangian should be written as
1
�4

(Wµ�Wµ�)2

Λ = some scale suppressing the higher-dim terms 

These new terms spoil the predictivity of the SM:

We have infinite of them!

e.g.

Λ ≡ ”Cut-off scale”  ☛  Calculability lost at E > Λ



●

For example, in WW-scattering:

+

M = c1 + c2
E4

⇤4

Fortunately, they are irrelevant at energies smaller than Λ:       

small effects at E≪Λ



Then, we can think of The SM 
as an Effective Field Theory (EFT), 

valid below some scale Λ
that suppresses all higher-dimensional operators 

This demystifies the SM!

How large can we take Λ ?

➥ can we take it to be infinity?



Is there any need to go  
beyond the SM (Λ ≠∞)?

Theoretical:     Consistency of the theory?

Experimental:   Data that cannot be explained?

Related (but deeper) question:



   Could it be the SM the final theory?TH

We must use Einstein “Gedankenexperiment” 
(thought experiments):

“If I pursue a beam of light with the 
velocity c (velocity of light in a vacuum), 
I should observe such a beam of light 

as an electromagnetic field at rest 
though spatially oscillating. 

There seems to be no such thing...”

At the age of sixteen: 



Scattering at high-energies >> Mw 

+ loops     ~
h

h h

h

λ

h

h h

h

λ(Q)

Dictated by the RG Equation:
d�

d lnQ
=

1
16⇥2

�
24�2 + 12�Y 2

t � 6Y 4
t

�
+ · · ·{

“velocity” of growth of λ(Q) 
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From Espinosa

where Q ~ Ecmλ(Q)≡”Running coupling constant”



I cannot trust my theory at Q > Λ      ☛   Λ =Cut-off scale   

• If  λ(Q) grows, as we increase Q, it can become too large at    
some scale Λ:   

• If  λ(Q) decreases, it can become negative at some scale Λ:  

●

V(H)

➥  Unstable Higgs potential

          λ(Q=Λ) ~ 16π2    ➥ Perturbation theory not valid anymore
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Figure 2: The scale Λ at which the two-loop RGEs drive the quartic SM Higgs coupling
non-perturbative, and the scale Λ at which the RGEs create an instability in the electroweak
vacuum (λ < 0). The width of the bands indicates the errors induced by the uncertainties
in mt and αS (added quadratically). The perturbativity upper bound (sometimes referred to
as ‘triviality’ bound) is given for λ = π (lower bold line [blue]) and λ = 2π (upper bold line
[blue]). Their difference indicates the size of the theoretical uncertainty in this bound. The
absolute vacuum stability bound is displayed by the light shaded [green] band, while the less
restrictive finite-temperature and zero-temperature metastability bounds are medium [blue]
and dark shaded [red], respectively. The theoretical uncertainties in these bounds have been
ignored in the plot, but are shown in Fig. 3 (right panel). The grey hatched areas indicate
the LEP [ 1] and Tevatron [ 2] exclusion domains.

mation were not included. On the other hand, the Tevatron data, although able to narrow

down the region of the ‘survival’ scenario, have no significant impact on the relative likeli-

hoods of the ‘collapse’, ‘metastable’ and ‘survival’ scenarios, neither of which can be excluded

at the present time.

We also consider the prospects for gathering more information about the fate of the SM

in the near future. The Tevatron search for the SM Higgs boson will extend its sensitivity

to both higher and lower MH , and then the LHC will enter the game. It is anticipated that

the LHC has the sensitivity to extend the Tevatron exclusion down to 127 GeV or less with

1 fb−1 of well-understood data at 14 TeV centre-of-mass energy [ 9]. This would decrease

the relative likelihood of the ‘survival’ scenario, but not sufficiently to exclude it with any

significance. On the other hand, discovery of a Higgs boson weighing 120 GeV or less would

3

Λ= 10¹⁹ GeV

Ellis et al

125 GeV

Since for each Higgs mass value 
 we can find a Λ 

M2
h = 2�(Q = MH)v2



●

V(H)
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Figure 5: Regions of absolute stability, meta-stability and instability of the SM vacuum in the Mt–
Mh plane. Right: Zoom in the region of the preferred experimental range of Mh and Mt (the
gray areas denote the allowed region at 1, 2, and 3�). The three boundaries lines correspond to
↵s(MZ) = 0.1184± 0.0007, and the grading of the colors indicates the size of the theoretical error.
The dotted contour-lines show the instability scale ⇤ in GeV assuming ↵s(MZ) = 0.1184.

3.3 Phase diagram of the SM

The final result for the condition of absolute stability is presented in eq. (2). The central

value of the stability bound at NNLO on Mh is shifted with respect to NLO computations

(where the matching scale is fixed at µ = Mt) by about +0.5GeV, whose main contributions

can be decomposed as follows:

+ 0.6GeV due to the QCD threshold corrections to � (in agreement with [14]);

+ 0.2GeV due to the Yukawa threshold corrections to �;

� 0.2GeV from RG equation at 3 loops (from [12,13]);

� 0.1GeV from the e↵ective potential at 2 loops.

As a result of these corrections, the instability scale is lowered by a factor ⇠ 2, for Mh ⇠ 125

GeV, after including NNLO e↵ects. The value of the instability scale is shown in fig. 4.

The phase diagram of the SM Higgs potential is shown in fig. 5 in the Mt–Mh plane,

taking into account the values for Mh favored by ATLAS and CMS data [1, 2]. The left

plot illustrates the remarkable coincidence for which the SM appears to live right at the

border between the stability and instability regions. As can be inferred from the right plot,

which zooms into the relevant region, there is significant preference for meta-stability of the

SM potential. By taking into account all uncertainties, we find that the stability region is

disfavored by present data by 2�. For Mh < 126 GeV, stability up to the Planck mass is

excluded at 98% C.L. (one sided).

17

taking Λ= 10¹⁹ GeV



Gravitonh

h h

h

GN = Newton’s constant
MP = Planck’s mass ~ 1.2 x 10¹⁹ GeV

GN =
1

M2
P

⇠ GNQ2 larger than one for Q > MP   
~ quantum loops of gravitons 
             important

Not known a consistent quantum  
treatment of SM+GR at Q>MP!

... but as Q ~ 10¹⁹ GeV, gravitons are also important:

New physics expected (at least) 
at energies  ~  10¹⁹ GeV !

also higher-dim operators 
suppressed by MP  are important



Now, we know what happened below 1/√GF ~ 300 GeV:

We discovered the W/Z particles, the SM!

There was “New physics” (beyond Fermi’s theory):

Very similar to Fermi’s theory:

f

f

f

f
⇠ GFQ2

GF  = Fermi’s constant

The strength of the interaction is larger than one for
                    Q > 1/√GF   ➠   ΛF ~ 1/√GF



What could we find around MP ~10¹⁹ GeV ?

A possibility (the only one?):  STRINGS

Particles are the lowest-energy modes of a string

The interactions are not anymore in a space-time 
point, but smears out over the string world-sheet



gravitons, gauge bosons and matter appear as 
massless excitations of the strings

Two types of strings:

➠ theory of unification



Generic Predictions: 

1) The space must be 1+9 dimensional

2) There are string excitations of higher-energy:

Mass

MP ≥ Mstring

0
Expected very heavy to be detected at present colliders

Indirect effects? Virtual effects of the strings generate 
higher-dimensional operators for the SM



   Most conservative approach:

TH
Λ ~  MP  ~ 10¹⁹ GeV

End of understanding at

SM+GR 
 Realm

MW 

En
er

gy

New Physics

MP



SM = Effective field Theory below MP

Dim Oi = 5

Dim Oi = 4

Dim Oi = 6

... ...

Dim Oi = 2

LSM = � 1

4g2
Fµ⌫Fµ⌫ + īfL/DfL + īfR/DfR

+|DµH|2 � �|H|4 +Yf f̄LHfR + h.c

1

⇤
Hl̄cLlLH

c1
⇤2

|H|2|DµH|2 +
c2
⇤2

(f̄L�
ufL)

2

+
c3
⇤2

(DµF
µ⌫)2 + · · ·

Λ ~ MP

μ ~ mWµ2|H|2



Important consequences: 
Higher-dimensional operators do not preserve B & Le,μ,τ

u

u d

e

proton
pion

e+

B violation:

➥ Proton decay:    p→π⁰e⁺
d

L violation:
h

h υ

υ1
�

l̄c i
L Hi Hj l

j
L

1
�2

⇥�⇥⇤ [Q̄c i
L��µuR⇥ ][d̄c

R⇤�µlL i]

Exp.  τp > 10³⁴ years   ➠  Λ > 10¹⁵ GeV

➥ Neutrino masses



SM+GR
Can explain “almost” everything
from the biggest to the smallest...

EX



Data unexplained by the SMEX

1) Neutrino masses

2) Dark matter

3) Cosmological Inflationary epoch

4) Matter/Antimatter asymmetry 
in the universe



Data unexplained by the SMEX

1) Neutrino masses

2) Dark matter

3) Cosmological Inflationary epoch

4) Matter/Antimatter asymmetry 
in the universe

No clear idea where this BSM should show up!

It could well be related to new-physics near ~MP

SM Realm

10¹⁹ GeV  

MW 

En
er

gy

New Physics

(MP) 

If so, very difficult to detect this physics (only indirectly by astro/cosmo experiments)



e.g.  Neutrino Masses:

h

h υ

υ

m⌫ ⇠
v2

�
⇠ 0.06 eV

✓
1015GeV

�

◆

Mandatory as Lepton Number L not respected 
by higher-dimensional operators

close (but below) MP 

1
�

l̄c i
L Hi Hj l

j
L

It was just an accident of the SM!

Leading one: Dimension-5 operators:

↪︎

taking smallest value 
from oscillations:

Δm~m



But there are other important  
reason to go beyond the SM

Searching for a “natural” explanation 
 of the SM parameters

Not building the theory anymore, but trying to 
understand the present one: The SM



Search for a “natural” explanation 
 of SM coupling-constants and masses:

2) Higgs mass term:    V(H) = - μ²|H|²+... 

1) Cosmological constant:   ∫ Λcosmo √g d⁴x

μ² ~ v² ~ 10⁴ GeV² << MP² ~ 10³⁸ GeV²

Λcosmo ~ 10⁻⁴⁷ GeV⁴ << MP⁴ ~ 10⁷⁶ GeV⁴

3) Charge quantization:

Qe+Qp  < 10⁻²¹
4) Strong CP problem:    ∫ θFF d⁴x~

θ < 10⁻¹³



5) Fermion masses and mixing angles:  

6) Gauge couplings:       

7) Number of families:  

g’ ~ 0.35    g ~ 0.65   gs ~1.12     at  Q~MZ

Nf = 3

14 11. CKM quark-mixing matrix

γ

γ

α

α

dm∆
Kε

Kε

sm∆ & dm∆

ubV

βsin 2

(excl. at CL > 0.95)
 < 0βsol. w/ cos 2
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Figure 11.2: Constraints on the ρ̄, η̄ plane. The shaded areas have 95% CL.

These values are obtained using the method of Refs. [5,89], and the prescription of
Refs. [98,115] gives similar results [116]. The fit results for the magnitudes of all nine
CKM elements are

VCKM =

⎛

⎝
0.97419 ± 0.00022 0.2257 ± 0.0010 0.00359 ± 0.00016
0.2256 ± 0.0010 0.97334 ± 0.00023 0.0415+0.0010

−0.0011

0.00874+0.00026
−0.00037 0.0407 ± 0.0010 0.999133+0.000044

−0.000043

⎞

⎠ , (11.27)

and the Jarlskog invariant is J = (3.05+0.19
−0.20) × 10−5.

Fig. 11.2 illustrates the constraints on the ρ̄, η̄ plane from various measurements and
the global fit result. The shaded 95% CL regions all overlap consistently around the
global fit region, though the consistency of |Vub/Vcb| and sin 2β is not very good.

July 29, 2008 18:04



Cosmological constant ?

Higgs potential ~ TeV

Charge quantization ~ 10¹⁵ GeV

Strong CP problem ~ 10¹² GeV

Fermion masses/mixing angles TeV - MP

Gauge couplings ~ 10¹⁵ GeV

Number of families ?

Search for a “natural” explanation 

Scale of New physics



Cosmological constant ?

Higgs potential ~ TeV

Charge quantization ~ 10¹⁵ GeV

Strong CP-problem ~ 10¹² GeV

Fermion masses/mixing angles TeV - MP

Gauge couplings ~ 10¹⁵ GeV

Number of families ?

Search for a “natural” explanation 

To be discussed here Scale of New physics



Grand Unified Theories

(GUT)



Citation: C. Amsler et al. (Particle Data Group), PL B667, 1 (2008) and 2009 partial update for the 2010 edition (URL: http://pdg.lbl.gov)
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See DYLLA 73 for a summary of experiments on the neutrality of matter.
See also “n CHARGE” in the neutron Listings.

VALUE DOCUMENT ID COMMENT

<1.0 × 10−21<1.0 × 10−21<1.0 × 10−21<1.0 × 10−21 8 DYLLA 73 Neutrality of SF6
• • • We do not use the following data for averages, fits, limits, etc. • • •

<3.2 × 10−20 9 SENGUPTA 00 binary pulsar

<0.8 × 10−21 MARINELLI 84 Magnetic levitation

8Assumes that qn = qp+qe .
9 SENGUPTA 00 uses the difference between the observed rate of of rotational energy loss
by the binary pulsar PSR B1913+16 and the rate predicted by general relativity to set
this limit. See the paper for assumptions.

p MAGNETIC MOMENTp MAGNETIC MOMENTp MAGNETIC MOMENTp MAGNETIC MOMENT

See the “Note on Baryon Magnetic Moments” in the Λ Listings.

VALUE (µN ) DOCUMENT ID TECN COMMENT

2.792847356±0.0000000232.792847356±0.0000000232.792847356±0.0000000232.792847356±0.000000023 MOHR 08 RVUE 2006 CODATA value

• • • We do not use the following data for averages, fits, limits, etc. • • •

2.792847351±0.000000028 MOHR 05 RVUE 2002 CODATA value
2.792847337±0.000000029 MOHR 99 RVUE 1998 CODATA value
2.792847386±0.000000063 COHEN 87 RVUE 1986 CODATA value
2.7928456 ±0.0000011 COHEN 73 RVUE 1973 CODATA value

p MAGNETIC MOMENTp MAGNETIC MOMENTp MAGNETIC MOMENTp MAGNETIC MOMENT

A few early results have been omitted.

VALUE (µN ) DOCUMENT ID TECN COMMENT

−2.800 ±0.008 OUR AVERAGE−2.800 ±0.008 OUR AVERAGE−2.800 ±0.008 OUR AVERAGE−2.800 ±0.008 OUR AVERAGE

−2.8005±0.0090 KREISSL 88 CNTR p 208Pb 11→ 10 X-ray
−2.817 ±0.048 ROBERTS 78 CNTR
−2.791 ±0.021 HU 75 CNTR Exotic atoms

(µp + µp)
/

µp(µp + µp)
/

µp(µp + µp)
/

µp(µp + µp)
/

µp

A test of CPT invariance. Calculated from the p and p magnetic moments,
above.

VALUE DOCUMENT ID

(−2.6±2.9) × 10−3 OUR EVALUATION(−2.6±2.9) × 10−3 OUR EVALUATION(−2.6±2.9) × 10−3 OUR EVALUATION(−2.6±2.9) × 10−3 OUR EVALUATION

HTTP://PDG.LBL.GOV Page 3 Created: 6/1/2009 14:18

We want to explain:

➥ suggest that the charge is quantized:   Qp = - Qe

Q=Y/2+T3  uR, dR, QL , eL, eR:    Y=(4/3,-2/3, 1/3,-1,-2)



The U(1) hypercharges will be quantized 
if it is embedded in a non-abelian group:

Q=Y/2+T3

Quantized since it comes from
 a non-abelian group SU(2)

Minimal case:    SU(4)xSU(2)xSU(2) Pati-Salam 74

Simple group:        SU(5) Glashow,Georgi 74



SU(5) model
Embedding :    SU(3)xSU(2)xU(1) ⊂ SU(5)

Extra gauge bosons X,Y associated to the new 
generators:  24-8-3-1=12 fields

Complex fields of SM charges = (3, 2, -5/3)

The Higgs system

The first symmetry breaking goes through a 24-plet of
scalars Φ(x) with a potential

V (Φ) = −
1

2
m2Tr(Φ2) +

h1

4
[Tr(Φ2)]2 +

h2

2
Tr(Φ4) (3)

For h1, h2 > 0 the minimum is V λ24 V 2 = m2
[

h1 + 7
15h2

]−1

λ24 =
1√
15
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The Higgs system

The first symmetry breaking goes through a 24-plet of
scalars Φ(x) with a potential

V (Φ) = −
1

2
m2Tr(Φ2) +

h1

4
[Tr(Φ2)]2 +

h2

2
Tr(Φ4) (3)

For h1, h2 > 0 the minimum is V λ24 V 2 = m2
[

h1 + 7
15h2

]−1
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ei� 2
3

e�i�

e�i�

ei� 2
3

ei� 2
3

Not seen → must be massive:  mass = MGUT

➥ Quantized!
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The sum is anomaly-free
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Matter embedding:      15 fields  ⊂  5+10

Fit like a glove!

10=(5x5)Antisymmetric

Not the same simplicity for the Higgs 
(Doublet-triplet splitting problem)

_



The GUT-gauge symmetry must be broken
 (not seen in nature the X,Y bosons):

    SU(5)   →   SU(3)xSU(2)xU(1) 
Extra “Higgs” in 24

getting VEV

Give mass only to X,Y bosons:   MX,Y = MGUT



SU(5) predictions:     

2) Gauge-coupling unification

3) Proton decay

1) Charge quantization



2) Gauge-coupling unification:    
             g5 = gs = g = √5/3 g’   at  Q≥MGUT

What are the values of the SM gauge-couplings at high-energies?

f

f

A
g

+ loops 

f

f
A

g(Q)
~

g  dependence with Q 
dictated by the SM spectrum 

➥ can be calculated



g1 =
p

5/3 g0

g2 = g
g3 = gs

RG Equations: dg�2
i

d lnQ
= � bi

8�2

b-coefficients depend 
on the particle spectrum



log₁₀(Q/GeV)

Langacker, Polonsky 93
g1 =

p
5/3 g0

g2 = g
g3 = gs

�i =
g2

i

4⇥



log₁₀(Q/GeV)

SM+SUSY partners (to be discussed later):

Too good to be true?

Langacker, Polonsky 93

�i =
g2

i

4⇥

MGUT



3) Proton decay:

u

u d

e

proton
pion

e+

Leads to p→π⁰e⁺:

d

where Λ ~ MGUT

d

e
➠

X,Y u

u

 The absence of observing the proton 
decaying gives a lower-bound on MGUT



Fig. 2: Gauge coupling unification in SUSY GUTs using the LEP data. Given the present
accurate measurements of the three low energy couplings, in particular αs(MZ), and

the fact that the theoretical analysis now requires two loop RG running from MG

to MZ and one loop threshold corrections at the weak scale; GUT scale threshold

corrections are now needed to precisely fit the low energy data.

Fig. 3: The contribution of dimension 5 operators to proton decay. The red dot denotes
the dimension 5 vertex.

The nucleon lifetime is calculable and given by τN ∝ M4
G/(α2

G m5
p). The dominant

decay mode of the proton (and the baryon violating decay mode of the neutron),
via gauge exchange, is p → e+ π0 (n → e+ π−). In any simple gauge symmetry,
with one universal GUT coupling and scale (αG, MG), the nucleon lifetime from
gauge exchange is calculable. Hence, the GUT scale may be directly observed via the
extremely rare decay of the nucleon. The present experimental bounds come from
Super-Kamiokande. We discuss these results shortly. In SUSY GUTs, the GUT scale
is of order 3× 1016 GeV, as compared to the GUT scale in non-SUSY GUTs which is
of order 1015 GeV. Hence the dimension 6 baryon violating operators are significantly
suppressed in SUSY GUTs [7] with τp ∼ 1034−38 yrs.

However, in SUSY GUTs there are additional sources for baryon number violation

In supersymmetric GUT there are other 
decay modes more important:

arXiv:hep-ph/0608183



Search for proton decay



             The Super-Kamiokande detector 

     • Stainless-steel tank
     • 39m diameter and 42m tall
     • Filled with 50,000 tons of ultra pure water. 
     • About 13,000 photo-multipliers on the tank wall 
     • At 1000 meter underground in the Kamioka-mine, 
       Hida-city, Gifu, Japan.

 



Present experimental limits: 

τp(p→π⁰e⁺) > 10³⁴ years

      ➥ MGUT > 3x10¹⁵ GeV

τp(p→K⁺υ) > 2.3 10³³ years

Already ruling out some 
SU(5) models



Other GUT’s beauties:

• SO(10) model:  Matter 16=5+10+1
_

right-handed 
neutrino

• Bottom-tau unification:   Mb=Mτ   at  Q≥MGUT 

...but don’t work for other fermions

works reasonably well in the Supersymmetric SM

see-saw mechanism
 for neutrino masses

left-handed
neutrino

X
M 𝜐𝜐

m⌫ ⇠ v2

M



Implications: Majorana masses for neutrino 
➠  Neutrinoless Double Beta Decay: 

x



Implications: Majorana masses for neutrino 
➠  Neutrinoless Double Beta Decay: 

Paolo Gorla 17

 Limit on the effective Majorana mass

Rencontres de Moriond EW 2016

<mββ>< (270-650) meV

IBM-2 Phys. Rev. C 91, 034304 (2015) 
QRPA-TU Phys. Rev. C 87, 045501 (2013) 
pnQRPA Phys. Rev. C 91, 024613 (2015) 

ISM Nucl. Phys. A 818, 139 (2009) 
EDF Phys. Rev. Lett. 105, 252503 (2010)

The combined result gives a 
limit on the effective 
Majorana neutrino mass:

76Ge 90% exclusion 
GERDA + HDM + IGEX

130Te 90% exclusion 
CUORE0 + Cuoricino136Xe 90% exclusion 

EXO-200+KamLAND-Zen

CUORE 90%  C.L. sensitivity

expected values

x



The strong CP Problem



⇥
g2

s

32⇤2
�µ�⇥⇤Gµ� · G⇥⇤

Dimension-four operator allowed in QCD:

Violates CP and induce a large EDM for the neutron. 
Experimental limits give:

✓ . 10�10 Why this parameter  
is so small in the SM?

by a phase rotation of the quarks, it can be removed (due to 
anomalies) and put into the quark masses. 

The only physical parameter is

✓ +ArgDet Mq
( )

  

The Strong CP problemThe Strong CP problem

neutron EDMneutron EDM

☛

This is the strong CP Problem



Are we getting more symmetries in the SM if θ→0? 

CP?

No, as CP is also violated by the CKM phase (~O(1))



Peccei-Quinn axion

Promote θ to a scalar-field a(x) ≡ axion: 

+ kinetic terma(x)
g2

s

32⇥2fa
�µ�⇥⇤Gµ� · G⇥⇤

The value of θ is now dynamical: 

Determined by minimizing the energy 

One finds:   θ=0 



  

Vafa Witten '84Vafa Witten '84

QCD

Simple argument to see 
that the energy minimizes for θ=0( )

V
ill

ad
or

o



ma =
f�

fa

p
mumd

mu + md
m�

the larger fa,  
the smaller its coupling to SM states, 

and the smaller its mass

Coupling to photon

model-dependent term

a

  

the QCD axion:the QCD axion:   photon coupling  @NLO

V
ill

ad
or

o
  

the QCD axion:the QCD axion:   photon coupling  @NLO

fa

a(x)
g2

s

32⇥2fa
�µ�⇥⇤Gµ� · G⇥⇤

by mixing with the pion



  

T ≫ ΛQCD

the QCD axion:the QCD axion: as dark matter

V
ill

ad
or

o

Energy store in oscillations around the minimum
Looks like cold dark matter



Strong constraints from limits on energy looses in stars, SN,...

a

If a exists,  
the sun will loose energy 

by emitting it



Excluded regions:

decoupling
 limit

(slightly model dependent)

– 11–

Axion Mass mA (eV)

fA (GeV)

10-1110-1010-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105 106

10010110210310410510610710810910101011101210131014101510161017

 ADMX G2  ADMX  IAXO  CASPEr  CAST 

 WDLF (gAee DFSZ)  WDLF Hint 

 HB Stars in GCs (gAγγ DFSZ) 

 K
SV

Z 

 HB Hint 

 RGs in GCs (gAee DFSZ)  RG Hint 

 SN1987A (gApp KSVZ)  Burst Duration  Counts in SuperK 

 Telescope/EBL 

 Hot-DM / CMB / BBN 

 Beam Dump 

 XENON100 (gAee, DFSZ) 

 NS in Cas A Hint (gAnn DFSZ) 

    Dark Matter (post-inflation PQ phase transition) 

 Dark Matter (pre-inflation PQ phase transition) 

   

    Black Holes 

Figure 2: Exclusion ranges as described in the
text. The intervals in the bottom row are the ap-
proximate ADMX, CASPEr, CAST, and IAXO
search ranges, with green regions indicating the
projected reach. Limits on coupling strengths
are translated into limits on mA and fA us-
ing z = 0.56 and the KSVZ values for the
coupling strengths, if not indicated otherwise.
The “Beam Dump” bar is a rough represen-
tation of the exclusion range for standard or
variant axions. The limits for the axion-electron
coupling are determined for the DFSZ model
with an axion-electron coupling corresponding
to cos2 β′ = 1/2.

We translate the conservative constraint, Equation 12, on

GAγγ to fA > 3.4 × 107 GeV (mA < 0.2 eV), using z = 0.56

and E/N = 0 as in the KSVZ model, and show the excluded

range in Figure 2. For the DFSZ model with E/N = 8/3,

the corresponding limits are slightly less restrictive, fA >

1.3 × 107 GeV (mA < 0.5 eV). The weak indication of an

extra energy loss points to a range 76 meV <∼ mA <∼ 150 meV

(0.21 eV <∼ mA <∼ 0.41 eV) for the KSVZ (DFSZ) model. The

exact high-mass end of the exclusion range has not been

February 8, 2016 19:55



CAST (IAXO) Experiment

Detecting axions coming from the sun

CAST



CAST (IAXO) Experiment

Detecting axions coming from the sun

Future: 
IAXO



ADMX Experiment
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Cosmic Axion Spin Precession Experiment (CASPEr)

Dmitry Budker,1, 2 Peter W. Graham,3 Micah Ledbetter,4 Surjeet Rajendran,3 and Alexander O. Sushkov5

1Department of Physics, University of California, Berkeley, California 94720, USA
2Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

3Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305
4AOSense, 767 N. Mary Ave, Sunnyvale, CA, 94085-2909

5Department of Physics, and Department of Chemistry and Chemical Biology,
Harvard University, Cambridge, MA 02138, USA.

We propose an experiment to search for QCD axion and axion-like-particle (ALP) dark matter.
Nuclei that are interacting with the background axion dark matter acquire time-varying CP-odd
nuclear moments such as an electric dipole moment. In analogy with nuclear magnetic resonance,
these moments cause precession of nuclear spins in a material sample in the presence of an electric
field. Precision magnetometry can be used to search for such precession. An initial phase of this
experiment could cover many orders of magnitude in ALP parameter space beyond the current
astrophysical and laboratory limits. And with established techniques, the proposed experimental
scheme has sensitivity to QCD axion masses ma . 10�9 eV, corresponding to theoretically well-
motivated axion decay constants fa & 1016 GeV. With further improvements, this experiment could
ultimately cover the entire range of masses ma . µeV, complementary to cavity searches.

I. INTRODUCTION

The discovery of the nature of dark matter would provide significant insights into particle physics, astrophysics,
and cosmology. While the Weakly Interacting Massive Particle (WIMP) is a well motivated candidate, it is heavily
constrained by null results from a variety of experiments [1–3]. Further, the Large Hadron Collider has placed
stringent constraints on scenarios such as supersymmetry that have provided the theoretical basis for WIMP dark
matter [4]. Indeed, these constraints are most easily alleviated by allowing for a rapid decay of the supersymmetric
WIMP candidate (e.g. [5]), precluding a cosmological role for it. Thus, it is essential to develop techniques to search
for a wide class of dark matter candidates.

Introduced as a solution to the strong CP problem [6, 7], the axion is a prominent dark matter candidate. It
arises naturally as the pseudo Goldstone boson of some global symmetry that is broken at a high scale fa [8–13].

QCD generates a potential 1
2m2

aa
2 for the axion with ma ⇠ ⇤2

QCD

fa
. An initial displacement of the axion field from

its minimum results in oscillations of this field with frequency ma
c2

~ . The energy density in these oscillations can be
dark matter [15, 16]. Other types of light bosons, often called axion-like-particles (ALPs), have attracted significant
attention [17–30]. These receive a potential (and a mass) from non-QCD sources and are less constrained than the
QCD axion. Like the oscillations of the QCD axion, oscillations of the ALP field in its potential can also be dark
matter. We focus on light ALPs with masses ma comparable to that of the axion. We will use the term ALP to
refer to any of these light bosons, including the QCD axion. The temporal coherence of the oscillations of the dark
matter ALP field in an experiment is limited by motion through the spatial gradients of the field. The size of these
gradients is set by the de-Broglie wavelength, giving rise to a coherence time ⌧a ⇠ 2⇡

mav2

⇠ 106 2⇡
ma

, where v ⇠ 10�3 is
the galactic virial velocity of the ALP dark matter [17].

The axion’s properties are determined by fa. Astrophysical bounds rule out axions with fa . 1010 GeV [31]. While
fa & 1012 GeV used to be claimed to be ruled out by cosmological arguments, this was based on a simplified picture
of cosmology and is not a rigorous bound (see for example [17, 32]). The conversion of axions into photons in the
presence of a magnetic field can be used to search for axions with fa ⇠ 1012 GeV [33, 34], but the ability of such
techniques to probe axions with fa � 1012 GeV is limited. It is important to develop techniques that can search for
axions over the vast majority of parameter space up to fa ⇠ 1019 GeV, especially because of the generic theoretical
expectation that the symmetry breaking scale fa should be close to other fundamental scales in particle physics such
as the grand unified (⇠ 1016 GeV) and Planck (⇠ 1019 GeV) scales [35].

The axion field induces a time varying nucleon electric dipole moment (EDM) dn ⇠ 10�16 a
0

cos(mat)
fa

e · cm [17, 36].

Here a0 is the local amplitude of the axion dark matter field. See [17] for detailed formulas and derivations of these
results. This EDM is generated from the defining coupling a

fa
tr GG̃ of the axion to QCD [8–13], caused by the same

QCD dynamics that leads to physical e↵ects for the operator ✓QCD tr GG̃ (e.g. nucleon EDMs dn ⇠ 10�16 ✓QCD e ·cm)
[37], resulting in the strong CP problem and its resolution, the axion. Essentially, the dark matter axion can be thought
of as an oscillating value of ✓QCD.
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All EDM experiments to date have searched for static EDMs and have greatly reduced sensitivity to the oscillating
nuclear EDM induced by an axion. But in fact, the oscillation of the EDM should, in many ways, make searches
easier. Even though the axion is generated by physics at high energies (fa � 1011 GeV), its ultra-light mass lies at
frequencies accessible in the laboratory. A signal that naturally oscillates at a frequency set by fundamental physics,
independent of the details of any particular experiment, should ameliorate many of the systematic errors that often
limit the sensitivity of EDM searches.

It was pointed out in [36] that axion dark matter could be detected in future molecular interferometers using
this oscillating EDM. Here we argue that such an oscillating EDM can be observed through solid-state NMR-based
experiments using presently available technology. We further exploit the oscillatory nature of the signal by designing
a resonant detector that enhances the signal, potentially allowing detection of the QCD axion. The nucleon EDM
naturally induced by an axion is the primary focus of this paper. However, such interactions may also exist for ALPs
and our techniques will also search for them [17].

II. EXPERIMENTAL CONCEPT

“Solid-state EDM” experiments [40–44] have been proposed as promising ways to search for static EDMs of electrons
and nucleons, and an experimental limit on the electron EDM has been set using these methods [49]. This result was
not competitive with the current best limit on the electron EDM, due to the systematic e↵ect of sample heating caused
by electric field reversal in a dissipative ferroelectric material. We propose an experiment that uses the solid-state
approach, together with magnetic-resonance techniques, to search for axion or ALP dark matter. Crucially, since the
nucleon EDM is intrinsically time varying, unlike in static EDM searches, it can be detected without electric field
reversals. This eliminates systematics that plagued the solid-state EDM experiments.

Nuclear spins in a solid insulating material are pre-polarized and placed in an external magnetic field ~Bext, with
an electric field ( ~E⇤) applied perpendicular to ~Bext, as in Fig. 1. In the rotating frame, in which ~Bext is eliminated,
if there is a nucleon EDM, the nuclear spins precess around the electric field. This results (as seen in the lab frame)
in a magnetization at an angle to ~Bext, which precesses around this field with Larmor frequency. This transverse
magnetization can be measured with a magnetometer such as a superconducting quantum interference device (SQUID)
with a pickup loop oriented as shown in Fig. 1. For a static EDM the transverse magnetization will not build up
in time since its direction relative to the electric field continually oscillates. Likewise, when the ALP-induced EDM
oscillation frequency is di↵erent from the Larmor frequency, no measurable transverse magnetization ensues. However,
when the two frequencies coincide, there occurs a resonance akin to that in the usual NMR. The magnitude of the
external magnetic field (Bext) is swept to search for this resonance. At time t = 0 the spins are prepared along ~Bext,
at subsequent times the magnitude of the transverse magnetization is given by

M(t) ⇡ npµE⇤✏Sdn
sin

h⇣
2µB

ext

�mac
2

~

⌘
t
i

2µB
ext

�mac2

~
sin (2µBextt) , (1)

where n is the number density of nuclear spins, p is the polarization, µ is the nuclear magnetic dipole moment, and
we assume a spin-1/2 nucleus. Technically, by Schi↵’s theorem, there can be no net electric field at the nucleus,
so the e↵ect of the EDM is actually zero. Instead the signal actually arises from the Schi↵ moment. Following
standard convention, we parametrize this e↵ect as ✏S , the Schi↵ suppression factor [52], times dn, the magnitude of
the ALP-induced nuclear EDM. Thus ✏Sd acts as the e↵ective EDM of the nucleus in the material and dn✏sE⇤ is the
energy shift produced between spin-up and spin-down states of the nucleus. The resonant enhancement occurs when
2µBext ⇡ mac2.

The nuclear magnetic moments in the sample are polarized using a large applied magnetic field (B0 ⇡ 10 T) at
low temperature (✓0 ⇡ 4 K), achieving a polarization fraction ⇠ 10�3. Higher polarizations may be achievable using
optical-pumping techniques. The polarization persists for time, T1, set by the spin-lattice relaxation. At cryogenic
temperature, T1 can reach many hours or longer [45]. It is advantageous to use an element whose nuclear spin is 1/2,
which usually leads to longer spin-lattice relaxation times.

On resonance, the net transverse magnetization precesses at the Larmor frequency (2µBext), as in Eq. (1). The
amplitude of the resonant transverse magnetization increases linearly with time, in principle up to the ALP coherence
time ⌧a. In practice this increase may be cuto↵ earlier if other e↵ects broaden the resonance. For example, the
transverse relaxation time of the nuclear spins, T2, may be shorter than ⌧a. In this case, T2 would set the maximum

resonant enhancement achievable, so that the factor
~ sin[(2µB

ext

�mac
2)~�1t]

2µB
ext

�mac2
from Eq. (1) would have a maximum ⇡ T2

(in polycrystalline samples at high magnetic fields, the chemical shift anisotropy may broaden the resonance even
further). The magnetic dipole-dipole interaction between nuclear spins sets T2 ⇠ 1 ms, however dynamic-decoupling

• Transverse magnetization can be searched by magnetic resonance

• Oscillating DM axion induces an oscillating nuclear EDM

3

SQUID

pickup

loop

~Bext

~M

~E⇤

FIG. 1: Geometry of the experiment. The applied magnetic field ~B
ext

is colinear with the sample magnetization, ~M . The
e↵ective electric field in the crystal ~E⇤ is perpendicular to ~B

ext

. The SQUID pickup loop is arranged to measure the transverse
magnetization of the sample.

schemes have been shown to suppress broadening due to chemical shifts and increase T2 substantially [51]. T2 in
excess of 10 s or even 1000 s has been achieved in other materials, for example [51, 53, 54].

A material with a crystal structure with broken inversion symmetry at the site of the high-Z atoms is necessary
for generation of a large e↵ective electric field E⇤, which is proportional to the displacement of the heavy atom from
the centro-symmetric position in the unit cell [39]. In a ferroelectric, this displacement can be switched by an applied
voltage, however, given the oscillating nature of the ALP-induced signal, it may not be necessary to modulate this
displacement, in which case any polar crystal can be used. For ferroelectric PbTiO3, the e↵ective electric field is
E⇤ ⇡ 3 ⇥ 108 V/cm [41]. For other materials, where polarization is permanent, this may be higher by a factor of a
few. A detailed discussion of the requirements for the sample material is in the Supplemental Materials.

The measurement procedure is as follows. The sample is repolarized after every time interval T1. Then the
applied magnetic field is set to a fixed value, which must be controlled to a precision equal to the fractional width
of the resonance. The magnetic field value determines the ALP frequency to which the experiment is sensitive. The
transverse magnetization is measured as a function of time with fixed applied magnetic field. We call a measurement
at a given value of magnetic field “a shot.” The total integration time at any one magnetic field value, tshot, is set
by the requirement that an O(1) range of frequencies is scanned in 3 years. If T2 is longer than the ALP coherence

time ⌧a, then when searching at frequency ma
c2

~ the width of the frequency band is ⇡ 10�6 ma
c2

~ . If T2 is shorter

than ⌧a then the width of the frequency band is ⇠ ⇡
T
2

. Thus we take tshot =
108s

min(106,
mac2T

2

⇡~ )
. Using the magnetization

measurements taken over tshot the power in the relevant frequency band around 2µB
ext

~ is found. The applied magnetic
field is then changed to the next frequency bin and the procedure is repeated. The signal of an ALP would be excess
power in a range of magnetic fields (ALP frequencies). If multiple ALPs existed they would appear as multiple spikes
at di↵erent frequencies.

Note that at the lowest frequencies . T�1
2 the resonance is broadened significantly so that an O(1) range of

frequencies is covered in any given frequency bin. In this regime one may use any of the established techniques
searching for static nuclear EDMs but with short sampling times . ~

mac2
, then look for an oscillating signal in the

data.
This search for a time varying EDM is substantially di↵erent from searches for a static EDM using solid state

systems. In searching for a static EDM, it is necessary to separate the energy shift induced by the EDM from other
systematic e↵ects. This is accomplished by searching for energy shifts that modulate linearly with the applied electric
field in the sample. However, the modulation of the electric field can induce additional systematic shifts in the system
that occur at that modulation frequency, competing with the static EDM signal [49]. This is not the case for a time
varying EDM. The ALP induced EDM oscillates at a frequency set by fundamental physics and leads to observable
e↵ects in a system whose parameters are static. The time variation provides the handle necessary to separate this
signal from other systematic energy shifts and the signal can be detected without the need for additional handles such
as electric field reversals. This eliminates the systematic problems encountered by solid state static EDM searches
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• This produces a precession of the nuclear spin 
       in a nucleon spin polarized sample in a E-field



The hierarchy problem

(On the origin of the Higgs potential)
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The only dimension-full parameter of the SM



Where would you expect the Higgs mass (μ2) to be?
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Why is the EW scale “almost” zero?

Is it a special point? More symmetrical?

Where would you expect the Higgs mass (μ2) to be?



 R ! ei� R

No extra symmetry in the SM

Gaining symmetries in the massless limit

μ2 → 0

mΨ → 0Dirac fermion mass:  
mΨ ΨL ΨR

_ Chiral-symmetry recovered: 

Higgs mass:

μ2=0 not a special point!



Problems for massless scalars:
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2≠3   ✔ Massless vectors   
  are save

2≠4   ✔ Massless fermions          
              are save

1=1 Problem!

Aµ

Quantum  
fluctuations 

 can give mass  
to scalars

(charged)



Quantum corrections to masses from heavy particles

h h ⇠ 1
16�2

M2

mass of the particle 
in the loop

• The second diagram is the correct interpretation of the contributions 
from 

• Note this represents an interaction with virtual e+e- pairs in the vacuum.

• The net result is only logarithmically divergent:
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Not the same for fermions:



“OLD” possibilities that theorists envisage 
to tackle the Hierarchy Problem:

1) Supersymmetry: 
    Making μ2→0 a special point! Gaining a symmetry!

2) Composite Higgs: The Higgs is not elementary:

As pions in QCD  ~ qq
_

3) Large extra dimensions: 
     MP not a fundamental scale!  GN small because
      gravity propagates in extra dimensions

➥ In all cases New Physics at ~TeV

Best motivation for the LHC program!

Made of fermions!



Supersymmetry
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What we found:
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Why is the EW scale “almost” zero?
Is it a special point? More symmetrical?

Yes, it is supersymmetric!

Where would you expect the Higgs mass (μ2) to be?



Idea:        Scalar                       Fermion
symmetry  trans. from which

 mΨ → 0 
is a special point

It exists, it is a Supersymmetry:

Simplest case: 
 
�

=  Majorana fermion
=  Complex scalar
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Invariant under:

Parameter of the trans. 
being a Majorana fermionThe scalar must be massless!!

L = |�µ�|2 + i
1
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Supersymmetry Algebra

The systematic cancellation of the dangerous contributions to ∆m2
H can only be brought about by

the type of conspiracy that is better known to physicists as a symmetry. Comparing eqs. (1.2) and
(1.3) strongly suggests that the new symmetry ought to relate fermions and bosons, because of the
relative minus sign between fermion loop and boson loop contributions to ∆m2

H . (Note that λS must
be positive if the scalar potential is to be bounded from below.) If each of the quarks and leptons of the
Standard Model is accompanied by two complex scalars with λS = |λf |2, then the Λ2

UV contributions of
Figures 1.1a and 1.1b will neatly cancel [3]. Clearly, more restrictions on the theory will be necessary to
ensure that this success persists to higher orders, so that, for example, the contributions in Figure 1.2
and eq. (1.4) from a very heavy fermion are canceled by the two-loop effects of some very heavy
bosons. Fortunately, the cancellation of all such contributions to scalar masses is not only possible,
but is actually unavoidable, once we merely assume that there exists a symmetry relating fermions and
bosons, called a supersymmetry.

A supersymmetry transformation turns a bosonic state into a fermionic state, and vice versa. The
operator Q that generates such transformations must be an anticommuting spinor, with

Q|Boson⟩ = |Fermion⟩, Q|Fermion⟩ = |Boson⟩. (1.5)

Spinors are intrinsically complex objects, so Q† (the hermitian conjugate of Q) is also a symmetry
generator. Because Q and Q† are fermionic operators, they carry spin angular momentum 1/2, so it is
clear that supersymmetry must be a spacetime symmetry. The possible forms for such symmetries in
an interacting quantum field theory are highly restricted by the Haag-Lopuszanski-Sohnius extension
of the Coleman-Mandula theorem [4]. For realistic theories that, like the Standard Model, have chiral
fermions (i.e., fermions whose left- and right-handed pieces transform differently under the gauge group)
and thus the possibility of parity-violating interactions, this theorem implies that the generators Q and
Q† must satisfy an algebra of anticommutation and commutation relations with the schematic form

{Q,Q†} = Pµ, (1.6)

{Q,Q} = {Q†, Q†} = 0, (1.7)

[Pµ, Q] = [Pµ, Q†] = 0, (1.8)

where Pµ is the four-momentum generator of spacetime translations. Here we have ruthlessly sup-
pressed the spinor indices on Q and Q†; after developing some notation we will, in section 3.1, derive
the precise version of eqs. (1.6)-(1.8) with indices restored. In the meantime, we simply note that the
appearance of Pµ on the right-hand side of eq. (1.6) is unsurprising, since it transforms under Lorentz
boosts and rotations as a spin-1 object while Q and Q† on the left-hand side each transform as spin-1/2
objects.

The single-particle states of a supersymmetric theory fall into irreducible representations of the
supersymmetry algebra, called supermultiplets. Each supermultiplet contains both fermion and boson
states, which are commonly known as superpartners of each other. By definition, if |Ω⟩ and |Ω′⟩ are
members of the same supermultiplet, then |Ω′⟩ is proportional to some combination of Q and Q†

operators acting on |Ω⟩, up to a spacetime translation or rotation. The squared-mass operator −P 2

commutes with the operators Q, Q†, and with all spacetime rotation and translation operators, so
it follows immediately that particles inhabiting the same irreducible supermultiplet must have equal
eigenvalues of −P 2, and therefore equal masses.

The supersymmetry generators Q,Q† also commute with the generators of gauge transformations.
Therefore particles in the same supermultiplet must also be in the same representation of the gauge
group, and so must have the same electric charges, weak isospin, and color degrees of freedom.

Each supermultiplet contains an equal number of fermion and boson degrees of freedom. To prove
this, consider the operator (−1)2s where s is the spin angular momentum. By the spin-statistics
theorem, this operator has eigenvalue +1 acting on a bosonic state and eigenvalue −1 acting on a
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(Maximal extension of Poincare in a QFT)
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Q commutes with P² and any generator of the gauge symmetries:

Minimal SUSY (N=1):  One extra generator Q

The Fermion and Boson have equal masses and charges

Schematic form: [Q, Mµ� ] = Q



Minimal Supersymmetric SM (MSSM)

Imposing supersymmetry to the SM ➡ MSSM

The spectrum is doubled:

SM fermion ➡  New scalar (s-”...”)
SM boson ➡  New majorana fermion 

                               (“ ...“-ino)



... but not yet realistic:

The model has a quantum anomaly (due to the Higgsino)
 and the down-quarks and leptons are massless 

Extra Higgs needed 
      ➡  Two Higgs doublets:

Hu : (1, 2, 1)
Hd : (1, 2,�1)

➞ give mass to the up quarks

➞ give mass to the down quarks
            and leptons

+ two Higgsino doublets:

eHu : (1, 2, 1)
eHd : (1, 2,�1)



Type of interactions
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H0
u

(a)

t̃L t†R

H̃0
u

(b)

tL t̃∗R

H̃0
u
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Figure 5.1: The top-quark Yukawa coupling (a) and its “supersymmetrizations” (b), (c), all of
strength yt.

space. All of the gauge [SU(3)C color and SU(2)L weak isospin] and family indices in eq. (5.1) are
suppressed. The “µ term”, as it is traditionally called, can be written out as µ(Hu)α(Hd)βϵαβ, where
ϵαβ is used to tie together SU(2)L weak isospin indices α,β = 1, 2 in a gauge-invariant way. Likewise,
the term uyuQHu can be written out as uia (yu)i

j Qjαa (Hu)βϵαβ, where i = 1, 2, 3 is a family index,
and a = 1, 2, 3 is a color index which is lowered (raised) in the 3 (3) representation of SU(3)C .

The µ term in eq. (5.1) is the supersymmetric version of the Higgs boson mass in the Standard
Model. It is unique, because terms H∗

uHu or H∗
dHd are forbidden in the superpotential, which must be

analytic in the chiral superfields (or equivalently in the scalar fields) treated as complex variables, as
shown in section 3.2. We can also see from the form of eq. (5.1) why both Hu and Hd are needed in order
to give Yukawa couplings, and thus masses, to all of the quarks and leptons. Since the superpotential
must be analytic, the uQHu Yukawa terms cannot be replaced by something like uQH∗

d . Similarly,
the dQHd and eLHd terms cannot be replaced by something like dQH∗

u and eLH∗
u. The analogous

Yukawa couplings would be allowed in a general non-supersymmetric two Higgs doublet model, but are
forbidden by the structure of supersymmetry. So we need both Hu and Hd, even without invoking the
argument based on anomaly cancellation mentioned in the Introduction.

The Yukawa matrices determine the current masses and CKM mixing angles of the ordinary quarks
and leptons, after the neutral scalar components of Hu and Hd get VEVs. Since the top quark, bottom
quark and tau lepton are the heaviest fermions in the Standard Model, it is often useful to make an
approximation that only the (3, 3) family components of each of yu, yd and ye are important:

yu ≈

⎛

⎝
0 0 0
0 0 0
0 0 yt

⎞

⎠ , yd ≈

⎛

⎝
0 0 0
0 0 0
0 0 yb

⎞

⎠ , ye ≈

⎛

⎝
0 0 0
0 0 0
0 0 yτ

⎞

⎠ . (5.2)

In this limit, only the third family and Higgs fields contribute to the MSSM superpotential. It is
instructive to write the superpotential in terms of the separate SU(2)L weak isospin components
[Q3 = (t b), L3 = (ντ τ), Hu = (H+

u H0
u), Hd = (H0

d H−
d ), u3 = t, d3 = b, e3 = τ ], so:

WMSSM ≈ yt(ttH
0
u − tbH+

u ) − yb(btH
−
d − bbH0

d) − yτ (τντH
−
d − ττH0

d)

+µ(H+
u H−

d − H0
uH0

d). (5.3)

The minus signs inside the parentheses appear because of the antisymmetry of the ϵαβ symbol used to
tie up the SU(2)L indices. The other minus signs in eq. (5.1) were chosen so that the terms ytttH0

u,
ybbbH0

d , and yτττH0
d , which will become the top, bottom and tau masses when H0

u and H0
d get VEVs,

each have overall positive signs in eq. (5.3).
Since the Yukawa interactions yijk in a general supersymmetric theory must be completely sym-

metric under interchange of i, j, k, we know that yu, yd and ye imply not only Higgs-quark-quark and
Higgs-lepton-lepton couplings as in the Standard Model, but also squark-Higgsino-quark and slepton-
Higgsino-lepton interactions. To illustrate this, Figures 5.1a,b,c show some of the interactions involving
the top-quark Yukawa coupling yt. Figure 5.1a is the Standard Model-like coupling of the top quark
to the neutral complex scalar Higgs boson, which follows from the first term in eq. (5.3). For variety,
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Getting them from “supersymmetrization”:
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Figure 3.2: Supersymmetric dimensionful couplings: (a) (scalar)3 interaction vertex M∗
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Figure 3.3: Supersymmetric gauge interaction vertices.

tion of Figure 3.1c is exactly of the special type needed to cancel the quadratic divergences in quantum
corrections to scalar masses, as discussed in the Introduction [compare Figure 1.1, and eq. (1.11)].

Figure 3.2 shows the only interactions corresponding to renormalizable and supersymmetric vertices
with coupling dimensions of [mass] and [mass]2. First, there are (scalar)3 couplings in Figure 3.2a,b,
which are entirely determined by the superpotential mass parameters M ij and Yukawa couplings yijk,
as indicated by the second and third terms in eq. (3.50). The propagators of the fermions and scalars
in the theory are constructed in the usual way using the fermion mass M ij and scalar squared mass
M∗

ikM
kj. The fermion mass terms M ij and Mij each lead to a chirality-changing insertion in the

fermion propagator; note the directions of the arrows in Figure 3.2c,d. There is no such arrow-reversal
for a scalar propagator in a theory with exact supersymmetry; as depicted in Figure 3.2e, if one treats
the scalar squared-mass term as an insertion in the propagator, the arrow direction is preserved.

Figure 3.3 shows the gauge interactions in a supersymmetric theory. Figures 3.3a,b,c occur only
when the gauge group is non-Abelian, for example for SU(3)C color and SU(2)L weak isospin in the
MSSM. Figures 3.3a and 3.3b are the interactions of gauge bosons, which derive from the first term
in eq. (3.57). In the MSSM these are exactly the same as the well-known QCD gluon and electroweak
gauge boson vertices of the Standard Model. (We do not show the interactions of ghost fields, which
are necessary only for consistent loop amplitudes.) Figures 3.3c,d,e,f are just the standard interactions
between gauge bosons and fermion and scalar fields that must occur in any gauge theory because of the
form of the covariant derivative; they come from eqs. (3.59) and (3.65)-(3.67) inserted in the kinetic
part of the Lagrangian. Figure 3.3c shows the coupling of a gaugino to a gauge boson; the gaugino line
in a Feynman diagram is traditionally drawn as a solid fermion line superimposed on a wavy line. In
Figure 3.3g we have the coupling of a gaugino to a chiral fermion and a complex scalar [the first term
in the second line of eq. (3.72)]. One can think of this as the “supersymmetrization” of Figure 3.3e or
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tion of Figure 3.1c is exactly of the special type needed to cancel the quadratic divergences in quantum
corrections to scalar masses, as discussed in the Introduction [compare Figure 1.1, and eq. (1.11)].

Figure 3.2 shows the only interactions corresponding to renormalizable and supersymmetric vertices
with coupling dimensions of [mass] and [mass]2. First, there are (scalar)3 couplings in Figure 3.2a,b,
which are entirely determined by the superpotential mass parameters M ij and Yukawa couplings yijk,
as indicated by the second and third terms in eq. (3.50). The propagators of the fermions and scalars
in the theory are constructed in the usual way using the fermion mass M ij and scalar squared mass
M∗

ikM
kj. The fermion mass terms M ij and Mij each lead to a chirality-changing insertion in the

fermion propagator; note the directions of the arrows in Figure 3.2c,d. There is no such arrow-reversal
for a scalar propagator in a theory with exact supersymmetry; as depicted in Figure 3.2e, if one treats
the scalar squared-mass term as an insertion in the propagator, the arrow direction is preserved.

Figure 3.3 shows the gauge interactions in a supersymmetric theory. Figures 3.3a,b,c occur only
when the gauge group is non-Abelian, for example for SU(3)C color and SU(2)L weak isospin in the
MSSM. Figures 3.3a and 3.3b are the interactions of gauge bosons, which derive from the first term
in eq. (3.57). In the MSSM these are exactly the same as the well-known QCD gluon and electroweak
gauge boson vertices of the Standard Model. (We do not show the interactions of ghost fields, which
are necessary only for consistent loop amplitudes.) Figures 3.3c,d,e,f are just the standard interactions
between gauge bosons and fermion and scalar fields that must occur in any gauge theory because of the
form of the covariant derivative; they come from eqs. (3.59) and (3.65)-(3.67) inserted in the kinetic
part of the Lagrangian. Figure 3.3c shows the coupling of a gaugino to a gauge boson; the gaugino line
in a Feynman diagram is traditionally drawn as a solid fermion line superimposed on a wavy line. In
Figure 3.3g we have the coupling of a gaugino to a chiral fermion and a complex scalar [the first term
in the second line of eq. (3.72)]. One can think of this as the “supersymmetrization” of Figure 3.3e or
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tion of Figure 3.1c is exactly of the special type needed to cancel the quadratic divergences in quantum
corrections to scalar masses, as discussed in the Introduction [compare Figure 1.1, and eq. (1.11)].

Figure 3.2 shows the only interactions corresponding to renormalizable and supersymmetric vertices
with coupling dimensions of [mass] and [mass]2. First, there are (scalar)3 couplings in Figure 3.2a,b,
which are entirely determined by the superpotential mass parameters M ij and Yukawa couplings yijk,
as indicated by the second and third terms in eq. (3.50). The propagators of the fermions and scalars
in the theory are constructed in the usual way using the fermion mass M ij and scalar squared mass
M∗

ikM
kj. The fermion mass terms M ij and Mij each lead to a chirality-changing insertion in the

fermion propagator; note the directions of the arrows in Figure 3.2c,d. There is no such arrow-reversal
for a scalar propagator in a theory with exact supersymmetry; as depicted in Figure 3.2e, if one treats
the scalar squared-mass term as an insertion in the propagator, the arrow direction is preserved.

Figure 3.3 shows the gauge interactions in a supersymmetric theory. Figures 3.3a,b,c occur only
when the gauge group is non-Abelian, for example for SU(3)C color and SU(2)L weak isospin in the
MSSM. Figures 3.3a and 3.3b are the interactions of gauge bosons, which derive from the first term
in eq. (3.57). In the MSSM these are exactly the same as the well-known QCD gluon and electroweak
gauge boson vertices of the Standard Model. (We do not show the interactions of ghost fields, which
are necessary only for consistent loop amplitudes.) Figures 3.3c,d,e,f are just the standard interactions
between gauge bosons and fermion and scalar fields that must occur in any gauge theory because of the
form of the covariant derivative; they come from eqs. (3.59) and (3.65)-(3.67) inserted in the kinetic
part of the Lagrangian. Figure 3.3c shows the coupling of a gaugino to a gauge boson; the gaugino line
in a Feynman diagram is traditionally drawn as a solid fermion line superimposed on a wavy line. In
Figure 3.3g we have the coupling of a gaugino to a chiral fermion and a complex scalar [the first term
in the second line of eq. (3.72)]. One can think of this as the “supersymmetrization” of Figure 3.3e or
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Figure 4.1: Soft supersymmetry-breaking terms: (a) Gaugino mass Ma; (b) non-analytic scalar squared
mass (m2)ij ; (c) analytic scalar squared mass bij; and (d) scalar cubic coupling aijk.

that are singlets or in the adjoint representation of a simple factor of the gauge group, then there are
also possible soft supersymmetry-breaking Dirac mass terms between the corresponding fermions ψa

and the gauginos [54]-[59]:

L = −Ma
Diracλ

aψa + c.c. (4.3)

This is not relevant for the MSSM with minimal field content, which does not have adjoint represen-
tation chiral supermultiplets. Therefore, equation (4.1) is usually taken to be the general form of the
soft supersymmetry-breaking Lagrangian. For some interesting exceptions, see refs. [54]-[65].

The terms in Lsoft clearly do break supersymmetry, because they involve only scalars and gauginos
and not their respective superpartners. In fact, the soft terms in Lsoft are capable of giving masses to all
of the scalars and gauginos in a theory, even if the gauge bosons and fermions in chiral supermultiplets
are massless (or relatively light). The gaugino masses Ma are always allowed by gauge symmetry. The
(m2)ij terms are allowed for i, j such that φi, φj∗ transform in complex conjugate representations of
each other under all gauge symmetries; in particular this is true of course when i = j, so every scalar
is eligible to get a mass in this way if supersymmetry is broken. The remaining soft terms may or may
not be allowed by the symmetries. The aijk, bij , and ti terms have the same form as the yijk, M ij ,
and Li terms in the superpotential [compare eq. (4.1) to eq. (3.47) or eq. (3.77)], so they will each be
allowed by gauge invariance if and only if a corresponding superpotential term is allowed.

The Feynman diagram interactions corresponding to the allowed soft terms in eq. (4.1) are shown
in Figure 4.1. For each of the interactions in Figures 4.1a,c,d there is another with all arrows reversed,
corresponding to the complex conjugate term in the Lagrangian. We will apply these general results
to the specific case of the MSSM in the next section.

5 The Minimal Supersymmetric Standard Model

In sections 3 and 4, we have found a general recipe for constructing Lagrangians for softly broken
supersymmetric theories. We are now ready to apply these general results to the MSSM. The particle
content for the MSSM was described in the Introduction. In this section we will complete the model
by specifying the superpotential and the soft supersymmetry-breaking terms.

5.1 The superpotential and supersymmetric interactions

The superpotential for the MSSM is

WMSSM = uyuQHu − dydQHd − eyeLHd + µHuHd . (5.1)

The objects Hu, Hd, Q, L, u, d, e appearing here are chiral superfields corresponding to the chiral
supermultiplets in Table 1.1. (Alternatively, they can be just thought of as the corresponding scalar
fields, as was done in section 3, but we prefer not to put the tildes on Q, L, u, d, e in order to
reduce clutter.) The dimensionless Yukawa coupling parameters yu,yd,ye are 3×3 matrices in family
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Figure 7.1: A contour map of the Higgs potential, for a typical case with tan β ≈ − cot α ≈ 10.
The minimum of the potential is marked by +, and the contours are equally spaced equipotentials.
Oscillations along the shallow direction, with H0
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the orthogonal steeper direction corresponds to the mass eigenstate H0.
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Figure 7.2: Contributions to the MSSM lightest Higgs mass from top-quark and top-squark one-loop
diagrams. Incomplete cancellation, due to soft supersymmetry breaking, leads to a large positive
correction to m2

h0 in the limit of heavy top squarks.

and is traditionally chosen to be negative; it follows that −π/2 < α < 0 (provided mA0 > mZ). The
Feynman rules for couplings of the mass eigenstate Higgs scalars to the Standard Model quarks and
leptons and the electroweak vector bosons, as well as to the various sparticles, have been worked out
in detail in ref. [182, 183].

The masses of A0, H0 and H± can in principle be arbitrarily large since they all grow with b/ sin(2β).
In contrast, the mass of h0 is bounded above. From eq. (7.20), one finds at tree-level [184]:

mh0 < mZ | cos(2β)| (7.23)

This corresponds to a shallow direction in the scalar potential, along the direction (H0
u−vu,H0

d −vd) ∝
(cos α,− sin α). The existence of this shallow direction can be traced to the fact that the quartic Higgs
couplings are given by the square of the electroweak gauge couplings, via the D-term. A contour map
of the potential, for a typical case with tan β ≈ − cot α ≈ 10, is shown in figure 7.1. If the tree-level
inequality (7.23) were robust, the lightest Higgs boson of the MSSM would have been discovered at
LEP2. However, the tree-level formula for the squared mass of h0 is subject to quantum corrections
that are relatively drastic. The largest such contributions typically come from top and stop loops, as
shown‡ in fig. 7.2. In the simple limit of top squarks that have a small mixing in the gauge eigenstate
basis and with masses mt̃1

, mt̃2
much greater than the top quark mass mt, one finds a large positive

one-loop radiative correction to eq. (7.20):

∆(m2
h0) =

3

4π2
cos2α y2

t m
2
t ln

(
mt̃1

mt̃2
/m2

t

)
. (7.24)

This shows that mh0 can exceed the LEP bounds.

‡In general, one-loop 1-particle-reducible tadpole diagrams should also be included. However, they just cancel against
tree-level tadpoles, and so both can be omitted, if the VEVs vu and vd are taken at the minimum of the loop-corrected
effective potential (see previous footnote).
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6.2 Direct Production of Top Squarks

Naturalness arguments lead to the conclusion that a Higgs boson mass of mH = 125 GeV favors
a light top squark mass, less than 1 TeV. A direct search for top squarks needs to cover this
allowed range of masses. The top squark pair production cross section at

p
s = 14 TeV is 10 fb

for mt̃ = 1 TeV. For the purpose of this study, the stops are assumed to decay either to a top
quark and the LSP (t̃ ! t + �̃0

1) or to a bottom quark and the lightest chargino (t̃ ! b + �̃±1 ).
The final state for the first decay is a top quark pair in associated with large missing transverse
momentum, while the final state for the second decay is 2 b-jets, 2 W bosons, and large missing
transverse momentum. In both cases, leptonic signatures are used to identify the top quarks or
the W bosons. The 1-lepton + jet channel is sensitive to t̃ ! t + �̃0

1, and the 2-lepton + jet
channel is sensitive to t̃ ! b + �̃±1 . For this study, the event selection requirements were not
reoptimized for a greater integrated luminosity.

An increase in the integrated luminosity from 300 to 3000 fb�1 results in an increase in a stop
mass discovery reach of approximately 150 GeV, up to 920 GeV (see Fig. 11). This increase
covers a significant part of the top squark range favored by naturalness arguments. In this study
the same selection cuts were used for the two luminosity values.
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Figure 11: Discovery reach (solid lines) and exclusion limits (dashed lines) for top squarks in the t̃ !
t + �̃0

1 (red) and the t̃ ! b + �̃±1 , �̃
±
1 ! W + �̃0

1 (green) decay modes.

6.3 Strong Production of Squarks and Gluinos

A high-luminosity dataset would allow the discovery reach for gluinos and squarks to be pushed
to the highest masses. Gluinos and light-flavor squarks can be produced with a large cross
section at 14 TeV, and the most striking signature is still large missing transverse momentum as
part of large total e↵ective mass. An optimized event selection for a benchmark point with
mq̃ = mg̃ = 3200 GeV requires the missing transverse momentum significance, defined as
Emiss

T /
p

HT , be greater than 15 GeV1/2. (The variable HT is defined to be the scalar sum of
the jet and lepton transverse energies and the missing transverse momentum in the event.) Both
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from arXiv:1207.1348

Figure 5: Maximal Higgs mass (in GeV) in CMSSM in function of the scale MS = p
m

˜t1
m

˜t2
(in

GeV) for di↵erent top mass values.

Figure 6: Parameter space for the various regimes of the MSSM Higgs sector as defined in the
text and in eq. (8) in the tan�–MA plane, in the maximal mixing scenario with MS = 2 TeV. The
constraints from A ! ⌧⌧ (continuous green line) and t ! H+b (dashed green line) searches at the
LHC are shown together with the LEP2 constraint (continuous black line).

4.4 Higgs signal and MSSM parameters in the SUSY regime

In the SUSY regime the Higgs decay rate can be a↵ected by the contributions of SUSY particles
in the loops. This makes a detailed study of the MSSM parameter space in relation to the first
results reported by ATLAS and CMS particularly interesting for estimating its sensitivity to
specific regions of parameters. In particular, the decay branching fraction into �� are modified
by both mixing e↵ects and light sparticle contributions [10]. We study these e↵ects on the
points of our pMSSM scan. In the following, we use the notation RXX to indicate the Higgs
decay branching fraction to the final state XX, BR(h0 ! XX), normalised to its SM value.
We also use the notation µXX to indicate the ratio of product of the inclusive production and
the decay branching ratio for the final state XX to its SM value, µXX = �⇥BR(h!XX)

�⇥BR(H!XX)|SM
. A

major source of deviations from unity for the R values is due to a reduction of the h total

14

Higgs mass in particular models of susy breaking:

This implies that most superpartners are
beyond present LHC searches!
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The MSSM in the aftermath of MH~125 GeV

• Big chunks of the parameter space are excluded

• Main simple models: GMSB,  Gravity/String mediated SB,
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Other MSSM goodies:

● The lightest supersymmetric particle (LSP) 
   can be Dark matter

● Gauge coupling unification

● Local supersymmetry must incorporate gravity:

The systematic cancellation of the dangerous contributions to ∆m2
H can only be brought about by

the type of conspiracy that is better known to physicists as a symmetry. Comparing eqs. (1.2) and
(1.3) strongly suggests that the new symmetry ought to relate fermions and bosons, because of the
relative minus sign between fermion loop and boson loop contributions to ∆m2

H . (Note that λS must
be positive if the scalar potential is to be bounded from below.) If each of the quarks and leptons of the
Standard Model is accompanied by two complex scalars with λS = |λf |2, then the Λ2

UV contributions of
Figures 1.1a and 1.1b will neatly cancel [3]. Clearly, more restrictions on the theory will be necessary to
ensure that this success persists to higher orders, so that, for example, the contributions in Figure 1.2
and eq. (1.4) from a very heavy fermion are canceled by the two-loop effects of some very heavy
bosons. Fortunately, the cancellation of all such contributions to scalar masses is not only possible,
but is actually unavoidable, once we merely assume that there exists a symmetry relating fermions and
bosons, called a supersymmetry.

A supersymmetry transformation turns a bosonic state into a fermionic state, and vice versa. The
operator Q that generates such transformations must be an anticommuting spinor, with

Q|Boson⟩ = |Fermion⟩, Q|Fermion⟩ = |Boson⟩. (1.5)

Spinors are intrinsically complex objects, so Q† (the hermitian conjugate of Q) is also a symmetry
generator. Because Q and Q† are fermionic operators, they carry spin angular momentum 1/2, so it is
clear that supersymmetry must be a spacetime symmetry. The possible forms for such symmetries in
an interacting quantum field theory are highly restricted by the Haag-Lopuszanski-Sohnius extension
of the Coleman-Mandula theorem [4]. For realistic theories that, like the Standard Model, have chiral
fermions (i.e., fermions whose left- and right-handed pieces transform differently under the gauge group)
and thus the possibility of parity-violating interactions, this theorem implies that the generators Q and
Q† must satisfy an algebra of anticommutation and commutation relations with the schematic form

{Q,Q†} = Pµ, (1.6)

{Q,Q} = {Q†, Q†} = 0, (1.7)

[Pµ, Q] = [Pµ, Q†] = 0, (1.8)

where Pµ is the four-momentum generator of spacetime translations. Here we have ruthlessly sup-
pressed the spinor indices on Q and Q†; after developing some notation we will, in section 3.1, derive
the precise version of eqs. (1.6)-(1.8) with indices restored. In the meantime, we simply note that the
appearance of Pµ on the right-hand side of eq. (1.6) is unsurprising, since it transforms under Lorentz
boosts and rotations as a spin-1 object while Q and Q† on the left-hand side each transform as spin-1/2
objects.

The single-particle states of a supersymmetric theory fall into irreducible representations of the
supersymmetry algebra, called supermultiplets. Each supermultiplet contains both fermion and boson
states, which are commonly known as superpartners of each other. By definition, if |Ω⟩ and |Ω′⟩ are
members of the same supermultiplet, then |Ω′⟩ is proportional to some combination of Q and Q†

operators acting on |Ω⟩, up to a spacetime translation or rotation. The squared-mass operator −P 2

commutes with the operators Q, Q†, and with all spacetime rotation and translation operators, so
it follows immediately that particles inhabiting the same irreducible supermultiplet must have equal
eigenvalues of −P 2, and therefore equal masses.

The supersymmetry generators Q,Q† also commute with the generators of gauge transformations.
Therefore particles in the same supermultiplet must also be in the same representation of the gauge
group, and so must have the same electric charges, weak isospin, and color degrees of freedom.

Each supermultiplet contains an equal number of fermion and boson degrees of freedom. To prove
this, consider the operator (−1)2s where s is the spin angular momentum. By the spin-statistics
theorem, this operator has eigenvalue +1 acting on a bosonic state and eigenvalue −1 acting on a

5

● ● ● ● ●
s=0 s=1/2 s=1 s=2known particles:

& gravitino!

s=3/2



Composite Higgs

H =

“dead dogs don't bite”:   

If no elementary Higgs,  μ2 not anymore a fundamental parameter



Reason: they are composite states 
at                         ,  
defined by the scale at which the strong gauge-coupling becomes 
large:

ΛQCD << MP

Indeed, in QCD we see light scalars without
  problems of naturalness:

m�, mK , ma0 , ... << MP

ΛQCD MP

αs

E



QCD Spectrum:

�

�

Furthermore,  
the lightest states in QCD are the (pseudo) scalars

Because they are 
Pseudo-Goldstone bosons (PGB)

Why the lightest?

100 MeV

1 GeV

(spin=0 particles like the Higgs)



QCD, considering only two quarks in the massless limit,
(

uL

dL

) (

uR

dR

)

,

has an accidental global symmetry:

It is broken by the quark condensate:  <qq>≠0

π
+
, π

−

, π
0

3 Goldtones:

SU(2)L x SU(2)R

SU(2)L x SU(2)R  ➞ SU(2)V

Massless!!
In reality, they are not massless since quark masses break 

explicitly SU(2)L x SU(2)R  giving the pions a mass:
m2

� / mq

-

Isospin

Pseudo-Goldstone bosons (PGB) in QCD



Lets try the same for the Higgs 
 ➠ Assume that there is a New Strong sector 

(QCD-like) at around the TeV-scale:

ΛQCD MP

αs ↵⇤

⇤⇤

New strong dynamics at TeV

E



�

GeV

130 MeV

TeV

125 GeV

Composite Higgs

h

QCD

The Higgs, the lightest of the new strong resonances, 
as pions in QCD: they are Pseudo-Goldstone Bosons (PGB)

SO(6) ➞ SO(4)
5 Goldstones = Higgs doublet

               + Singlet

E.g.:



Example:     Just take QCD (with two flavors)  
       replace  SU(3)c by SU(2)c 

                           

Galloway, Evans, Luty, Tacchi 10

5 Goldstones = 
                      Higgs doublet + singlet    

 L, 
c
R

4=2L + 2RGlobal symmetry:  SU(2)L ⊗ SU(2)R

SU(3)c SU(2)c

SU(4)~SO(6) 

SU(2)V

3 Golstones = π⁰,π⁺, π⁻

SO(5)

<ψψ>≠0 <ψψ>≠0

since  2~2-

113



h

h

The Higgs is a Pseudo-Goldstone as the
global symmetry is broken due to the SM couplings: 

= 0 it’s a Goldstoneh

h

contribution from 
the strong sector

h hh

SM fields

h

+

m2
h ⇠ (TeV)2

16⇡2
⇠ (100 GeV)2

Tilt the potential

Main difference with QCD pions ➞ Higgs must get a VEV



How to unravel the composite nature of the Higgs?

?
H



How to unravel the composite nature of the Higgs?

?
H

Measuring its couplings!

The higher the energy, the better



from, e.g., Montull,Riva 
arXiv:1207.1716
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Figure 2: Predictions of a generic MCHM in the (ghff/g
SM
hff , ghWW /gSMhWW )-plane. The di↵erent curves corresponds

to di↵erent values of n, going downwards from n=0 to n = 5. The red part of the curves is for 0 < ⇠ < 0.25 and the
blue one for 0.25 < ⇠ < 1. The contours are the 68%, 95% and 99% CL for a 125 GeV Higgs as obtained in Ref. [15]
from the CMS data.

For m
Q4 ' 3 TeV, the Higgs mass Eq. (43) can be as small as 40 GeV. Larger values of m

h

imply

larger values of FL

Q1
, meaning thatm

h

⇠125 GeV can be obtained without light fermionic resonances

as we show in Figure 1. In this case, however, it is important to notice that extra contributions are

needed to reduce ↵ in order to have hs
h

i ⌧ 1.

3 Higgs couplings to SM fermions

In composite Higgs models the Higgs couplings to fermions generically deviate from their SM values

[12]. For the SO(5)/SO(4) model, the Higgs couplings to the SM fermions can be parametrized by

Eq. (27). At low-energies p ⌧ m
Qi and in the limit ✏ ⌧ 1, the Higgs couplings reduce, for the case

of a generic SM fermion f
L,R

, to

Le↵ ' f̄
L

M f

1 (0)fRs
1+2m
h

cn
h

+ h.c. ⌘ f̄
L

f
R

m
f

(h) + h.c . (44)

From this we can obtain the hff coupling [12]:

g
hff

gSM
hff

=
2m

W

(h)

gm
f

(h)

@m
f

(h)

@h
=

1 + 2m� (1 + 2m+ n)⇠p
1� ⇠

, (45)

where we have used that m
W

(h) = gs
h

/2 [5] and written the SM hff coupling as a function of the

physical W and fermion mass, gSM
hff

= gm
f

/(2m
W

). For m 6= 0, Eq. (45) gives deviations of order

one from the SM expectations, even in the limit ⇠ ! 1. For this reason, we will concentrate on the

m = 0 case. In Figure 2 we show, for m
h

' 125 GeV and assuming that all fermions couple in the
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to di↵erent values of n, going downwards from n=0 to n = 5. The red part of the curves is for 0 < ⇠ < 0.25 and the
blue one for 0.25 < ⇠ < 1. The contours are the 68%, 95% and 99% CL for a 125 GeV Higgs as obtained in Ref. [15]
from the CMS data.

For m
Q4 ' 3 TeV, the Higgs mass Eq. (43) can be as small as 40 GeV. Larger values of m

h

imply

larger values of FL

Q1
, meaning thatm

h

⇠125 GeV can be obtained without light fermionic resonances

as we show in Figure 1. In this case, however, it is important to notice that extra contributions are

needed to reduce ↵ in order to have hs
h

i ⌧ 1.

3 Higgs couplings to SM fermions

In composite Higgs models the Higgs couplings to fermions generically deviate from their SM values

[12]. For the SO(5)/SO(4) model, the Higgs couplings to the SM fermions can be parametrized by

Eq. (27). At low-energies p ⌧ m
Qi and in the limit ✏ ⌧ 1, the Higgs couplings reduce, for the case

of a generic SM fermion f
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/2 [5] and written the SM hff coupling as a function of the

physical W and fermion mass, gSM
hff

= gm
f

/(2m
W

). For m 6= 0, Eq. (45) gives deviations of order

one from the SM expectations, even in the limit ⇠ ! 1. For this reason, we will concentrate on the

m = 0 case. In Figure 2 we show, for m
h

' 125 GeV and assuming that all fermions couple in the
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ATLAS+CMS:

arXiv:1303.1812

No indication 
of such deviations!
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Higgs125 GeV Higgs
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Fig. 3. Natural expectations for the mass spectrum in supersymmetric models (left) and com-
posite Higgs models (right).

in most natural scenarios is the Higgsino, or the Gravitino for the case of GMSB
models. For composite Higgs models, the top partners are color fermionic resonances
with electric charges Q = 5/3, 2/3, �1/3 [15], and a phenomenology described in
detail in [50]. This is depicted in Fig. 3 where it is shown the mass spectrum of a
natural supersymmetric and composite Higgs model. Present limits on top partners
from the LHC Run 1 are around 500�800 GeV [51], scratching at present the most
natural region of the parameter space of the MSSM and MCHM. Nevertheless, it
will not be until the LHC Run 2 where the naturalness of these BSM will be really
at stake.

Clues for cosmological conundrums

Could TeV physics be behind other fundamental questions in particle physics and
cosmology, such as the origin of Dark Matter (DM), the abundance of matter
over anti-matter in our universe (Baryogenesis), the origin of inflation or neutrino
masses? Though not necessary the case, as the mandatory new-physics at the
Planck scale could be the true responsible for these phenomena, it is well possible
that some of these questions are addressed by TeV physics, opening an exciting
possibility of resolving these mysteries in well controlled experiments, such as TeV
colliders. The most likely of the above important questions to be addressed by TeV
new-physics is the DM origin. This hope arises from the so-called ”WIMP miracle”:
A stable particle with mass of order the electroweak scale and O(1) renormalizable-
interactions is in the ballpark of the needed relic abundance for a DM candidate.
In the MSSM, as well as in the MCHM, we find many DM candidates [52]. For in-
stance, the lightest superpartner, if neutral, as the neutralinos (superpartners of the
Z, photon or Higgs), can be a good candidate for DM in certain ”well-tempered”
region of the parameter space [53]. Similarly, DM can arise in composite Higgs mod-

As in QCD, many other resonances expected:
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in most natural scenarios is the Higgsino, or the Gravitino for the case of GMSB
models. For composite Higgs models, the top partners are color fermionic resonances
with electric charges Q = 5/3, 2/3, �1/3 [15], and a phenomenology described in
detail in [50]. This is depicted in Fig. 3 where it is shown the mass spectrum of a
natural supersymmetric and composite Higgs model. Present limits on top partners
from the LHC Run 1 are around 500�800 GeV [51], scratching at present the most
natural region of the parameter space of the MSSM and MCHM. Nevertheless, it
will not be until the LHC Run 2 where the naturalness of these BSM will be really
at stake.

Clues for cosmological conundrums

Could TeV physics be behind other fundamental questions in particle physics and
cosmology, such as the origin of Dark Matter (DM), the abundance of matter
over anti-matter in our universe (Baryogenesis), the origin of inflation or neutrino
masses? Though not necessary the case, as the mandatory new-physics at the
Planck scale could be the true responsible for these phenomena, it is well possible
that some of these questions are addressed by TeV physics, opening an exciting
possibility of resolving these mysteries in well controlled experiments, such as TeV
colliders. The most likely of the above important questions to be addressed by TeV
new-physics is the DM origin. This hope arises from the so-called ”WIMP miracle”:
A stable particle with mass of order the electroweak scale and O(1) renormalizable-
interactions is in the ballpark of the needed relic abundance for a DM candidate.
In the MSSM, as well as in the MCHM, we find many DM candidates [52]. For in-
stance, the lightest superpartner, if neutral, as the neutralinos (superpartners of the
Z, photon or Higgs), can be a good candidate for DM in certain ”well-tempered”
region of the parameter space [53]. Similarly, DM can arise in composite Higgs mod-

As in QCD, many other resonances expected:

 Search for top partners with charge 5/3 

Pieter Everaerts             March 17, 2013       26 Searches with 3rd generation quarks 

• Check the background modeling in 
DR(ℓ,2nd jet)<1 sideband 
– V+jets CR: 0 b-tagged jets 
– tt CR: at least 1 b-tagged jet 
– Derive systematic uncertainties on 

data-MC agreement 

• Fit the M(l,b) mass spectrum 
• No excess observed 

 
 

CMS-B2G-15-006 

Combined Same-sign 2l 

See Clint’s talk 

1l+jets right- 
handed 

right- 
handed 

right- 
handed 

m(X5/3) > 960 GeV

no sign  
at 13 TeV!



Extra dimensions



MW SM

Quantum 
Gravity 

(Strings?)
TeV

In 1998 Arkani-Hamed, Dimopoulos and Dvali (ADD) 
proposed the following scenario:

dilution factor due to the spreading 
of the gravitational field lines 

in d compactified extra dimensions

GN =
1

M2
P

⇠ 1
M2

string

1
(Mstring2�R)d

~Mstring

R=size of extra-dim



Gauss’s law in higher-dimensions:

V ⇠ Qint

r

V ⇠ Qint

r1+d

d = number 
of extra dimensions

4 dim

4+d dim

At large distances, the strength of a force becomes 
smaller in higher dimensions

I

S
d� ⇠ Qint

S ⇠ r2+d



BUT:

1) Only gravity could propagate in these extra dimensions

(otherwise all forces will be weak)

d extra dimensions

SM particles

Gravity

4D

Possible in “Brane Worlds” (String constructions):



d=1 ➞ R ~10⁸ Km 
 d=2➞ R ~ 0.1 mm 

... 
   d=6 ➞ R ~ 1/ MeV 

Mstring ~ TeV

GN =
1

M2
P

⇠ 1
M2

string

1
(Mstring2�R)d

Not possible

~ at the verge
 of the exp. bounds

OK



Predictions: 

a) The space must be1+9 dimensional

b) There are string excitations of higher-energy

2) String theory at the reach of the LHC

Two generic predictions:

1) For d=2, we expect deviations from Newtonian gravity
        at distances smaller than ~ 0.1mm

3) Gravitons at the reach of the LHC
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Mono-jet + Missing energy
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Abstract. Some of the studies performed by the ATLAS and CMS collaborations to establish the future
sensitivity of the experiments to extra dimension signals are reviewed. The discrimination of those signals
from other new physics signals and the extraction of the underlying parameters of the extra dimension
models are discussed.

1 Introduction

Models with extra dimensions (ED) (see [1]) are very at-
tractive extensions of the Standard Model (SM), in partic-
ular with respect to the hierarchy problem. While ED have
so far escaped detection [2], they could manifest them-
selves at LHC via a rich and varied phenomenology.

This review focuses on the three main classes of ED
models with prediction at the TeV scale. The aim of the
studies was two-fold: establishing the sensitivity to ED sig-
nals using detector simulation and various physics back-
grounds, as well as assessing whether enough information
could be extracted in order to distinguish ED signatures
from other new physics signals.

The studies are based on fast simulation tools which
describe accurately the expected detector performance.
The relevant aspects of the simulation have been vali-
dated [3] in full simulation and with test-beam data when-
ever possible. Except when stated otherwise, all the results
and plots presented here are for an integrated luminosity
of 100 fb−1 collected by one of the experiments (i.e. one
year at the nominal luminosity of LHC, 1034 cm−2s−1).

2 Large Extra Dimensions

In this scenario, the SM fields are confined in our 4D world
and only gravity propagates in the bulk. The model is
characterized by the number of extra dimensions δ and by
the new fundamental scale MD. The graviton expands in
4D into a tower of Kaluza-Klein (KK) excitations which
couple universally to all SM fields. Even though this cou-
pling is small (1/MPl), the large number of states and
their small mass splitting lead to sizeable cross-sections
at the LHC.

The virtual exchange of KK excitations of graviton can
lead to deviations in Drell-Yan cross-sections and asymme-
tries in SM processes. The left plot of Fig. 1 illustrates such
deviations in the γγ invariant mass distribution [4]. This
kind of signatures is clear, very sensitive to new physics
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Fig. 1. Large ED. Left plot [4]: virtual exchange of gravitons.
The plot shows the deviation in Drell-Yan cross-section pp →

γγ (top curve) with respect to the SM expectation [4]. Right
plot [5]: direct production. Missing energy distribution (dots),
shown here for various choices of the number of ED (δ) and of
the mass scale (MD) and for SM backgrounds (histograms).

and could signal the existence of extra dimensions. How-
ever the underlying parameters of the model cannot be
extracted in this case because the model is sensitive to
unknown ultra-violet physics.

The second class of signatures is the direct production
of KK excitations of graviton which will escape detection
in 4D: qq̄ → gG(k), gq → qG(k) and gg → gG(k). In this
case, the main signature to look for is some missing energy
accompanied by a mono-jet (Fig. 1, right plot) [5]. Within
the allowed region for the effective theory (

√
ŝ < MD),

those processes can be reliably calculated and the param-
eters of the model can be constrained from the measure-
ments. Models with up to four extra dimensions could be
probed at LHC. For 100 fb−1, the maximum reach in MD

is between 9.1 TeV (δ = 2) and 6.0 TeV (δ = 4), cor-
responding to a radius of compactification between 8 µm
and 1 pm. The two parameters of the model can in prin-
ciple be extracted from the absolute cross-section of the
processes or more definitely by collecting ∼ 50 fb−1 of
data at a different center-of-mass energy.

arXiv:hep-ex/0310020v1

Model-independent signals from gravity at ~TeV

Graviton production:
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Abstract. Some of the studies performed by the ATLAS and CMS collaborations to establish the future
sensitivity of the experiments to extra dimension signals are reviewed. The discrimination of those signals
from other new physics signals and the extraction of the underlying parameters of the extra dimension
models are discussed.

1 Introduction

Models with extra dimensions (ED) (see [1]) are very at-
tractive extensions of the Standard Model (SM), in partic-
ular with respect to the hierarchy problem. While ED have
so far escaped detection [2], they could manifest them-
selves at LHC via a rich and varied phenomenology.

This review focuses on the three main classes of ED
models with prediction at the TeV scale. The aim of the
studies was two-fold: establishing the sensitivity to ED sig-
nals using detector simulation and various physics back-
grounds, as well as assessing whether enough information
could be extracted in order to distinguish ED signatures
from other new physics signals.

The studies are based on fast simulation tools which
describe accurately the expected detector performance.
The relevant aspects of the simulation have been vali-
dated [3] in full simulation and with test-beam data when-
ever possible. Except when stated otherwise, all the results
and plots presented here are for an integrated luminosity
of 100 fb−1 collected by one of the experiments (i.e. one
year at the nominal luminosity of LHC, 1034 cm−2s−1).

2 Large Extra Dimensions

In this scenario, the SM fields are confined in our 4D world
and only gravity propagates in the bulk. The model is
characterized by the number of extra dimensions δ and by
the new fundamental scale MD. The graviton expands in
4D into a tower of Kaluza-Klein (KK) excitations which
couple universally to all SM fields. Even though this cou-
pling is small (1/MPl), the large number of states and
their small mass splitting lead to sizeable cross-sections
at the LHC.

The virtual exchange of KK excitations of graviton can
lead to deviations in Drell-Yan cross-sections and asymme-
tries in SM processes. The left plot of Fig. 1 illustrates such
deviations in the γγ invariant mass distribution [4]. This
kind of signatures is clear, very sensitive to new physics
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Fig. 1. Large ED. Left plot [4]: virtual exchange of gravitons.
The plot shows the deviation in Drell-Yan cross-section pp →

γγ (top curve) with respect to the SM expectation [4]. Right
plot [5]: direct production. Missing energy distribution (dots),
shown here for various choices of the number of ED (δ) and of
the mass scale (MD) and for SM backgrounds (histograms).

and could signal the existence of extra dimensions. How-
ever the underlying parameters of the model cannot be
extracted in this case because the model is sensitive to
unknown ultra-violet physics.

The second class of signatures is the direct production
of KK excitations of graviton which will escape detection
in 4D: qq̄ → gG(k), gq → qG(k) and gg → gG(k). In this
case, the main signature to look for is some missing energy
accompanied by a mono-jet (Fig. 1, right plot) [5]. Within
the allowed region for the effective theory (

√
ŝ < MD),

those processes can be reliably calculated and the param-
eters of the model can be constrained from the measure-
ments. Models with up to four extra dimensions could be
probed at LHC. For 100 fb−1, the maximum reach in MD

is between 9.1 TeV (δ = 2) and 6.0 TeV (δ = 4), cor-
responding to a radius of compactification between 8 µm
and 1 pm. The two parameters of the model can in prin-
ciple be extracted from the absolute cross-section of the
processes or more definitely by collecting ∼ 50 fb−1 of
data at a different center-of-mass energy.

arXiv:hep-ex/0310020v1

Model-independent signals from gravity at ~TeV

But not seen at  

the LHC

Graviton production:



Present situation on New-Physics at the TeV

Pros Cons

No new particles seen, 
No new flavor-violations seen,

No deviations on Higgs couplings seen, 
No deviations on Z/W couplings seen, 

No WIMP detected,
No EDMs seen,

Could explain the origin 
of the EW scale



Present situation on New-Physics at the TeV

Pros Cons

No new particles seen, 
No new flavor-violations seen,

No deviations on Higgs couplings seen, 
No deviations on Z/W couplings seen, 

No WIMP detected,
No EDMs seen,

Could explain the origin 
of the EW scale

paradigm shift?

We need new ideas!



MP2-MP2

0

MP2-MP2

0

But if one can “through many darts”:

μ2

μ2

One will hit the center!

μ2μ2 μ2 μ2

Where would you expect the Higgs mass (μ2) to be?



“Natural”,  
since only we 
can “live” in a 
Universe with 

these  
“fine-tuned” 
parameters 

No new physics  
at the TeV! 

(new physics in 
another universes)

Our Universe is
very delicate:

Change the SM parameters
and could be uninhabitable

Multiverse

mH~MP

mH~125 GeV mH~MP

mH~MP

mH~MP

mH~MP

mH~MP

mH~MP

mH~MP

unavoidable from (eternal) inflation



“Natural”,  
since only we 
can “live” in a 
Universe with 

these  
“fine-tuned” 
parameters 

Our Universe is
very delicate:

Change the SM parameters
and could be uninhabitable

Multiverse

mH~MP

mH~125 GeV mH~MP

mH~MP

mH~MP

mH~MP

mH~MP

mH~MP

mH~MP

At present, the only scenario that could “explain”  
         the present smallness of the cosmological constant! 

No new physics  
at the TeV! 

(new physics in 
another universes)

very difficult  

to make predictions

unavoidable from (eternal) inflation



P.W. Graham, D.E. Kaplan, S.Rajendran
arXiv:1504.07551 

Field-dependent Higgs mass

minimum of 𝟇 where 

Higgs-mass parameter

m2
H(�)|H|2m2

H |H|2

m2
H(�) ⌧ M2

P

2) “Relaxation” mechanism:



2

a small dimensionful coupling to the Higgs. This small coupling will help set the weak scale, and will be technically
natural, making the weak scale technically natural and solving the hierarchy problem.

We add to the standard model Lagrangian the following terms:

(�M2 + g�)|h|2 + V (g�) +
1

32⇡2

�

f
G̃µ⌫Gµ⌫ (1)

where M is the cuto↵ of the theory (where SM loops are cuto↵), h is the Higgs doublet, Gµ⌫ is the QCD field strength
(and G̃µ⌫ = ✏µ⌫↵�G↵�), g is our dimensionful coupling, and we have neglected order one numbers. We have set the
mass of the Higgs to be at the cuto↵ M so that it is natural. The field � is like the QCD axion, but can take on field
values much larger than f . However, despite its non-compact nature it has all the properties of the QCD axion with
couplings set by f . Setting g ! 0, the Lagrangian has a shift symmetry � ! �+2⇡f (broken from a continuous shift
symmetry by non-perturbative QCD e↵ects). Thus, g can be treated as a spurion that breaks this symmetry entirely.
This coupling can generate small potential terms for �, and we take the potential with technically natural values by
expanding in powers of g�. Non-perturbative e↵ects of QCD produce an additional potential for �, satisfying the
discrete shift symmetry. Below the QCD scale, our potential becomes

(�M2 + g�)|h|2 +
�
gM2� + g2�2 + · · · � + ⇤4 cos(�/f) (2)

where the ellipsis represents terms higher order in g�/M2, and thus we take the range of validity for � in this e↵ective
field theory to be � . M2/g. We have approximated the periodic potential generated by QCD as a cosine, but in fact
the precise form will not a↵ect our results. Of course ⇤ is very roughly set by QCD, but with important corrections
that we discuss below. Both g and ⇤ break symmetries and it is technically natural for them to be much smaller than
the cuto↵. The parameters g and ⇤ are responsible for the smallness of the weak scale. This model plus inflation
solves the hierarchy problem.

�
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FIG. 1: Here is a characterization of the �’s potential in the region where the barriers begin to become important. This is the
one-dimensional slice in the field space after the Higgs is integrated out, e↵ectively setting it to its minimum. To the left, the
Higgs vev is essentially zero, and is O(mW) when the barriers become visible. The density of barriers are greatly reduced for
clarity.

We will now examine the dynamics of this model in the early universe. We take an initial value for � such that
the e↵ective mass-squared of the Higgs, m2

h, is positive. During inflation � will slow-roll, scanning the physical Higgs
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1 Introduction

Our understanding of Nature is based on the empirical evidence that natural phenomena

taking place at di↵erent energy/distance scales do not influence each other. At present,

these di↵erent phenomena are described by a succession of e↵ective theories with di↵erent

degrees of freedom manifesting themselves as shorter and shorter distances are probed. The

parameters of the low-energy e↵ective theory are natural if they do not require any special

tuning of the parameters of the theory at higher energies.

Wilson [1] and ’t Hooft [2] gave a quantitative meaning to this naturalness principle

by demanding that all dimensionless parameters controlling the di↵erent e↵ective theories

should be of order unity unless they are associated to the breaking of a symmetry. Numerous

examples of the naturalness principle to understand the necessity of new phenomena have

been extensively discussed in the literature (see for instance [3] and references therein).

The Higgs boson mass and the value of the cosmological constant have been long recog-

nized as two notorious challengers of this naturalness principle, a situation that stimulated

the creativity of physicists in finding extensions of the Standard Model at higher energies.

In most of these e↵orts to explain the smallness of the Higgs mass, such as supersymmetric

and composite Higgs models, new physics is predicted to be present at TeV energies. Re-

cently, however, a radically new approach to the Higgs mass hierarchy problem has been

proposed [4], in reminiscence of the relaxation mechanism of [5] proposed for explaining dy-

namically the smallness of the cosmological constant (see [6, 7] for similar previous ideas).

In principle, in this new approach no new degrees of freedom around the TeV scale are

needed anymore to screen the Higgs mass from large quantum corrections. This has of

course profound implications for the physics agenda of the LHC and beyond.

Technically, the relaxation mechanism of [4] is based on the cosmological interplay be-

tween the Higgs field h and an axion-like field �, arising from the following three terms of

the scalar e↵ective potential:
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where ⇤ is the UV cut-o↵ scale of the model, while ⇤c . ⇤ is the scale at which the periodic

cos(�/f)-term originates and n is a positive integer. The first term is needed to force � to

roll-down in time, while the second one corresponds to a Higgs mass-squared term with a

(positive) dependence on � such that di↵erent values of � scan the Higgs mass over a large

range, including the weak scale. Finally, the third term plays the role of a potential barrier
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a small dimensionful coupling to the Higgs. This small coupling will help set the weak scale, and will be technically
natural, making the weak scale technically natural and solving the hierarchy problem.

We add to the standard model Lagrangian the following terms:

(�M2 + g�)|h|2 + V (g�) +
1

32⇡2

�

f
G̃µ⌫Gµ⌫ (1)

where M is the cuto↵ of the theory (where SM loops are cuto↵), h is the Higgs doublet, Gµ⌫ is the QCD field strength
(and G̃µ⌫ = ✏µ⌫↵�G↵�), g is our dimensionful coupling, and we have neglected order one numbers. We have set the
mass of the Higgs to be at the cuto↵ M so that it is natural. The field � is like the QCD axion, but can take on field
values much larger than f . However, despite its non-compact nature it has all the properties of the QCD axion with
couplings set by f . Setting g ! 0, the Lagrangian has a shift symmetry � ! �+2⇡f (broken from a continuous shift
symmetry by non-perturbative QCD e↵ects). Thus, g can be treated as a spurion that breaks this symmetry entirely.
This coupling can generate small potential terms for �, and we take the potential with technically natural values by
expanding in powers of g�. Non-perturbative e↵ects of QCD produce an additional potential for �, satisfying the
discrete shift symmetry. Below the QCD scale, our potential becomes

(�M2 + g�)|h|2 +
�
gM2� + g2�2 + · · · � + ⇤4 cos(�/f) (2)

where the ellipsis represents terms higher order in g�/M2, and thus we take the range of validity for � in this e↵ective
field theory to be � . M2/g. We have approximated the periodic potential generated by QCD as a cosine, but in fact
the precise form will not a↵ect our results. Of course ⇤ is very roughly set by QCD, but with important corrections
that we discuss below. Both g and ⇤ break symmetries and it is technically natural for them to be much smaller than
the cuto↵. The parameters g and ⇤ are responsible for the smallness of the weak scale. This model plus inflation
solves the hierarchy problem.
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FIG. 1: Here is a characterization of the �’s potential in the region where the barriers begin to become important. This is the
one-dimensional slice in the field space after the Higgs is integrated out, e↵ectively setting it to its minimum. To the left, the
Higgs vev is essentially zero, and is O(mW) when the barriers become visible. The density of barriers are greatly reduced for
clarity.

We will now examine the dynamics of this model in the early universe. We take an initial value for � such that
the e↵ective mass-squared of the Higgs, m2

h, is positive. During inflation � will slow-roll, scanning the physical Higgs
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degrees of freedom manifesting themselves as shorter and shorter distances are probed. The

parameters of the low-energy e↵ective theory are natural if they do not require any special
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Wilson [1] and ’t Hooft [2] gave a quantitative meaning to this naturalness principle

by demanding that all dimensionless parameters controlling the di↵erent e↵ective theories

should be of order unity unless they are associated to the breaking of a symmetry. Numerous

examples of the naturalness principle to understand the necessity of new phenomena have

been extensively discussed in the literature (see for instance [3] and references therein).

The Higgs boson mass and the value of the cosmological constant have been long recog-

nized as two notorious challengers of this naturalness principle, a situation that stimulated

the creativity of physicists in finding extensions of the Standard Model at higher energies.

In most of these e↵orts to explain the smallness of the Higgs mass, such as supersymmetric

and composite Higgs models, new physics is predicted to be present at TeV energies. Re-

cently, however, a radically new approach to the Higgs mass hierarchy problem has been

proposed [4], in reminiscence of the relaxation mechanism of [5] proposed for explaining dy-

namically the smallness of the cosmological constant (see [6, 7] for similar previous ideas).

In principle, in this new approach no new degrees of freedom around the TeV scale are

needed anymore to screen the Higgs mass from large quantum corrections. This has of

course profound implications for the physics agenda of the LHC and beyond.

Technically, the relaxation mechanism of [4] is based on the cosmological interplay be-

tween the Higgs field h and an axion-like field �, arising from the following three terms of

the scalar e↵ective potential:
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where ⇤ is the UV cut-o↵ scale of the model, while ⇤c . ⇤ is the scale at which the periodic

cos(�/f)-term originates and n is a positive integer. The first term is needed to force � to

roll-down in time, while the second one corresponds to a Higgs mass-squared term with a

(positive) dependence on � such that di↵erent values of � scan the Higgs mass over a large
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a small dimensionful coupling to the Higgs. This small coupling will help set the weak scale, and will be technically
natural, making the weak scale technically natural and solving the hierarchy problem.

We add to the standard model Lagrangian the following terms:

(�M2 + g�)|h|2 + V (g�) +
1

32⇡2

�

f
G̃µ⌫Gµ⌫ (1)

where M is the cuto↵ of the theory (where SM loops are cuto↵), h is the Higgs doublet, Gµ⌫ is the QCD field strength
(and G̃µ⌫ = ✏µ⌫↵�G↵�), g is our dimensionful coupling, and we have neglected order one numbers. We have set the
mass of the Higgs to be at the cuto↵ M so that it is natural. The field � is like the QCD axion, but can take on field
values much larger than f . However, despite its non-compact nature it has all the properties of the QCD axion with
couplings set by f . Setting g ! 0, the Lagrangian has a shift symmetry � ! �+2⇡f (broken from a continuous shift
symmetry by non-perturbative QCD e↵ects). Thus, g can be treated as a spurion that breaks this symmetry entirely.
This coupling can generate small potential terms for �, and we take the potential with technically natural values by
expanding in powers of g�. Non-perturbative e↵ects of QCD produce an additional potential for �, satisfying the
discrete shift symmetry. Below the QCD scale, our potential becomes

(�M2 + g�)|h|2 +
�
gM2� + g2�2 + · · · � + ⇤4 cos(�/f) (2)

where the ellipsis represents terms higher order in g�/M2, and thus we take the range of validity for � in this e↵ective
field theory to be � . M2/g. We have approximated the periodic potential generated by QCD as a cosine, but in fact
the precise form will not a↵ect our results. Of course ⇤ is very roughly set by QCD, but with important corrections
that we discuss below. Both g and ⇤ break symmetries and it is technically natural for them to be much smaller than
the cuto↵. The parameters g and ⇤ are responsible for the smallness of the weak scale. This model plus inflation
solves the hierarchy problem.

�

V (�)

FIG. 1: Here is a characterization of the �’s potential in the region where the barriers begin to become important. This is the
one-dimensional slice in the field space after the Higgs is integrated out, e↵ectively setting it to its minimum. To the left, the
Higgs vev is essentially zero, and is O(mW) when the barriers become visible. The density of barriers are greatly reduced for
clarity.

We will now examine the dynamics of this model in the early universe. We take an initial value for � such that
the e↵ective mass-squared of the Higgs, m2

h, is positive. During inflation � will slow-roll, scanning the physical Higgs

1 Introduction

Our understanding of Nature is based on the empirical evidence that natural phenomena

taking place at di↵erent energy/distance scales do not influence each other. At present,

these di↵erent phenomena are described by a succession of e↵ective theories with di↵erent

degrees of freedom manifesting themselves as shorter and shorter distances are probed. The

parameters of the low-energy e↵ective theory are natural if they do not require any special

tuning of the parameters of the theory at higher energies.

Wilson [1] and ’t Hooft [2] gave a quantitative meaning to this naturalness principle

by demanding that all dimensionless parameters controlling the di↵erent e↵ective theories

should be of order unity unless they are associated to the breaking of a symmetry. Numerous

examples of the naturalness principle to understand the necessity of new phenomena have

been extensively discussed in the literature (see for instance [3] and references therein).

The Higgs boson mass and the value of the cosmological constant have been long recog-

nized as two notorious challengers of this naturalness principle, a situation that stimulated

the creativity of physicists in finding extensions of the Standard Model at higher energies.

In most of these e↵orts to explain the smallness of the Higgs mass, such as supersymmetric

and composite Higgs models, new physics is predicted to be present at TeV energies. Re-

cently, however, a radically new approach to the Higgs mass hierarchy problem has been

proposed [4], in reminiscence of the relaxation mechanism of [5] proposed for explaining dy-

namically the smallness of the cosmological constant (see [6, 7] for similar previous ideas).

In principle, in this new approach no new degrees of freedom around the TeV scale are

needed anymore to screen the Higgs mass from large quantum corrections. This has of

course profound implications for the physics agenda of the LHC and beyond.

Technically, the relaxation mechanism of [4] is based on the cosmological interplay be-

tween the Higgs field h and an axion-like field �, arising from the following three terms of

the scalar e↵ective potential:
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where ⇤ is the UV cut-o↵ scale of the model, while ⇤c . ⇤ is the scale at which the periodic

cos(�/f)-term originates and n is a positive integer. The first term is needed to force � to
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(positive) dependence on � such that di↵erent values of � scan the Higgs mass over a large
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a small dimensionful coupling to the Higgs. This small coupling will help set the weak scale, and will be technically
natural, making the weak scale technically natural and solving the hierarchy problem.

We add to the standard model Lagrangian the following terms:

(�M2 + g�)|h|2 + V (g�) +
1

32⇡2

�

f
G̃µ⌫Gµ⌫ (1)

where M is the cuto↵ of the theory (where SM loops are cuto↵), h is the Higgs doublet, Gµ⌫ is the QCD field strength
(and G̃µ⌫ = ✏µ⌫↵�G↵�), g is our dimensionful coupling, and we have neglected order one numbers. We have set the
mass of the Higgs to be at the cuto↵ M so that it is natural. The field � is like the QCD axion, but can take on field
values much larger than f . However, despite its non-compact nature it has all the properties of the QCD axion with
couplings set by f . Setting g ! 0, the Lagrangian has a shift symmetry � ! �+2⇡f (broken from a continuous shift
symmetry by non-perturbative QCD e↵ects). Thus, g can be treated as a spurion that breaks this symmetry entirely.
This coupling can generate small potential terms for �, and we take the potential with technically natural values by
expanding in powers of g�. Non-perturbative e↵ects of QCD produce an additional potential for �, satisfying the
discrete shift symmetry. Below the QCD scale, our potential becomes

(�M2 + g�)|h|2 +
�
gM2� + g2�2 + · · · � + ⇤4 cos(�/f) (2)

where the ellipsis represents terms higher order in g�/M2, and thus we take the range of validity for � in this e↵ective
field theory to be � . M2/g. We have approximated the periodic potential generated by QCD as a cosine, but in fact
the precise form will not a↵ect our results. Of course ⇤ is very roughly set by QCD, but with important corrections
that we discuss below. Both g and ⇤ break symmetries and it is technically natural for them to be much smaller than
the cuto↵. The parameters g and ⇤ are responsible for the smallness of the weak scale. This model plus inflation
solves the hierarchy problem.

�

V (�)

FIG. 1: Here is a characterization of the �’s potential in the region where the barriers begin to become important. This is the
one-dimensional slice in the field space after the Higgs is integrated out, e↵ectively setting it to its minimum. To the left, the
Higgs vev is essentially zero, and is O(mW) when the barriers become visible. The density of barriers are greatly reduced for
clarity.

We will now examine the dynamics of this model in the early universe. We take an initial value for � such that
the e↵ective mass-squared of the Higgs, m2

h, is positive. During inflation � will slow-roll, scanning the physical Higgs

1 Introduction

Our understanding of Nature is based on the empirical evidence that natural phenomena

taking place at di↵erent energy/distance scales do not influence each other. At present,

these di↵erent phenomena are described by a succession of e↵ective theories with di↵erent

degrees of freedom manifesting themselves as shorter and shorter distances are probed. The

parameters of the low-energy e↵ective theory are natural if they do not require any special

tuning of the parameters of the theory at higher energies.

Wilson [1] and ’t Hooft [2] gave a quantitative meaning to this naturalness principle

by demanding that all dimensionless parameters controlling the di↵erent e↵ective theories

should be of order unity unless they are associated to the breaking of a symmetry. Numerous

examples of the naturalness principle to understand the necessity of new phenomena have

been extensively discussed in the literature (see for instance [3] and references therein).

The Higgs boson mass and the value of the cosmological constant have been long recog-

nized as two notorious challengers of this naturalness principle, a situation that stimulated

the creativity of physicists in finding extensions of the Standard Model at higher energies.

In most of these e↵orts to explain the smallness of the Higgs mass, such as supersymmetric

and composite Higgs models, new physics is predicted to be present at TeV energies. Re-

cently, however, a radically new approach to the Higgs mass hierarchy problem has been

proposed [4], in reminiscence of the relaxation mechanism of [5] proposed for explaining dy-

namically the smallness of the cosmological constant (see [6, 7] for similar previous ideas).

In principle, in this new approach no new degrees of freedom around the TeV scale are

needed anymore to screen the Higgs mass from large quantum corrections. This has of

course profound implications for the physics agenda of the LHC and beyond.

Technically, the relaxation mechanism of [4] is based on the cosmological interplay be-

tween the Higgs field h and an axion-like field �, arising from the following three terms of

the scalar e↵ective potential:
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where ⇤ is the UV cut-o↵ scale of the model, while ⇤c . ⇤ is the scale at which the periodic

cos(�/f)-term originates and n is a positive integer. The first term is needed to force � to

roll-down in time, while the second one corresponds to a Higgs mass-squared term with a

(positive) dependence on � such that di↵erent values of � scan the Higgs mass over a large

range, including the weak scale. Finally, the third term plays the role of a potential barrier
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a small dimensionful coupling to the Higgs. This small coupling will help set the weak scale, and will be technically
natural, making the weak scale technically natural and solving the hierarchy problem.

We add to the standard model Lagrangian the following terms:

(�M2 + g�)|h|2 + V (g�) +
1

32⇡2

�

f
G̃µ⌫Gµ⌫ (1)

where M is the cuto↵ of the theory (where SM loops are cuto↵), h is the Higgs doublet, Gµ⌫ is the QCD field strength
(and G̃µ⌫ = ✏µ⌫↵�G↵�), g is our dimensionful coupling, and we have neglected order one numbers. We have set the
mass of the Higgs to be at the cuto↵ M so that it is natural. The field � is like the QCD axion, but can take on field
values much larger than f . However, despite its non-compact nature it has all the properties of the QCD axion with
couplings set by f . Setting g ! 0, the Lagrangian has a shift symmetry � ! �+2⇡f (broken from a continuous shift
symmetry by non-perturbative QCD e↵ects). Thus, g can be treated as a spurion that breaks this symmetry entirely.
This coupling can generate small potential terms for �, and we take the potential with technically natural values by
expanding in powers of g�. Non-perturbative e↵ects of QCD produce an additional potential for �, satisfying the
discrete shift symmetry. Below the QCD scale, our potential becomes

(�M2 + g�)|h|2 +
�
gM2� + g2�2 + · · · � + ⇤4 cos(�/f) (2)

where the ellipsis represents terms higher order in g�/M2, and thus we take the range of validity for � in this e↵ective
field theory to be � . M2/g. We have approximated the periodic potential generated by QCD as a cosine, but in fact
the precise form will not a↵ect our results. Of course ⇤ is very roughly set by QCD, but with important corrections
that we discuss below. Both g and ⇤ break symmetries and it is technically natural for them to be much smaller than
the cuto↵. The parameters g and ⇤ are responsible for the smallness of the weak scale. This model plus inflation
solves the hierarchy problem.
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FIG. 1: Here is a characterization of the �’s potential in the region where the barriers begin to become important. This is the
one-dimensional slice in the field space after the Higgs is integrated out, e↵ectively setting it to its minimum. To the left, the
Higgs vev is essentially zero, and is O(mW) when the barriers become visible. The density of barriers are greatly reduced for
clarity.

We will now examine the dynamics of this model in the early universe. We take an initial value for � such that
the e↵ective mass-squared of the Higgs, m2

h, is positive. During inflation � will slow-roll, scanning the physical Higgs

1 Introduction

Our understanding of Nature is based on the empirical evidence that natural phenomena

taking place at di↵erent energy/distance scales do not influence each other. At present,

these di↵erent phenomena are described by a succession of e↵ective theories with di↵erent

degrees of freedom manifesting themselves as shorter and shorter distances are probed. The

parameters of the low-energy e↵ective theory are natural if they do not require any special

tuning of the parameters of the theory at higher energies.

Wilson [1] and ’t Hooft [2] gave a quantitative meaning to this naturalness principle

by demanding that all dimensionless parameters controlling the di↵erent e↵ective theories

should be of order unity unless they are associated to the breaking of a symmetry. Numerous

examples of the naturalness principle to understand the necessity of new phenomena have

been extensively discussed in the literature (see for instance [3] and references therein).

The Higgs boson mass and the value of the cosmological constant have been long recog-

nized as two notorious challengers of this naturalness principle, a situation that stimulated

the creativity of physicists in finding extensions of the Standard Model at higher energies.

In most of these e↵orts to explain the smallness of the Higgs mass, such as supersymmetric

and composite Higgs models, new physics is predicted to be present at TeV energies. Re-

cently, however, a radically new approach to the Higgs mass hierarchy problem has been

proposed [4], in reminiscence of the relaxation mechanism of [5] proposed for explaining dy-

namically the smallness of the cosmological constant (see [6, 7] for similar previous ideas).

In principle, in this new approach no new degrees of freedom around the TeV scale are

needed anymore to screen the Higgs mass from large quantum corrections. This has of

course profound implications for the physics agenda of the LHC and beyond.

Technically, the relaxation mechanism of [4] is based on the cosmological interplay be-

tween the Higgs field h and an axion-like field �, arising from the following three terms of

the scalar e↵ective potential:
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where ⇤ is the UV cut-o↵ scale of the model, while ⇤c . ⇤ is the scale at which the periodic

cos(�/f)-term originates and n is a positive integer. The first term is needed to force � to

roll-down in time, while the second one corresponds to a Higgs mass-squared term with a

(positive) dependence on � such that di↵erent values of � scan the Higgs mass over a large

range, including the weak scale. Finally, the third term plays the role of a potential barrier
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a small dimensionful coupling to the Higgs. This small coupling will help set the weak scale, and will be technically
natural, making the weak scale technically natural and solving the hierarchy problem.

We add to the standard model Lagrangian the following terms:

(�M2 + g�)|h|2 + V (g�) +
1

32⇡2

�

f
G̃µ⌫Gµ⌫ (1)

where M is the cuto↵ of the theory (where SM loops are cuto↵), h is the Higgs doublet, Gµ⌫ is the QCD field strength
(and G̃µ⌫ = ✏µ⌫↵�G↵�), g is our dimensionful coupling, and we have neglected order one numbers. We have set the
mass of the Higgs to be at the cuto↵ M so that it is natural. The field � is like the QCD axion, but can take on field
values much larger than f . However, despite its non-compact nature it has all the properties of the QCD axion with
couplings set by f . Setting g ! 0, the Lagrangian has a shift symmetry � ! �+2⇡f (broken from a continuous shift
symmetry by non-perturbative QCD e↵ects). Thus, g can be treated as a spurion that breaks this symmetry entirely.
This coupling can generate small potential terms for �, and we take the potential with technically natural values by
expanding in powers of g�. Non-perturbative e↵ects of QCD produce an additional potential for �, satisfying the
discrete shift symmetry. Below the QCD scale, our potential becomes

(�M2 + g�)|h|2 +
�
gM2� + g2�2 + · · · � + ⇤4 cos(�/f) (2)

where the ellipsis represents terms higher order in g�/M2, and thus we take the range of validity for � in this e↵ective
field theory to be � . M2/g. We have approximated the periodic potential generated by QCD as a cosine, but in fact
the precise form will not a↵ect our results. Of course ⇤ is very roughly set by QCD, but with important corrections
that we discuss below. Both g and ⇤ break symmetries and it is technically natural for them to be much smaller than
the cuto↵. The parameters g and ⇤ are responsible for the smallness of the weak scale. This model plus inflation
solves the hierarchy problem.

�

V (�)

FIG. 1: Here is a characterization of the �’s potential in the region where the barriers begin to become important. This is the
one-dimensional slice in the field space after the Higgs is integrated out, e↵ectively setting it to its minimum. To the left, the
Higgs vev is essentially zero, and is O(mW) when the barriers become visible. The density of barriers are greatly reduced for
clarity.

We will now examine the dynamics of this model in the early universe. We take an initial value for � such that
the e↵ective mass-squared of the Higgs, m2

h, is positive. During inflation � will slow-roll, scanning the physical Higgs

1 Introduction

Our understanding of Nature is based on the empirical evidence that natural phenomena

taking place at di↵erent energy/distance scales do not influence each other. At present,

these di↵erent phenomena are described by a succession of e↵ective theories with di↵erent

degrees of freedom manifesting themselves as shorter and shorter distances are probed. The

parameters of the low-energy e↵ective theory are natural if they do not require any special

tuning of the parameters of the theory at higher energies.

Wilson [1] and ’t Hooft [2] gave a quantitative meaning to this naturalness principle

by demanding that all dimensionless parameters controlling the di↵erent e↵ective theories

should be of order unity unless they are associated to the breaking of a symmetry. Numerous

examples of the naturalness principle to understand the necessity of new phenomena have

been extensively discussed in the literature (see for instance [3] and references therein).

The Higgs boson mass and the value of the cosmological constant have been long recog-

nized as two notorious challengers of this naturalness principle, a situation that stimulated

the creativity of physicists in finding extensions of the Standard Model at higher energies.

In most of these e↵orts to explain the smallness of the Higgs mass, such as supersymmetric

and composite Higgs models, new physics is predicted to be present at TeV energies. Re-

cently, however, a radically new approach to the Higgs mass hierarchy problem has been

proposed [4], in reminiscence of the relaxation mechanism of [5] proposed for explaining dy-

namically the smallness of the cosmological constant (see [6, 7] for similar previous ideas).

In principle, in this new approach no new degrees of freedom around the TeV scale are

needed anymore to screen the Higgs mass from large quantum corrections. This has of

course profound implications for the physics agenda of the LHC and beyond.

Technically, the relaxation mechanism of [4] is based on the cosmological interplay be-

tween the Higgs field h and an axion-like field �, arising from the following three terms of

the scalar e↵ective potential:

V (�, h) = ⇤3g�� 1

2
⇤2

✓
1� g�

⇤

◆
h2 + ✏⇤4

c

✓
h

⇤c

◆n

cos(�/f) + · · · , (1)

where ⇤ is the UV cut-o↵ scale of the model, while ⇤c . ⇤ is the scale at which the periodic

cos(�/f)-term originates and n is a positive integer. The first term is needed to force � to

roll-down in time, while the second one corresponds to a Higgs mass-squared term with a

(positive) dependence on � such that di↵erent values of � scan the Higgs mass over a large

range, including the weak scale. Finally, the third term plays the role of a potential barrier
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Cosmological evolution can lead to a small EW scale



see for example, 
J.R.Espinosa,C.Grojean,G.Panico,A.P., 

O.Pujolàs,G.Servant 15

SM Realm

109 GeV  

MW 

En
er

gy

New Physics
MP 
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at least 109 GeV

Main prediction: 
𝟇’s:  very light & extremely 
weakly-coupled states (axion-like)m𝝓 ~ sub-GeV

must be searched in different type of experiments: 
Astro (γ-rays, pulsar timing, …), CMB, 

table-top (fifth-force searches, EPV),  …



Conclusion 

Higgs● Big achievement at LHC run 1 
                   ➥ the SM has been completed

➥ No need for anything else 
(at least) up to around the Planck scale

● We start a very different phase in particle physics:

End of no-lose theorems for discovery at the nearby energy frontier

Discovery is not anymore guaranteed !
It was the best of times,
It was the worst of times,

…
It was the spring of hope,

It was the winter of despair
A Tale of Two Cities

We could discover plenty, 
we could discover nothing…
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Place your bet!


