Introduction to Many-body Theory |l

Part Il : Feynman diagrams and the Green’s function
- Why Green’s functions!?
operator orderings and Wick’s theorem
- Feynman diagrams and the self-energy
- The physical interpretation of the Green’s function
- Spectral function and photo-emission



Operator correlators

We have seen that the expansion of an expectation value leads to products
of the form, so-called operator correlators

A A

We want to find an efficient way to evaluation such operator correlators.
Let us look at one of the simplest

A A A A A A

Ty {01(21)02(2’2)} = 0(21, 22) O1(21)02(22) + 0(22, 21) O2(22)O1(#1)

1 21 > 2
9(z1,z2)={ 0 21 < 29

If we differentiate with respect to the contour times we can generate relations
between various correlators



% commutator

2T {01)0ne0) ) = 8e1,2) [01(:2), On(aa)] + 7, { 01 (21)0nte) }

where the contour delta function satisfies /dg 5(2«7 5) A(g) — A(z)
g

For two fermionic field operators it is, however, more convenient to define

Ty {01(21)02(22)} — 0(21, 22) O1(21)Oa(22) — (22, 21) O2(22)O1(21)

% anti-commutator

dle {01(21)02(22)} = 4(21, 22) [01(2’1),02(2’2)}+ + 75 {di’l O1(z )OQ(ZQ)}

such that

For example



For a general string of fermionic operators we define

T, {01 . ..@n} = (=17 0pq)---Ope) 2P(1) > -+ > 2P(n)
where Oj = Oj(zj)

WVe just put the operators in the correct order and add a plus/minus sign
depending on whether the final permutation was even/odd

from this definition it follows that

T,{01...0.} = (1)’ T, {Opq) ... Op(n) |

We further define that operators at equal time are kept in their relative order.
For example

7'7 {‘P(Xlzl)w(xzﬁ)?@ X272 } {W X222) X1Zl)1ﬂ(X222)}
=T, {&T(X222)¢(X222)¢(X121)} W(Xzzzw(@@)lb(xlzl) Z2 > 21



It follows that operators containing an even number of equal time field operators
(such as the Hamiltonian) commute under the time-ordered product, in agreement
with our earlier definition

If we expand an expectation value in powers of one- or two-body interactions
we obtain strings with an equal number of annihilation and creation operators.
The most general such string has the form

Go(L... .1 ...0)) = ()" T, {@2(1) )bt . W(y)}

J = XjZj

From the equation of motion of the field operator
0, — h(xt)] D (x.1) = / dy w(x. y) g (yt) g (xt)

we can derive equations of motion for the operators G,



We find

. d / / . 2 . d - ~ ~ / ~ /
zd—Gn(l Loy looon') = (=0)T, {@DH(l) . (zd—wH(k)> . .@bH(n)wL(n ) .. .qu(l )}
Zk <k
n M
S (C)(h, ) G (L G s K )
j=1
Which can be rewritten as
z% — h(k)] Gn(1...m:1"...n) = —i / dlw(k,1) Gper(1...0n,1;1 .0/, 1)
k
ik : ~ M M
+ > (1) 6k, ) Gnoa (1. ..ony VLK )

We therefore obtain a set of hierarchy equations for the correlators G,




The first equation in this hierarchy is

[z'd% - h(l)] Gi(1;1) = 6(1,1) —i/dlw(l, 1)Ga(1,1;1,17)

An example of an equation higher in the hierarchy is

[zdi - h(2>] Ga(1,2;1,2") = = 6(2,1) G1(1;2') + 6(2,2") G1(2;2)
<2

A J— J—

- z’/di w(2,1)G5(1,2,1;1,2/, 1)

In a next step we will convert these operator equations into
differential equations



Many-particle Green'’s function

The n-particle Green’s function is defined as

Tr [e_BﬁMCA?n(l g1l n’)}

Gn(1...m;1"...n) = -
Ir [e‘ﬁHM}

r |y e L EHE) Gy dn)dt ()Lt (1
Gt — 7 { (1) D). T ]

Tr {7-7 {6—i /5 dzﬁ(z)H

The n-particle Green’s function satisfies the same set of differential
equations as the correlators Gn



Martin-Schwinger hierarchy

[Zdi — h(k)] Gp(1...n;1"...n) = —4 / dlw(k,1)Gpi1(1...n,1;1" .../, 17)
2

n

) [l
+ 3 (—1)6(k, ) Gur (1. G .oy K

j=1

(plus a set of similar equations with respect to the primed coordinates)

The hierarchy equations need to be solved with the boundary conditions

Grlo. . to,..) = —Grl(o. . to —iB,...)

which are known as the Kubo-Martin-Schwinger (KMS) boundary conditions
(which can be derived from the definition of the Green’s functions)

From the n-particle Green’s function we can calculate any n-body observable




For example, if O(t) is a |-body operator :

A

0t) = [ dx ! (x)o(x. 1))

then
(O(t)> = —i/dxo(x,t) G(Xz,x’z+)|X:X/’Z:t

The calculation of n-body observables is therefore possible once we know
how to solve the Martin-Schwinger hierarchy equations. How to do this?

Further insight in the hierarchy is obtained by considering a non-interacting
system which has the n-particle Green’s function

1 T T {e h ) gyt (). 9t |

Cgn Tr T{e—if,y dzﬁo(z)}



The Martin-Schwinger hierarchy becomes

n

dz
k ot

The solution to this equation is

[zi — h(k)] gn(1...m;1"...0n)) = Z(—l)kﬂé(k,]”) gn—1(1... ;l ans 1

gn(1...n,1"...n") =

where we denote g(1,1") = g1(1,1")

This is known as Wick’s theorem



The proof of this identity is easy: Apply the operators
. 1
10, — h(xj, z;) hix,z) = —§V2 + v(x, 2)

on both sides of the equation and check that we recover the Martin-
Schwinger equations with the correct boundary conditions

To use Wick’s theorem we need to solve

(0., — h())g(.7') = 5(.7" (~id. — h(i))9(G. ) = 3(j.)

with the KMS boundary conditions. This is an easy problem in practice.



Many-particle Green’s function: Take home message

- The main motivation for defining the n-particle Green’s function
is that it for this object we can derive a set of coupled hierarchy
equations, known as the Martin-Schwinger hierarchy, which forms a
the basis for a systematic perturbation theory

- From the n-particle Green’s function we can calculate n-body
observables

- From the Martin-Schwinger hierarchy for a non-interacting system
it is easy to derive an explicit expression for the n-particle Green’s
function in terms of the one-particle Green’s function.

This expression is known as Wick’s theorem and forms the
basis of many-body perturbation theory



Perturbation expansion

Wick’s theorem allows for an expansion of the n-particle Green’s function in
powers of the non-interacting one-particle Green’s function.

Let us illustrate this procedure for the one-particle Green’s function given by

VT T {e =)t

G(1,1) Z o T{e—if,y dzﬁ(z)}

We can expand this expression in powers of the two-body interaction



For the numerator we have

e T {e—i [, dz (Ho(2)+W (2)) ¢ (x2) &T(x’z’)}

(—nz') L v To T {5 B0 e T (1) . W (2)

The integrand has the form

Te T {e " gy (x2) g, (=) Wity (21) ... Wi () | =

(H; dxjdx’;w(x;, x )) Tr T{eﬁﬁMwH (xz)wH x' 2/ H@DHO szk)wH (szk)wyo(xkzk)wHo(xkzk)}

k=1

4

This can be rewritten as a
non-interacting (2n+1)-
particle Green’s function



This gives the following expansion for the one-particle Green’s function

S L () fw 1) wlke, k) goper(a, 1,1, 5b 10 1)
k=0
G(a,b) =

2. % (%)kfw(lvll) cow(k, K gor (1,17, .51, 1)

Using Wick’s theorem we can now replace the non-interacting
n-particle Green’s functions by determinants




This gives the perturbation expansion for the Green’s function :

Lty | A9 AT R

oy M2/ SRS R s z z

Gl - PR iy
S LR [, 1) w(k, k) g(l,fﬁ) g(l’,.lH_) g(ll’.k/+)
= o g(k’:ﬁ) g(k’:l’ﬂ g(k’:k’ﬂ

It is now only a technical matter to evaluate these terms

This leads to Feynman diagrams. Let us give an example an expand the
numerator N(a,b) to first order




Expanding the 3x3 determinant along the first column we find

- + I+
(1) : 9(171 ) g(1;1™)
NO(a:b) = Lg(a; b)/dldl w(t, 1) | BN S
i o(a:1%)  gla:1™)
+ 2/d1d1w 1,1)g(1; b)‘ T 1)
i oy | 9(@1T) gla; 1)
—|—2/d1d1w 1,1 (1,b)‘ g(1:1H) g(1: 1)
a a a
+ ( MANANN ) * 1 I'
1 I 1 1
b b b
(b,1,1" (b,1',1) (1,b,1"
V p g
a a a
b b
b a N
(1',1,b) (1',0,1) (1,1',0)
- v N



It is not difficult to prove that the disconnected diagrams from the numerator
are cancelled by those of the denominator and we can further simplify to

gga, b; gga, 11; . gga, kli;
o 1,b) g¢(1,1 . g(1 K
i* w(1, 1’ Cw(k, K 7 , . :
=3 / kK| | :
g(k',0) g(K',1%) .o gk K T) | opy

where in the expansion of the determinant we retain only the connected (C) and
topologically inequivalent (TI) terms

>

>

A
+:“ON\O+




Self energy

The expansion of G has the structure

G:_._JFMQH n «_@WQH + ..

where the self-energy is defined as the sum over irreducible diagrams
(i.e. can not be cut in two by cutting one g-line)

3(12) = 1< =2 = 1?2 T S P 1%2 +...

The Green’s function thus satisfies the equation

G(1,2) = ¢(1,2) +/d3d4g(1,3) Ygl(3,4) G(4,2)



Skeletons

A skeleton diagram is a diagram without self-energy insertions, for example

>, 3,

The corresponding skeleton is therefore

By replacing ‘g’ by ‘G’ in the skeleton we sum over all self-energy insertions



n, times n, times
_ N M B %

n, times n, times

1y N, Ny 1y 1

A Chse

ns times

It follows that

Z[G]=©+ y;\/t» +§ - §+%+

where we sum over all dressed irreducible skeletons in terms of G




We therefore find the Dyson equation

G(1,2) =g(1,2) + / d3d4 g(1,3) X|G](3,4) G(4, 2)

or, if we use the equation of motion for g:  (id,, — h(1))g(1,2) = (1, 2)

(i8,, — h(1))G(1,1") = §(1,1') +/d2 »[G](1,2) G(2,1')

This is a self-consistent equation of motion for the Green’s function that
needs to be solved with the boundary conditions

Kadanoff-Baym
G(x1tg —i0,2) = —G(x1tg, 2) equations

G(l,XQtO) = _G(17X2t0 — 7/6)



W-skeletons

We can further renormalize the interaction lines, by removing all interaction
line insertions. For example

We can then define the screened interaction W by

P P P
M1;2)= Arrr = o~~~ + 1@2 + %2 + ...

1 2 1 2 1 K

irreducible
polarizability

P
1 2 1 2



We can then define the screened interaction W by

P P P
TP ST e N S
1 2

| K 2
irreducible
polarizability

W(1;2)= RARAAR
1 2 1 2

P
+ A< ORR
1 2 1 2

In formula

W(1,2) = w(l,2) + /d3d4w(1,3) P(3,4) W(4,2)

We can then in W-skeletonic diagrams replace w by W with the exception
of the Hartree diagram. We have

g c @ Y =Y|G, W] =27|G,w| + Xssxc |G, W]

% double skeletonic



This gives the double-skeletonic expansion for the self-energy

s o= &y % ) %

and the polarizability




The lowest order in W gives the GVV approximation

ZSS,XC(:[?Q) = —1G(1,2)W(1,2) @

P(1,2) = —i G(1,2)G(2,1) @D

W(1,2) = w(1,2) + /d3d4w(1,3) P(3,4) W (4,2)

G(1,2) = g(1,2) + / d3d4 g(1,3)(Sx[G, w](3,4) + Sesxc[G, W](3,4)) W(4, 2)

These form a self-consistent set of equations for G and W



Diagrammatic expansion: Take home message

- Wick’s theorem allows for a straightforward expansion of the
Green’s function in powers of the interaction

- The number of diagrammatic terms can be drastically reduced
by introduction of the self-energy.

- The self-energy can be expanded in powers of the dressed Green’s
function and the screened interaction W by the introduction of

skeletonic diagrams. This leads to self-consistent equations in terms
of G and W.

- The lowest order in this expansion is the famous GWV approximation



Contours and formalisms

Let us now briefly clarify some issues that may confuse you in practice,
namely the different flavours of many-body theory.

With different assumptions we can modify the contour
Adiabatic assumption

}’\I(t ): I:[?(t):[?()#—e_”lt_t()'ﬁim for t < tp
+ H(t) = Ho(t) + Hing for t > to
~ ~ ~ ~ R G_BI:IM ~ e_BIjI(l)VI ~
H(ze™M)=H} = Hy — uN, p=—p—= n(to, —00) 7 Up(—00,tp)
N A N
A, An Y L@ 1L HE Y“
» Ao = S-S
! = ST H,(t H(t
H(t) v 7]() ()
Y
A" Hy
) _OO_iB




po = Un(—oo, o0) po Uy (00, —00) Zero-temperature assumption

- - - > - - - >

When expanding in powers of the interaction only the terms on the
real axis remain. This leads to 3 variants

|) Full formalism with the Matsubara approach
(equilibrium finite temperature) as an initial case

2) Keldysh formalism (adiabatic assumption)

3) Zero-temperature standard time-ordered formalism
(zero-temperature assumption)



In all the 3 formulations all diagrammatical expressions is identical.
The only thing that changes is the way the final integrals in the Feynman

diagrams are done.
If we denote <A> — Ty ﬁfl then the Green’s function has the structure
G(1,2) = —i(T {"@H(l)l@}{(z)b = 0(z1,22) G7(1,2) 4+ 0(21,22) G=(1,2)

Only information on the contour

is in the Heaviside functions
Real-time functions

) i
G~(1,2) = —i{Yu(1)vy(2)) Propagation of a “particle” (added electron)

G=(1,2) = @@L(Z)&H(l» Propagation of a “hole” (removed electron)




Y (1,2) ~ 6(21, 22)

Hartree-Fock type diagrams are instantaneous
since the Coulomb interaction is

The self-energy has the structure
2(17 2) — ZHF(L 2) + (9(21, 22) Z>(17 2) + 9(Z27 Zl) Z<(17 2)

A general contour function has the structure

k(z,2) = k) 8(z,2) +0(2,2) k™ (t,t)) + 0(2, 2) k™ (¢, 1)



One often needs to do integrals of the form

c(z,2") = / dz"a(z,2")b(Z", 2"
gl

There are simple rules to convert these into real time functions.
For example, on the original contour:

c<:a<-bA—|—aR-b<—|—a]*b(

where
o0 8
frg=[ e fro= [ dr (o
to 0
and
Bty = )t — ) + 0t — )| (L, 1) — (L, )] c(7,t) = c(tg — i, t)
At ) =)ot —t) — 0 —t)e” (¢, ) — (¢, 1)) cl(t,7) = c(t, to — i)

In this lecture | will not elaborate further on these so-called Langreth rules



Different contours: Take home message

- The original contour can be deformed at the expense of
additional approximations

- The adiabatic assumption leads to the standard Keldysh
formalism without a vertical track

- The zero-temperature assumption leads to the standard
time-ordered formalism restricted to equilibrium zero-temperature
systems

- All equations of the three formalism are identical.
Only the translation of the final contour integrals to real-time
functions is different but in all cases straightforward.



Green’s function: Physical interpretation

We remove a particle from state j at time t. After this the system is left in
a superposition of eigenstates of the ionized system

~

U (1)) = U(T,t)a; Ut )| Wo) = e TN [N — 1, s/ (N — 1, s]a; e 10| Wp)

_ Z e_iEN—l,s(T_t)e_iEO(t_tO)CS’j |N — 1, S>
S

where

Cs,j = (N — 175‘&j’\110>

The probability to find the system in (N-1)-particle state after removal
of the particle is then

P =[(N — 1, s]a;[Po)

Ps j o< |cs,j



The diagonal lesser Green’s function has the form

—1 ij(t,t) <\P0‘a3H(t’) ()| ¥g) = < ;(t )’\IJ Z |Cs,]|2 —i(Eo—EN-1,s)(t—t")

It will be convenient to write this in frequency space

dw iwl(t—t
ij(t—t')Z/ngj(w)e =)

—iG5w) =21 ) leg 6w — (Eo — En—1,))

Let us now see how this relates to a photo-current in a photo-emission

experiment y .
®- &
-



Electron-light interaction \
@

ﬁl—e(t) _ Z(hm eiwot + h;kj e—’iwot) &j&j

A\

Fermi’s Golden Rule

photon energy

Poosm = 27O nm| 3 13 ala| W o)]* 6(wo — (Engn — En))
1]

Final states (sudden approximation) : VN m) = di UN_1s)

Pyi(e) = 2r[(Wn 14l > BE a1 Wno)* 6(wo — € — (En—15 — Enyp))

J R S
kinetic energy

photo-electron



The photo-current is then given by

€) < ¥ Pi(e) = —th* hejt G5 (€ — wo)

Similarly in an inverse photo-emission experiment the light intensity
is given by i G”

These two quantities are often combined in a single function known
as the spectral function

Aij(w) =i |G (w) = G (w)| = —2Im Gfi(w)

A (Cd) > () R This equality follows
v — from short manipulations
which are omitted here



Physical interpretation: Take home message

- The hole and particle Green’s functions relate directly to the
spectra measured in photo-emission and inverse photo-emission
experiments

- These spectra contain information on band structure and probabilities
for various inelastic events

- The renormalisation and broadening of the main
single-particle peak due to interactions in metallic systems
leads to a quasi-particle picture which forms the basis
of Landau’s theory of quantum liquids.



