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Overview

Part | : Basics
- Time-dependent Schrodinger equation
- Second quantisation
- Time-evolution
- The contour idea

Part Il : Feynman diagrams and the Green’s function
- Why Green’s functions!?
- Feynman diagrams and the self-energy
- The physical meaning of the Green’s function
- Spectral function and photo-emission

Part lll: Linear response and examples
- The 2-particle Green’s function and optical spectra (Bethe-Salpeter)
- Hedin’s equations
- Linear response
- Examples: Time-dependent screening in an electron gas
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Basic quantum mechanics

To describe time-dependent phenomena in nature we have to calculate the
time evolution of the relevant quantum states. These states are usually given in

a basis representation

(m|n) = 0mn

# (m|¥) = Wy,

We can therefore write

O =Y )y ==Y [n)(n|=1

Resolution of the identity



The time-evolution of a quantum state is given by the Schrodinger equation

i0,[W(t)) = H(t)[¥(t)) W(to)) = |Wo)

To solve this equation we need to know the representation of the Hamiltonian
in a given basis. If we define

Hp(t) = (n|H(t)|m) cn(t) = (n|¥(1))
Then we can write

i0p(n|W(t)) = (n|HOY(1) = Y (n[H(t)|[m)(m[U(t)) = Y  Hum(t)(m[(t))

m m

—> i0ye(t) = H(t) c(t)




Position basis

We measure a particle to be in interval Ay,
Its corresponding state is denoted by ' W

@n)
These states have the property

|2

<xn|xm> — 5nm e 1 — .

and form a complete set
) = [aa)(@a|¥)
n

If the system is in state |\Ij> then the probability to measure state ‘$n> is

P, = [(wn| ) |° = |¥(zn)[*



For one particle in position basis we can, for example, define the Hamiltonian
7 </ 1 2 /
(x|} = (—5 7% + v(x, 1)) (x|
The Schrodinger equation
Al (t)) = 0 [P(t)) (x,t) = (x[1h(t))

in the position representation then has the form

Op(x,t) = (xlhlp(t)) = /dx’ (xlfy ([ (2))
/dx’ (—%VZ —|-?}(X,t)> (x|x"Y (X' |1 (t))

— (-%VQ + v(x,t)) W(x, 1)



Two particles

If we simultaneously measure a particle ™~
in intervals A and A, the state is

T Ty
° ° ° ° ° \
The particles are indistinguishable x (fermion) 77 x (fermion)
Ty Tim) = AT Tp) = )\2|ajn Tm) — A= *£1

The states are normalised

5nn’ 5nm’

5mn’ 5mm’

(TrnTm| T Tm') = Onn' Omm/ T Oy Oy = |
=+

Let us consider fermions. Only the states with n > m are linearly independent and

we have
\‘I’> = Z ’xn Tm ) (Tn $m\‘1’>

n>m

Pom = |<$n $m|qj>|2 — |\Ij($n7$m)‘2



Second quantization

For N fermions we have (with P a permutation)

|X1...XN> — (—1)P |Xp(1)...Xp(N)> X =TI,0

(X1...XN|y1...YN) —Z PH5 —¥Ypr(j)) h

Iz Determinant

There is a unique operator @@T(x) that generates the position basis. It is defined by

x) = de)o)
xix) = (o)) =0 ()i (x1)[0)
w"

x1...xXN) =

Jf (x) is called creation operator



It follows : D) (y) = =T (y)df (%)

Remember that the adjoint of an operator O is defined by
~ ~ *
(@|07|x) = (x|O|®)
The adjoint @B(X) of the creation operator therefore satisfies

S

(¥1- YNWT(XN)le . XN-1)

>0 [[ s —xr,

P

(X1 ... xXN_1 0N Y1 ... YN

:<Y1---YN|X1-~XN>

and hence (by expanding the determinant along column N) we have

N
pX)yr-yny = DV TFS(x = yi) [y1- - Ye-1Yre1---YN)
k=1




For example:

P(x)[0) = 0
p)y1) = d(x—y1)
p(x)y1y2) = d(x—y2)
b(X)|y1y2ys) = 6(x—y3)

0)
yi) —0(xX —y1)|y2)
y1y2) —0(X —y2)|ly1y3) +0(x —y1)|y2y3)

The operator 1)(x) is called annihilation operator

It follows (with anti-commutator

[A,B]. = AB+ BA ):

D), B (y)
D), O (y)

= [#e0. 0T =0

0(x —y)




The density operator is defined by

and has the property
N
n(x)|xy...XN) :Z O(x —Xj) |X1...XN)
71=1

For example:

P P(x)yrye) = PT(x) (6(x —y2)lyr) — 6(x — y1)ly2))
= 0(x —y2)|y1x) — 0(x — y1)[y2x)
= (0(x—y1) +d(x—y2))ly1y2)

The expectation value n(x) = (¥|n(x)|¥)

is the particle density of the system in state |U)



For N particles we define the Hamiltonian by

<X1...XN\I;HX’1...X§V>
N N
— Z—§V§+v(xj,t)+§zw(xi,xj) (x1...xN[x] .. Xy)
j i7]

or equivalently, for any state ‘\Ij> Many-body wave function

(x1...xn|H|T)

— Z _QV? + v(x;,t) + 5 Zw(xi7xj) (x1... XN |¥)
j 7]

Since the one- and two-body potentials are diagonal in the position representation
it is easy to express them in second quantisation



For the 2-particle interaction we have

2 1
Wi xi...xn) = 5 Z w(X;, X;)|X1 ... XN)

i#)
Since the density operator has the property
n(x)[x1 .. Z 0(x — xj) [x1...xN)
it follows that
W = %/dxdy w(x,y)n(x)n(y) — % dx w(x,x)n(x)
= 5 [ dxdywixy) (60060 )00 - 5x -~ ¥)5 () (x)
= 5 [ dxdy wixy) 9 (03 (1) )50

W / dxdy w(x, y) P ()3T (y)d () (x)




Similarly for the one-body potential

N

V(t)|x1 LX) = Zv(xj,t)\xl LLLXN) = /dxﬁ(x)v(x,t)\xl . XN)

J

A

V(1) = / dx 7 (x)9(x) v(x, )

The kinetic energy operator is only slightly more difficult. Let’s illustrate it for
3 particles. Remember that

Y(X)|y1y2y3) = 6(x—y3)ly1y2) — 6(x — y2)|y1ys) + 6(x — y1)|y2 ¥3)

w(X)VQI;(X) Y1y2y3)

= V?6(x — y3)|ly1y2x) + V?6(x — y2)|yixys) + V36(x — y1)|xy2 ¥3)



If we therefore define :
7= [ dx i (Vi)

then since T is Hermitian
<Y1Y2Y3|T|X1X2X3> — <X1X2X3|T|Y1Y2YS>*

(vil T V?q + Vig) (X1X2X3|y1Y2Y3)"

N | — DN —

(V?,l + v§’2 + V§,3) <Y1YQY3‘X1X2X3>

yielding exactly the matrix element of the kinetic energy operator. Hence

() = [ dxil o) (57 4 0x0)) D60

% / dxdy w(x,y) ¥ ()9 (y)d(y)d(x)




We can also rewrite everything in a general basis. If we define

(X|1) = @n(x)

then (Ip, is an orthonormal set of orbitals

bum = nlm) =[x (nfx) (xlm) = [ dx o7 (00 m(x)

If we define
i =[x )00 il = / dx o ()3 (x)
then | [dn,d},]+ = dnm i, G4 = [af,, af, ] =0
al[0) = / dx o () 1 ()[0) = / dxx) (x|n) = |n)
N —’

%)



In general we can generate N-particle states

\nl...nN> — AnN...CALJ;l‘O>

We can relate them to position basis states as follows

A

ny...ny) = /dxl...de Ony (X1) o ony (XN) DT (xN) .. )T (x1)]0)

— /dx1 e dXN On (X1) - Ony (X)X

..XN>

and find that their overlaps are given by Slater determinants

(X1...XN|N1...nN) = Z(—l)Pgonl (Xp@)) -+ Pny (Xp(Ny) =
P

Py (X1)

Pnq (.XN)

Pnn (x1)

P (%)

The creation and annihilation operators therefore add and remove orbitals

from Slater determinants




The Hamiltonian in a general one-particle basis then attains the form

where

hig(t) = [ dx gt (h(x, ) (0
Uikt = / dxdy w(x, y) ¢F (X)& (¥)n (v) 01 (%)

The convenient basis states in practice depend on the problem.
Commonly used ones are, for example, Kohn-Sham or Hartree-Fock orbitals



Second quantization: Take home message

- Second quantisation is nothing but a convenient way to generate a
many-particle basis that automatically has the correct (anti)symmetry.

Basis states are created by (anti)-commuting operators with
simple (anti)-commutation relations

- As we will see, second quantisation is very convenient in many-body
theory as it allows for simple manipulation of perturbative terms
without the need to deal with (anti)-symmetrised orbital products

- The derivation of the Hamiltonian in second quantisation
is easy in position basis as the Hamiltonian is almost diagonal

in this basis



Expectation values

A general expectation value is of the form

(O()) = (T(B]OB) V(1)) = (Yo|U(to,t) O(t) U(t, t0)[o) = (Yo|Om (£)|Po)

where we defined the evolution operator as K

W(t)) = U(t, t)| () initial state

and the operator O(t) in the Heisenberg picture as

A

On(t) = Ulto,t) O(t) U(t, to)

The Heisenberg operator satisfies an equation of motion



It follows from the Schrodinger equation that
0, Ut t") = HOU(t,t')

and therefore that the Heisenberg operator satisfies the equation of motion

Oy @H(t) = —1 [OH(t),ﬁH(t)] T (atOA(t))H

For example, you can check that the field operator satisfies

0, — h(xt)] g (x, 1) = / dy w(x, y) A (yt )i (xt)

Let us now derive a more explicit expression for the evolution operator



We start again from the Schrédinger equation  §0;|W(t)) = [:[(t) W (t))

If we divide [to, T ] into small intervals A then
W(T)) o em A A (1)) = T {7 A = EO)AL u(r))

= 7 { " ZIHA L0 (1))

where ‘7 denotes time-ordering that orders the latest operator most left.
We used that operators commute under time-ordering

T {A(tl)é(tg)} =T {E(tQ)A(tl)}
and hence, in particular

T {eA(tl)QB(tg)} _ T {eﬁ(tl)JrB(Q)}



In the limit A => 0 then

. Time-evolution operator
By as similar procedure we have

Ulty,T) = SH(t)A JiH(12)A  JiH(tn)A _ 7——{87; > ﬁ(tj)A}

Ulty, T) = T{eift:g ﬁ(t)dt}

where ‘J denotes anti-time-ordering that orders the latest operator most right.



The evolution operator can then be written as

o to 2~
Ul(ty, t2) Te H a4,

17 2 — _ . tl >
7-€—|—zft2 dt H(t)dt to < 11

and the expectation value
(O(t)) = (Wo|U (to, )O(H)U (t, to) | Wo)

can therefore be written as

<O(t)> — (W, T ffo dt H(t)dt O(t) Te_iftto dt H(t)dt W)

If we expand in powers of the Hamiltonian then a typical term is

T{ﬁ(tl) . ﬁ(tn)} O(t) T{Fl(t’l) . ﬁ(t;)}
early <(=—= late late <= early



= > v = (to,t) ® (L, to)
Z5 Y S—— =
= Y+

We define a contour y consisting of two copies of the interval [to, t] . A generic

element z of y can lie on the forward branch y or the backward branch y.

Notation
when > € ~_ and its real value is +

> =t when 2z € «, and its real value is t/

We can define operators on the contour

() 2=t

CO_(t
L OL(t) A=t




29 > 21
t() Zl t
—<« > - 7 >
Z, Y

'T7 {Ap(l)(ZP(l)) .. AP(l)(ZP(l))} — 1211(21) .. fln(zn) 21> ... > Zn

With this definition we can write

T{ﬁ(tl) | ..ﬁ(tn)} O(t)fr{ﬁ(t’l) | ..ﬁ(t;)}

where

With this trick we can write the expectation value in a compact way



b Zl‘ > .Zz !
, >
14
( fttl2 dt_A_ (£> if z1 =t1_ and 29 = to_
Tto = = > szZA(Z)_< ft dt A (f)—|—ft2dffl (1) ifz1=t;_and 2o =1t
‘ 022 <€ ’y . o t1 - t + 1 — Ul1— 2 = U2+
T \ fttlz d??zzl-k (a if 21 = t1_|_ and 2o = t2_|_
l, ;
™~ ° >
‘ ) < Z Y

The expectation value can then be written as
A —i [ H(2)dz A —i [ H(2)dz
O0) = (o[, { e D MO (et h MO L

and since the operators commute under the time-ordering

Ot)) = (o[ T, { 1O O(t2) | |wy)




It will be useful to extend the concept of expectation value to ensembles

On (1)) = > wn(n|On ()W) = Tr {$Onu(t)]

p=> wy| W) (W, D w, =1 Wi > 0

where we defined Tr A = Z((I)mM](I)m) with |®m) any complete orthonormal set

An important special case is
e~ Pbn

— S B

A

HM|U,)) = E,|v,,) HM = H(t)) — uN

Wn,

_AgM
GﬁH

- B Tr {e_ﬁﬁM}




This corresponds to an initial system at inverse temperature 3 and chemical potential J
o BHY _ —i[(to—iB)—to] HY _ U(to —if3, o)

If we therefore define

A B ]:I(t) z € [to,OO[
H(Z)— { I:]M z € [to,t()—iﬁ]

then we can write

A AN

T {U(t — B, t0)U(to, ) OO (1, )
Tr {U(to - w,to)}

(O(t)) =



(L.V.Keldysh, Sov.Phys.JETP20, 1018 (1965),
Konstantinov, Perel’, JETP12,142 (1961))

A

(to, —if) ) Tr {U (to — i3, t0)U (to, t)O(t)U (t»to)}
(O(t)) = - .
Tr {U(to _ zﬂ,to)}

TrT{ i, d=Hz) 6 4 )}
Tr T{ ~i [, dzH )}

(O(t)) =

Time ordering is now defined along the extended contour



Time-ordering: Take home message

- Time-ordering is a direct consequence of the structure of
time-dependent Schrodinger equation.

- Expectation values consist of a time-ordered evolution operator
for the ket state and an anti-time-ordering for the bra state

- The expectation of any operator value can be rewritten in terms of a
single time-ordered exponential by introducing contour ordering

- In case of systems prepared in an initial ensemble the expectation
value can be rewritten as a time-ordering on a contour with an
additional vertical track



