Introduction to Many-body Theory Il

Part lll: Linear response and examples
- The 2-particle Green’s function and optical spectra
- Hedin’s equations
- Linear response
- Examples: Time-dependent screening in an electron gas



The 2-particle Green’s function

We can further expand the two-particle Green’s function using Wick’s theorem
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Again only connected diagrams contribute. In the same way as before
non-connected diagrams cancel and we can expand in G-skeletons by
removing self-energy insertions



Gy reducible kernel K
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&, irreducible kernel K
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To find the 2-particle Green’s function we have to solve the Bethe-Salpeter equation
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L(1,2;3,4) = G(1;4)G(2; 3) i/G(l; 1NYG(3';3)K (1,23, 4)L(4',2; 2, 4)

If we expand the self-energy in G-skeletonic diagrams then the following important
relation is valid
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It is not hard to prove this diagrammatically



Let us give some examples
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What about the W-skeletons? Remember that

W(1:;2) =

Let us look at the reducible kernel again
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If we remove from K, all interaction line reducible we obtain a
new kernel K,
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The polarizability can then be expressed as
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where we defined the vertex function as
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For the kernel [ the following relation is valid
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as follows from a diagrammatic proof

The equation for the vertex therefore becomes
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If we can further express the vertex in terms of the vertex we have a
closed set of functional differential equations



By a diagrammatic derivation we can also show that the self-energy can be
expressed in terms of the vertex
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Let us collect all the equations that we derived



Hedin’s equations
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2-particle Green’s function and Hedin’s equations:
Take home message

- For the 2-particle Green’s function we can derive an equation
with a reducible kernel, known as the Bethe-Salpeter equation.

- The reducible kernel is the functional derivative of the self-energy
with respect to the Green’s function.

- From the diagrammatic rules we can derive a set of
functional differential equations relating the vertex, the
Dyson and the Bethe-Salpeter equation. These equations are
known as the Hedin equations.

- The Hedin equations can be iterated in various ways to generate
different perturbation series.
It is not known whether all skeleton diagrams are generated
once by such a procedure.



Linear response functions
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If we make the variation H(z) = H(z) + 0V (2) oV (2) = /dx n(x) dv(xz)
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which can be rewritten as
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There is a close relation between the density response function and the
Bethe-Salpeter equation. We have

L(1,2;1,2") = — [G2(1,2;1,2") — G(1,1)G(2,2))]
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and therefore
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In combination with the Bethe-Salpeter equation we can then further
derive that

x(1,2) = P(1,2) +/d3d4P(1,3)w(3,4)X(4, 2)

A diagrammatic expansion of the polarisability therefore directly gives
an approximation for the density response function



Random Phase Approximation and plasmons
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If we calculate the Bethe-Salpeter from the Hartree self-energy
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then the Bethe-Salpeter equation becomes



From x(1,2)=—iL(1,2;1%,2%) itthen follows

if we take the retarded component of this expression and Fourier
transform then we find

X (x1, X2 w) = X (X1, X2 w) + /dXBdX4 Xo (X1, X33 w)v(x3, X4) X (X4, X2 W)

This approximation for the density response function is also known
as the Random Phase Approximation (RPA).

A better name is the Time-Dependent Hartree Approximation
(it amounts to TDDFT with zero xc-kernel)



Let us now take the case of the homogeneous electron gas. Since the
system is translational invariant we can write
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The RPA response function has poles at the poles of Xo0(4Q,w)
and when

1 — 9q x0(q,w) =0

The extra pole corresponding to this condition is known as the
plasmon and corresponds to a collective mode of the electron gas
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Sudden creation of a positive charge (such as in the creation of a core-hole)
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We can calculate the induced density change from the RPA response function.
A few manipulations lead to
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The integral can be split into a contribution from particle-hole
excitations and a contribution from the plasmon
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Figure 15.7: This figure shows the 3D plot of the transient density in an electron gas with
rs = 3 induced by the sudden creation of a point-like positive charge () = 1 in the origin
at t = 0. The contribution due to the excitation of electron-hole pairs (a) and plasmons (b)
is, for clarity, multiplied by 47 (rpr)? in the plots to the right. Panel (c) is simply the sum
of the two contributions. Units: 7 is in units of 1/pp, ¢ is in units of 1/w,, and all densities
are in units of p3.

The positive charge is screened
at a time-scale of the inverse
plasmon frequency



In the long time limit we have

has spatial oscillations
Q 1
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Suppose now that @ =g = —1 is the same a the electron charge. The total density
change due to this test charge is
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In the static limit W describes the interaction between a test charge an an electron



Linear response: Take home message

- We can derive a diagrammatic expansion for the linear response
function from the diagrammatic rules for the 2-particle Green’s
function

- The linear response function gives direct information on
neutral excitation spectra such as measured in optical absorption
experiments

- The random phase approximation to the linear response function
describes the phenomena of plasmon excitation in metallic systems

- The screening of a an added charge in the electron gas happens
at a time-scale of the inverse plasmon frequency



Spectral properties of an electron gas : GW

We have seen that the spectral function describes the energy distribution of
excitations upon addition or removal of an electron. We therefore expect

so see both plasmon and particle-hole excitations when we do a photo-emission
experiment on an electron gas ( or electron gas like metals such a sodium )

Dyson equation
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We calculate the self-energy in the GWV approximation using noninteracting
Green’s function we find
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The greater and lesser self-energies describe scattering rates for added or
removed particles with energy W and momentum p

The self-energy vanishes when W — (4 due to the fact an added particle
can maximally lose energy w — 1 as states below the Fermi energy are
occupied
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Scattering processes
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Loss of energy by a particle. Absorption of energy by a hole.
Scattering rate given by : X~ (p,w) Scattering rate given by —i X< (p,w)
Only relevant when p > pr Only relevant when p < pF
A plasmon can be excited A plasmon can be absorbed

only when w > 1 + w, only when w < p — wy,



Absorption of plasmons
by hole states

Energy loss to plasmons
by particle states

Figure 15.9: The imaginary part of the retarded self-energy —Im[X(p,w + p)] = I'(p,w +
1)/2 for an electron gas at rs = 4 within the GoW, approximation as a function of the
momentum and energy. The momentum p is measured in units of pr and the energy w and
the self-energy in units of ¢, = p%/2.



For the spectral function this implies the following

I'(q,w)
(0= cq = Alg,)? + (192)°

Aq,w) = —2Im G"(q,w) =

If I'(q,w) is small then the spectral function can only become large
(~1/T ) when

w—€q—Aq,w) =0
The Luttinger-Ward theorem tells that this happens when ¢=pr, w=1p
i — €pp — A(pr, p) =0

(not explained in these lectures, requires a derivation of the
Luttinger-Ward functional, see G.Stefanucci, RvL, Nonequilibrium Many-Body
Theory of Quantum Systems)
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Absorption of plasmons

by hole states quasi-particle state

20 £
Energy loss
to plasmons
Ap. prow) by particle
states

Figure 15.12: The spectral function A(p, u+w) as a function of the momentum and energy for
an electron gas at r; = 4 within the GoW, approximation. The momentum p is measured
in units of pr and the energy w and the spectral function in units of €,, = p2 /2.



The momentum distribution in the electron gas is given by

Hdw
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Due to the appearance of a delta peak in the spectral function at the

Fermi momentum prthe momentum distribution jumps discontinuously

at the Fermi momentum. The jump is the strength of the quasi-particle peak.
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Some recent results beyond GW Y.Pavlyukh, A.-M. Uimonen,
G.Stefanucci, RvL, arXiv. 1607.04309
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Due to negative corrections around the chemical potential in the rate function, vertex
corrections sharpen the quasi-particle peak as compared to GoWo
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Vertex corrections:

- Reduce the band width by 27 percent ( sc GW

increases by 20 percent
- Wash out the plasmon above the chemical potential

- Reduce the first plasmon energy



Spectral properties of the electron gas: Take home message

- By addition or removal of an electron we create particle-hole
and plasmon excitations

- The self-energy at the Fermi-surface vanishes due to phase-space
restrictions. This has various consequences:

|) The momentum distribution of the electron gas jumps
discontinuously at the Fermi momentum

2) Quasi-particles at the Fermi surface have an infinite life-time.

- The GWV approximation gives extra plasmon structure in the
spectral function due to plasmons

- Multiple-plasmons excitations (satellites) are beyond GWV and require
vertex corrections.




Things we did not talk about

- Feynman diagrams for the grand canonical potential and the action.
Luttinger-Ward functionals, variational principles

- Connections to TDDFT and TD current DFT :
- Diagrammatic expansion of xc-kernel
- Sham-Schluter equation and TDOEP

- General initial states

- Bethe-Salpeter and excitons, Lehmann representation

- Non-equilibrium phenomena and the Kadanoff-Baym equations
(quantum transport)

- Conserving approximations and Ward identities

- Open quantum systems, T-matrix, superconductivity, phonons,
Bose condensates,.......etc.



