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State-averaged multideterminantal density functional theory based on ensembles and
range separation

Motivation and strategy

• Linear response TD-DFT, which is a time-dependent single-reference perturbation theory, does not
treat quasi-degenerate states adequately.

• This is problematic for describing strongly correlated molecular systems (transition metal and
actinide chemistry, avoided crossings, conical intersections, ...).

• For such systems, the standard quantum chemical approach is multi-state multireference
perturbation theory (MS-CASPT2, QD-NEVPT2). In contrast to MP2, the zeroth-order
wavefunctions are multiconfigurational. They are all described with the same set of orbitals that are
optimized by state averaging.

• We want to develop a rigorous and computationally cheaper alternative to these methods by using
DFT.

• State averaging can be performed in principle exactly in ensemble DFT (eDFT) for excited states.

• Multiconfigurational wavefunctions can be introduced in standard (ground-state) DFT by means of
range separation.

• Therefore range-separated eDFT provides a rigorous framework for merging state-averaged
multiconfigurational methods with DFT.
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Ensemble DFT
• Variational principle for an equi-ensemble (Theophilou): if Ψ and Ψ′ are orthonormal then

〈Ψ|Ĥ|Ψ〉+ 〈Ψ′|Ĥ|Ψ′〉 ≥ E0 + E1

• Generalization: for a given ensemble weight w,

(1− w)〈Ψ|Ĥ|Ψ〉+ w〈Ψ′|Ĥ|Ψ′〉 = (1− 2w) 〈Ψ|Ĥ|Ψ〉︸ ︷︷ ︸+w
(
〈Ψ|Ĥ|Ψ〉+ 〈Ψ′|Ĥ|Ψ′〉︸ ︷︷ ︸ )

≥ E0 ≥ E0 + E1

• Gross-Oliveira-Kohn (GOK) variational principle:

for 0 ≤ w ≤ 1/2, (1− w)〈Ψ|Ĥ|Ψ〉+ w〈Ψ′|Ĥ|Ψ′〉 ≥ Ew

where Ew is the exact ensemble energy: Ew = (1− w)E0 + wE1 → ω =
dEw

dw
= E1 − E0

• Ew is a functional of the ensemble density nw(r) = (1− w)n0(r) + wn1(r)
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Ensemble DFT

• Trial ensemble density matrix operator: γ̂w = (1− w)|Ψ〉〈Ψ|+ w|Ψ′〉〈Ψ′|.

• The GOK variational principle can be written in a compact form as Ew ≤ Tr
[
γ̂wĤ

]
.

• With Ĥ = T̂ + Ŵee +

∫
dr vne(r)n̂(r) it comes Ew ≤ Tr

[
γ̂w(T̂ + Ŵee)

]
+

∫
dr vne(r)nγ̂w (r)

where the trial ensemble density equals nγ̂w (r) = Tr [γ̂wn̂(r)] = (1− w)nΨ(r) + wnΨ′ (r)

• Hohenberg–Kohn theorem for ensembles∗: Ew = min
n

{
Fw[n] +

∫
dr vne(r)n(r)

}

where the ensemble Levy–Lieb functional equals

Fw[n] = min
γ̂w→n

{
Tr
[
γ̂w(T̂ + Ŵee)

]}
∗E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988)
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Kohn–Sham eDFT

• Kohn–Sham decomposition of the ensemble Levy–Lieb functional: Fw[n] = Tws [n] + EwHxc[n]

where the ensemble non-interacting kinetic energy equals

Tws [n] = min
γ̂w→n

{
Tr
[
γ̂wT̂

]}
= Tr

[
Γ̂ws [n]T̂

]

and EwHxc[n] = EH[n] + Ewxc[n] with EH[n] =
1

2

∫ ∫
drdr′

n(r)n(r′)

| r− r′ |

• Exact KS-eDFT variational ensemble energy expression:

Ew = min
γ̂w

{
Tr
[
γ̂wT̂

]
+ EwHxc[nγ̂w ] +

∫
dr vne(r)nγ̂w (r)

}

∗E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988)
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• The minimizing density matrix operator is a non-interacting one,

Γ̂ws = (1− w)|ΦKS,w
0 〉〈ΦKS,w

0 |+ w|ΦKS,w
1 〉〈ΦKS,w

1 |,

which reproduces the exact physical ensemble density nw(r). It is obtained from the self-consistent
KS-eDFT equations

T̂ +

∫
dr

vne(r) +
δEwHxc

[
nΓ̂ws

]
δn(r)

 n̂(r)

 |ΦKS,w
i 〉 = EKS,w

i |ΦKS,w
i 〉, i = 0, 1.

• According to the Hellmann–Feynman theorem,

ω =
dEw

dw
= EKS,w

1 − EKS,w
0 +

∂Ewxc[n]

∂w

∣∣∣∣
n=nw

• If the first excitation is a single electron excitation then

ω = εwL − ε
w
H +

∂Ewxc[n]

∂w

∣∣∣∣
n=nw

−−−→
w→0

ω = εL − εH +
∂Ewxc[n0]

∂w

∣∣∣∣
w=0︸ ︷︷ ︸

∆xc: derivative discontinuity (DD)∗
∗M. Levy, Phys. Rev. A 52, R4313 (1995).
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Weight-independent density-functional approximation (WIDFA): EwHxc[n]→ EHxc[n], Ew → Ẽw

�0.7

�0.6

�0.5

�0.4

�0.3

�0.2

�0.1

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5

LDA
⇣ d

Ẽ
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Md. M. Alam, S. Knecht, and E. Fromager, Phys. Rev. A 94, 012511 (2016).
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Linear interpolation method (LIM)

• In the exact theory: 2(Ew=1/2 − E0) = ω =
dEw

dw

• The WIDFA ensemble energy Ẽw has curvature.

• The WIDFA excitation energy obtained from

dẼw/dw = ẼKS,w
1 − ẼKS,w

0

is weight-dependent (!)

• On the other hand, we have ωLIM = 2
(
Ẽw=1/2 − E0

)
that is a well-defined approximate excitation energy, by analogy with the fundamental gap problem ∗

T. Stein, J. Autschbach, N. Govind, L. Kronik, and R. Baer, J. Phys. Chem. Lett. 3, 3740 (2012).
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Linear interpolation method (LIM)

27

w
0 1/2

E
w

Ẽw

1/4

Z w

0

d⇠ �⇠
e↵

E0 + 2w
(
Ẽw=1/2 − E0

)︸ ︷︷ ︸ = Ẽw +

∫ w

0
dξ∆ξ

eff︸ ︷︷ ︸ ⇒ 2(Ẽw=1/2 − E0)︸ ︷︷ ︸ = ẼKS,w
1 − ẼKS,w

0 + ∆w
eff︸︷︷︸

↓ ↓ ↓ ↓
E
w curvature correction excitation energy effective DD

B. Senjean, S. Knecht, H. J. Aa. Jensen, and E. Fromager, Phys. Rev. A 92, 012518 (2015).
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Effective DD in He [11S → 21S]
�,� : no self-consistency
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EXACT AND APPROXIMATE KOHN-SHAM POTENTIALS IN . . . PHYSICAL REVIEW A 90, 042501 (2014)
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FIG. 11. (Color online) Equation (10) applied to self-consistent
quasi-LDA results. The correction to the quasi-LDA KS gap (dashed
green line) is not zero, but it is too small to be noticed on this scale.
This correction is inadequate to cancel the w dependence in the qLDA
KS gap (dot-dashed red line), resulting in inaccurate, w-dependent
calculated optical gaps (dotted blue line). The gaps have been shifted
by the optical gap ω for easier comparison, and the exact results of
Fig. 7 are also shown for context.

excitation energies. The less severe w dependence of the SEHX
KS gap is due to its closer replication of the exact ensemble
derivative discontinuity, although the SEHX cancellation of
excitation-energy w dependence is not exact. Figure 8 shows
that the position of the large w bump of SEHX is at smaller
r values than the exact one. This agrees with the less rapid
change of the SEHX KS gap in the large-w region. In Fig. 13,
the sharp change of the SEHX KS gap in the small-w region
is similar to that of the exact ensemble, which is due to the
bump created by the step in "vXC. qLDA and SD potentials
have neither the large-w bump nor the small-w derivative
discontinuity step, so the w dependencies of their KS gaps
are very different from the exact one. Comparing Fig. 9 to
Figs. 4 and 8, the r = 2.5 bump in the correlation potential
(Fig. 9) fixes the position of the bump in the exchange-only
(SEHX) potential and thereby sets the w dependence of the
KS gap and its correction.
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FIG. 12. (Color online) Equation (10) applied to self-consistent
SD results. The spin-up SD KS gap (dot-dashed red line) is
insufficiently corrected by the SD corrections to the KS gap (dashed
green line), yielding calculated optical gaps that are too small (dotted
blue line). Although the w dependence is less severe than for qLDA,
it is still non-negligible. The gaps have been shifted by the optical
gap ω for easier comparison, and the exact results of Fig. 7 are also
shown for context.
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FIG. 13. (Color online) Equation (10) applied to approximate
self-consistent SEHX results. SEHX produces far less variation in
calculated excitation energies with w (dotted blue line), which appears
to be the result of its ensemble derivative discontinuity. This produces
approximate KS gaps (dot-dashed red line) and KS gap corrections
(dashed green line) that most closely resemble the exact curves
in overall shape. The exact results (as in Fig. 7) are also shown
for context. The gaps have been shifted by the optical gap ω for
easier comparison, and the exact results of Fig. 7 are also shown for
context.

VII. CONCLUSION

This work provides a method for inverting ensemble
densities, so that the resulting exact ensemble KS systems
can be used as references for developing approximated
EDFT functionals. We show the density-inversion method
for spherically symmetric systems in this paper, but it is not
difficult to generalize the method for other types of systems.
We have tested the density-inversion method in cylindrically
symmetric systems, and it also yields good results [31]. For
systems with lower symmetry, the real-space approach shown
in this paper would not yield accurate results without a massive
grid-point set. Although expression in a basis set may solve
this problem, further study is required to determine the effect
this would have on the density-inversion method’s stability
and performance.

We applied the density-inversion method on the helium
singlet biensemble for its simplicity. This exposes the con-
tinuous emergence of the exact XC potential bump from the
ensemble derivative discontinuity and facilitates comparison
with approximations. The singlet biensemble is by no means
the limit of the applicability of the density-inversion method,
however. In Ref. [31], we applied the method to ensembles
of various real and model two-electron systems, in which
it retains the numerical stability and accuracy seen in this
paper. This work illustrates that EDFT properties deviate from
ground-state DFT ones in previously unseen ways. Also, some
exact conditions, such as Eq. (10), do not suggest obvious
methods for their satisfaction by approximations. Of the
approximations we tested, the SEHX version of GPG, the only
one with an ensemble derivative discontinuity, generated the
most accurate XC potentials and excitation energies. These
complications make developing a good EDFT functional
considerably harder than in the ground state, and we hope
the exact results shown in this work can alleviate some burden
on EDFT developers.

042501-7

B. Senjean et al., Phys. Rev. A 92, 012518 (2015). Z-h. Yang et al., Phys. Rev. A 90, 042501 (2014).
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1

r12
=

erf(µr12)

r12︸ ︷︷ ︸+
1− erf(µr12)

r12︸ ︷︷ ︸ where erf(µr12) =
2
√
π

∫ µr12
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• Exact range-separated ground-state energy expression (Savin):

E0 = min
Ψ

{
〈Ψ|T̂ + Ŵ lr,µ

ee + V̂ne|Ψ〉+ Esr,µ
Hxc [nΨ]

}
• The minimizing wavefunction Ψµ0 is the ground state of a long-range interacting system whose

density equals the exact ground-state density n0.

• Ψµ0 fulfils the self-consistent equation

(
T̂ + Ŵ lr,µ

ee + V̂ne +

∫
dr

δEsr,µ
Hxc

δn(r)
[nΨ

µ
0

] n̂(r)

)
|Ψµ0 〉 = Eµ0 |Ψ

µ
0 〉

• standard KS-DFT is recovered when µ = 0

• pure WFT is recovered when µ→ +∞

• Short-range functionals: srLDA, srPBE, ... (Savin, Toulouse, Gori-Giorgi, Stoll, Goll, Scuseria, ...)

• Long-range-interacting wave function calculation: HF-srDFT, FCI-srDFT, ...
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Range-separated ensemble DFT

• Range separation of the ensemble Levy–Lieb functionala,b: Fw[n] = F lr,µ,w[n] + Esr,µ,w
Hxc [n]

where F lr,µ,w[n] = min
γ̂w→n

{
Tr
[
γ̂w(T̂ + Ŵ lr,µ

ee )
]}

.

• Exact range-separated expression for the ensemble energy:

Ew = (1− w)〈Ψµ,w0 |T̂ + Ŵ lr,µ
ee + V̂ne|Ψµ,w0 〉+ w〈Ψµ,w1 |T̂ + Ŵ lr,µ

ee + V̂ne|Ψµ,w1 〉+ Esr,µ,w
Hxc [nw],

where the auxiliary ground- and first-excited-state wavefunctions fulfil the self-consistent equations(
T̂ + Ŵ lr,µ

ee + V̂ne +

∫
dr
δEsr,µ,w

Hxc [nw]

δn(r)
n̂(r)

)
|Ψµ,wi 〉 = Eµ,wi |Ψµ,wi 〉, i = 0, 1

and reproduce the exact physical ensemble density nw(r) = (1− w)nΨ
µ,w
0

(r) + wnΨ
µ,w
1

(r).

a E. Pastorczak, N. I. Gidopoulos, and K. Pernal, Phys. Rev. A 87, 062501 (2013).
b O. Franck and E. Fromager, Mol. Phys. 112, 1684 (2014).
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He[11S, 21S], srLDA, aug-cc-pVQZ

Weight-independent density-functional approximation (WIDFA): Esr,µ,w
Hxc [n]→ Esr,µ

Hxc [n],
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Excitation energies obtained with LIM and range separation

11S → 21S ◦, ◦ : Eµ1 −Eµ0
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B. Senjean, S. Knecht, H. J. Aa. Jensen, and E. Fromager, Phys. Rev. A 92, 012518 (2015).
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11Σ+ → 21Σ+ ◦, ◦ : Eµ1 − Eµ0
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B. Senjean, S. Knecht, H. J. Aa. Jensen, and E. Fromager, Phys. Rev. A 92, 012518 (2015).
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11Σ+
g → 21Σ+

g ◦, ◦ : Eµ1 − Eµ0
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B. Senjean, S. Knecht, H. J. Aa. Jensen, and E. Fromager, Phys. Rev. A 92, 012518 (2015).
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WIDFA, curvature and ghost interaction error

• Where does the curvature of the WIDFA ensemble energy come from ?

• In range-separated eDFT, the short-range Hartree energy is quadratic in w
(

unless n0(r) = n1(r)
)

:

Esr,µ
H [nw] = (1− w)2Esr,µ

H [n0] +w2Esr,µ
H [n1] +w(1− w)

∫ ∫
drdr′ n0(r)n1(r′)

erfc(µ|r− r′|)
|r− r′|

.

• In addition, an unphysical short-range "ghost interaction" (GI) is introduced.

• This is a well-known problem in KS-eDFT∗ (µ = 0 limit).

• Both curvature and GI errors are removed in the exact theory by the complementary
weight-dependent ensemble short-range xc functional Esr,µ,w

xc [n].

• This is not the case at the WIDFA level since the weight-independent ground-state short-range xc
functional is used.

∗N. I. Gidopoulos, P. G. Papaconstantinou, and E. K. U. Gross, Phys. Rev. Lett. 88, 033003 (2002).
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Exact exchange in range-separated eDFT

• Alternative decomposition of the exact ensemble short-range xc functional:

Esr,µ,w
xc [n] = Tr

[
Γ̂µ,w[n]Ŵ sr,µ

ee

]
︸ ︷︷ ︸−Esr,µ

H [n] + Esr,µ,w
c,md [n]

explicitly linear in w

where Γ̂µ,w[n] is the ensemble long-range interacting density matrix operator with density n (rather
than the usual non-interacting KS ensemble density matrix operator), hence the name
multideterminantal (md) exact exchange.

• This decomposition leads to the exact energy expression Ew = Tr
[
Γ̂µ,wĤ

]
+ Esr,µ,w

c,md [nΓ̂µ,w ]

where Γ̂µ,w reproduces the exact physical ensemble density nw(r).

• In the µ = 0 limit, we obtain an ensemble Hartree–Fock-like energy (calculated with KS-eDFT
orbitals) complemented by a density-functional correlation energy.

Md. M. Alam, S. Knecht, and E. Fromager, Phys. Rev. A 94, 012511 (2016).
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GI correction in range-separated eDFT: practical calculation

• We use the WIDFA long-range interacting ensemble density matrix operator γ̂µ,w , thus avoiding the
(more rigorous) use of optimized effective potential (OEP) techniques.

• We use the ground-state LDA1 for the complementary md correlation functional:

Esr,µ,w
c,md [n]→ Esr,µ

c,md[n]

• Thus we obtain an approximate GI-corrected (GIC) range-separated ensemble energy2

Ẽµ,wGIC = Tr
[
γ̂µ,wĤ

]
+ Esr,µ

c,md[nγ̂µ,w ]

• Excitation energies are then computed with the LIM, hence the name GIC-LIM for the method.

1 S. Paziani, S. Moroni, P. Gori-Giorgi, and G. B. Bachelet, Phys. Rev. B 73, 155111 (2006).

2 Md. M. Alam, S. Knecht, and E. Fromager, Phys. Rev. A 94, 012511 (2016).
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GHOST-INTERACTION CORRECTION IN ENSEMBLE . . . PHYSICAL REVIEW A 94, 012511 (2016)
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FIG. 2. Weight dependence of the WIDFA and GIC ensemble
energies in HeH+ for µ = 0 and µ = 0.4a−1

0 . The FCI and LIM
(dashed lines) are also shown. Energies are shifted by their values at
w = 0 for ease of comparison.

excitation energy and reduces its weight dependence sig-
nificantly in comparison to the WIDFA auxiliary excitation
energy.

As illustrated in Fig. 2 for the charge transfer excitation
11!+ → 21!+ in the stretched HeH+ molecule, the WIDFA
ensemble energy can exhibit a significant curvature in the
ensemble weight. This is known [21] and actually expected
from the expression of the ensemble short-range Hartree
energy in Eq. (28). As expected from Eq. (32), the curvature is
essentially removed in the GIC scheme, even in the KS-eDFT
limit (µ = 0). In this respect, combining the GIC with the LIM
is well justified. Let us stress that it is also much simpler than
the calculation of excitation energies through the evaluation of
ensemble energy derivatives [see Eq. (45)]. We also note that
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the slope of the GIC ensemble energy is closer to FCI and less
µ dependent.

As shown in Fig. 3, the GIC-LIM outperforms the LIM
and converges much more rapidly towards the FCI with
increasing µ, as expected. The improvement is substantial
for both charge transfer and double excitations in the stretched
HeH+ and H2 molecules, respectively. It is also remarkable
that, in the KS-eDFT limit (µ = 0), the GIC-LIM gives
relatively accurate excitation energies also for the charge
transfer excitation, despite the fact that 100% of the HF
exchange is combined with an LDA correlation functional.
The double excitation in H . . . H is captured but the excitation
energy is still underestimated. In addition, as shown in Figs.
4 and 5 for w = 0 and w = 0.5, respectively, even though
at very large µ values the FOC excitation energy converges
more rapidly than the GIC-LIM towards the FCI, it does not
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nificantly in comparison to the WIDFA auxiliary excitation
energy.

As illustrated in Fig. 2 for the charge transfer excitation
11!+ → 21!+ in the stretched HeH+ molecule, the WIDFA
ensemble energy can exhibit a significant curvature in the
ensemble weight. This is known [21] and actually expected
from the expression of the ensemble short-range Hartree
energy in Eq. (28). As expected from Eq. (32), the curvature is
essentially removed in the GIC scheme, even in the KS-eDFT
limit (µ = 0). In this respect, combining the GIC with the LIM
is well justified. Let us stress that it is also much simpler than
the calculation of excitation energies through the evaluation of
ensemble energy derivatives [see Eq. (45)]. We also note that
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the slope of the GIC ensemble energy is closer to FCI and less
µ dependent.

As shown in Fig. 3, the GIC-LIM outperforms the LIM
and converges much more rapidly towards the FCI with
increasing µ, as expected. The improvement is substantial
for both charge transfer and double excitations in the stretched
HeH+ and H2 molecules, respectively. It is also remarkable
that, in the KS-eDFT limit (µ = 0), the GIC-LIM gives
relatively accurate excitation energies also for the charge
transfer excitation, despite the fact that 100% of the HF
exchange is combined with an LDA correlation functional.
The double excitation in H . . . H is captured but the excitation
energy is still underestimated. In addition, as shown in Figs.
4 and 5 for w = 0 and w = 0.5, respectively, even though
at very large µ values the FOC excitation energy converges
more rapidly than the GIC-LIM towards the FCI, it does not
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Extrapolation technique in range-separated eDFT

• The ground-state range-separated energy Ẽµ is µ-dependent in practice since approximate
short-range xc functionals are used.

• This energy reduces to the exact ground-state energy E0 when µ→ +∞.

• Taylor expansion1 for large µ:

Ẽµ = E0 +
a

µ2
+O

(
1

µ3

)
−→ µ

∂Ẽµ

∂µ
= −

2a

µ2
+O

(
1

µ3

)

thus leading to Ẽµ +
µ

2

∂Ẽµ

∂µ︸ ︷︷ ︸ = E0 +O
(

1

µ3

)

extrapolation correction

• This extrapolation scheme can be applied to WIDFA range-separated ensemble energies. Its
combination with LIM gives extrapolated LIM (ELIM) excitation energies2.

1 A. Savin, J. Chem. Phys. 140, 18A509 (2014).

2 B. Senjean, E. D. Hedegård, M. M. Alam, S. Knecht, and E. Fromager, Mol. Phys. 114, 968 (2016).
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Extrapolation technique in range-separated eDFT

• The GIC range-separated ensemble energy Ẽµ,wGIC converges faster1,2 (as 1/µ3) towards the exact
ensemble energy Ew when µ→ +∞.

• Therefore, in this case, the extrapolation scheme reads

Ẽµ,wGIC +
µ

3

∂Ẽµ,wGIC

∂µ︸ ︷︷ ︸ = Ew +O
(

1

µ4

)

extrapolated GIC (EGIC) energy

• Combining EGIC with LIM gives EGIC-LIM excitation energies.

1 Md. M. Alam, S. Knecht, and E. Fromager, Phys. Rev. A 94, 012511 (2016).
2 Md. M. Alam, S. Knecht, and E. Fromager, to be submitted, (2016).
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ALAM, KNECHT, AND FROMAGER PHYSICAL REVIEW A 94, 012511 (2016)
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FIG. 6. LIM and GIC-LIM 11S → 21S excitation energies ob-
tained in He with and without extrapolation corrections when varying
µ. Comparison is made with the FCI. See text for further details.

necessarily perform better than the GIC-LIM in the range of
standard values 0.4a−1

0 ! µ ! 1.0a−1
0 [8,21], which is due to

the lack of short-range correlation effects.
Finally, the effect of extrapolation on the GIC-LIM exci-

tation energy is shown for He in Fig. 6. When µ is increased
from 0.2a−1

0 , the EGIC-LIM converges monotonically towards
the FCI very rapidly, in contrast to GIC-LIM and even ELIM.
Convergence is almost reached at the standard µ = 1.0a−1

0
value [8]. This means that accurate ghost-interaction-free
excitation energies can, in principle, be obtained with a
relatively small µ value, which is highly desirable. Indeed,
if µ is not too large, ground- and excited-state long-range
interacting wave functions are expected to have a rather
compact configuration expansion. Convergence with respect to
the atomic basis set will also be faster [43]. In order to illustrate
the extension of the (E)GIC-LIM to higher excitations, we
consider the double excitation 11S → 11D in Be. Results are
shown in Fig. 7. We see that the convergence towards the FCI
of the EGIC-LIM is slightly slower for the double excitation
than for the single 11S → 21S excitation. Nevertheless, results
are still accurate for both excitations in the range of standard
values 0.4a−1

0 ! µ ! 1.0a−1
0 .

V. CONCLUSIONS

A rigorous ghost-interaction correction scheme has been
proposed in the context of range-separated ensemble density-
functional theory. It is based on an exact decomposition of
the short-range ensemble exchange-correlation energy into a
multideterminantal exact exchange contribution and a com-
plementary density-functional correlation energy for which an
adiabatic connection formula has been derived. In order to
perform practical calculations, the latter correlation functional
has been simply modeled by its ground-state LDA, while the
long-range interacting ensemble density matrix is obtained
self-consistently by combining a long-range configuration-
interaction calculation with a short-range LDA potential.
Excitation energies can then be computed from the GIC
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FIG. 7. Convergence towards the FCI (solid horizontal lines) of
the LIM (dash-dotted lines with symbols), ELIM (dotted lines with
symbols), GIC-LIM (dashed lines with symbols) and EGIC-LIM
(solid lines with symbols) excitation energies obtained for the singly
excited 11S → 21S (bottom, red curves) and doubly-excited 11S →
11D (top, blue curves) transitions in Be with increasing µ.

ensemble energies by means of a linear interpolation method,
with, in addition, an extrapolation correction. Results have
been shown for He, Be, and small molecular systems (H2
and HeH+). While providing approximate ensemble energies
that are essentially linear in the ensemble weight, the GIC
scheme gives a significant improvement in the accuracy of
excitation energies. In particular, the charge-transfer excitation
11!+ → 21!+ in the stretched HeH+ molecule as well as
the double excitation 11S → 11D in Be is well described
for standard range-separation parameter values. Interestingly,
relatively good results are also obtained when the latter pa-
rameter is set to 0, which corresponds to standard Kohn-Sham
eDFT. In this case, the GIC ensemble energy reduces to an
ensemble Hartree-Fock energy (calculated with the ensemble
KS orbitals) complemented by a local density-functional
correlation energy. Test calculations on larger systems should
be performed in order to assess the reliability of the GIC
approach, in particular, in fields like photochemistry where the
use of ensembles and range separation is appealing. It would
also be interesting to construct weight-dependent correlation
functionals along the proposed generalized AC for ensembles
and to remove from our current GIC scheme the residual
ghost-correlation error. Work is currently in progress in these
directions.
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Conclusions and outlook
• Range-separated eDFT provides a rigorous framework for combining state-averaged

multiconfigurational methods with DFT.

• Self-consistent implementation at the long-range FCI level in the DALTON program package.

• Long-term project: use state-averaged CASSCF rather than FCI→ state-averaged CASDFT method !

• A linear interpolation method (LIM) for computing excitation energies in KS-eDFT has been
proposed. The key idea is to use total ensemble energies rather than orbital energies.

• LIM is also applicable to range-separated eDFT.

• A ghost-interaction correction (GIC) has been proposed in the context of range-separated eDFT.

• Very promising results have been obtained when combining GIC with LIM, even at the KS-eDFT
level (µ = 0 limit).

• When range separation is used, the accuracy of GIC-LIM can be further improved by means of an
extrapolation correction.

• LIM can be extended to higher excitations (linear interpolations between equiensembles up the
multiplet of interest)

• We currently apply range-separated eDFT to the modeling of conical intersections.
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