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Overview	
!
- The density-potential or Runge-Gross mapping in quantum dynamics	
- New insights in the time-dependent Schrödinger equation	
(PhD thesis of Markus Penz)	
- Conclusions	



Time-dependent DFT

For a given density and initial state there is at most one potential (up   to 
a gauge) that produces this density by solution of the time-dependent	
Schrödinger equation.	
!
(uniqueness theorem for the Runge-Gross mapping)
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1 Equations

(i@t � (T̂ + V̂1(t) + Ŵ )) 1(t) = 0
(i@t � (T̂ + V̂2(t) + Ŵ )) 2(t) = 0

 1(t0) =  2(t0) =  0

V̂1(t) 6= V̂2(t) + C(t) =) n1(t) 6= n2(t)

O[n, 0](t) = h [n](t)|Ô| [n](t)i
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Any observable is a functional of the 
density and the initial state

Basic assumptions (we will later see how rigorous this is):



From potentials to densities

Hamiltonian

|Ψ1⟩ =
∑

j

(18)

∂tn(rt) = −∇ · j(rt) (19)

∂tj(rt) = −i⟨Ψ(t)|
[

ĵ(rt), Ĥ(t)
]

|Ψ(t)⟩ (20)

Ĥ(t) = T̂ + V̂ (t) + Ŵ (21)

i∂t|Ψ[v](t)⟩ = Ĥ(t)|Ψ[v](t)⟩ (22)

|Ψ[v](t0)⟩ = |Ψ0⟩ (23)

n[v](rt) = ⟨Ψ[v](t)|n̂(r)|Ψ[v](t)⟩ (24)
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Schrödinger equation

|Ψ1⟩ =
∑

j

(18)

∂tn(rt) = −∇ · j(rt) (19)

∂tj(rt) = −i⟨Ψ(t)|
[

ĵ(rt), Ĥ(t)
]

|Ψ(t)⟩ (20)

Ĥ(t) = T̂ + V̂ (t) + Ŵ (21)

i∂t|Ψ[v](t)⟩ = Ĥ(t)|Ψ[v](t)⟩ (22)

|Ψ[v](t0)⟩ = |Ψ0⟩ (23)

n[v](rt) = ⟨Ψ[v](t)|n̂(r)|Ψ[v](t)⟩ (24)
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|Ψ1⟩ =
∑

j
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Density

|Ψ1⟩ =
∑

j

(18)

∂tn(rt) = −∇ · j(rt) (19)

∂tj(rt) = −i⟨Ψ(t)|
[

ĵ(rt), Ĥ(t)
]

|Ψ(t)⟩ (20)

Ĥ(t) = T̂ + V̂ (t) + Ŵ (21)

i∂t|Ψ[v](t)⟩ = Ĥ(t)|Ψ[v](t)⟩ (22)

|Ψ[v](t0)⟩ = |Ψ0⟩ (23)

n[v](rt) = ⟨Ψ[v](t)|n̂(r)|Ψ[v](t)⟩ (24)
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This maps from a certain domain of potentials to a certain domain	
of densities

For which class of external potentials and initial states has the initial value 
problem of the time-dependent Schrödinger equation a solution ?



Local force equation

Equations of motion for the density and current operators (RG 1984)
|Ψ1⟩ =

∑

j

(18)

∂tn(rt) = −∇ · j(rt) (19)

∂tj(rt) = −i⟨Ψ(t)|
[

ĵ(rt), Ĥ(t)
]

|Ψ(t)⟩ (20)
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Combination of both then gives

local force

where

|Ψ1⟩ =
∑

j

(18)

∂tn(rt) = −∇ · j(rt) (19)

∂tj(rt) = −i⟨Ψ(t)|
[

ĵ(r), Ĥ(t)
]

|Ψ(t)⟩ (20)

Ĥ(t) = T̂ + V̂ (t) + Ŵ (21)

i∂t|Ψ[v](t)⟩ = Ĥ(t)|Ψ[v](t)⟩ (22)

|Ψ[v](t0)⟩ = |Ψ0⟩ (23)

n[v](rt) = ⟨Ψ[v](t)|n̂(r)|Ψ[v](t)⟩ (24)

−∇ · (n([v], rt))∇v(rt)) = q([v], rt) − ∂2
t n([v], rt) (25)

q([v], rt) = −i∇ · ⟨Ψ(t)|
[

ĵ(r), T̂ + Ŵ
]

|Ψ(t)⟩ (26)
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|Ψ1⟩ =
∑

j

(18)

∂tn(rt) = −∇ · j(rt) (19)
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ĵ(r), Ĥ(t)
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|Ψ[v](t0)⟩ = |Ψ0⟩ (23)

n[v](rt) = ⟨Ψ[v](t)|n̂(r)|Ψ[v](t)⟩ (24)

−∇ · (n([v], rt)∇v(rt)) = q([v], rt) − ∂2
t n([v], rt) (25)

q([v], rt) = −i∇ · ⟨Ψ(t)|
[

ĵ(r), T̂ + Ŵ
]

|Ψ(t)⟩ (26)
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Let us now replace n([v],rt) by a given density n(rt) subject to the conditions

|Ψ1⟩ =
∑

j

(18)

∂tn(rt) = −∇ · j(rt) (19)

∂tj(rt) = −i⟨Ψ(t)|
[

ĵ(r), Ĥ(t)
]

|Ψ(t)⟩ (20)

Ĥ(t) = T̂ + V̂ (t) + Ŵ (21)

i∂t|Ψ[v](t)⟩ = Ĥ(t)|Ψ[v](t)⟩ (22)

|Ψ[v](t0)⟩ = |Ψ0⟩ (23)

n[v](rt) = ⟨Ψ[v](t)|n̂(r)|Ψ[v](t)⟩ (24)

−∇ · (n([v], rt)∇v(rt)) = q([v], rt) − ∂2
t n([v], rt) (25)

q([v], rt) = −i∇ · ⟨Ψ(t)|
[

ĵ(r), T̂ + Ŵ
]

|Ψ(t)⟩ (26)

n(rt0) = ⟨Ψ0|n̂(r)|Ψ0⟩ (27)

∂tn(rt0) = −⟨Ψ0|∇ · ĵ(r)|Ψ0⟩ (28)
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∑

j

(18)
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ĵ(r), T̂ + Ŵ
]

|Ψ(t)⟩ (26)

n(rt0) = ⟨Ψ0|n̂(r)|Ψ0⟩ (27)

∂tn(rt0) = −⟨Ψ0|∇ · ĵ(r)|Ψ0⟩ (28)
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∑
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[

ĵ(r), T̂ + Ŵ
]
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n(rt0) = ⟨Ψ0|n̂(r)|Ψ0⟩ (27)

∂tn(rt0) = −⟨Ψ0|∇ · ĵ(r)|Ψ0⟩ (28)

−∇ · (n(rt)∇v(rt)) = q([v], rt) − ∂2
t n(rt) (29)
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This is a nonlinear equation for v(rt)

If we propagate the TDSE with the solution v(rt) also have

|Ψ1⟩ =
∑

j

(18)

∂tn(rt) = −∇ · j(rt) (19)

∂tj(rt) = −i⟨Ψ(t)|
[

ĵ(r), Ĥ(t)
]

|Ψ(t)⟩ (20)

Ĥ(t) = T̂ + V̂ (t) + Ŵ (21)

i∂t|Ψ[v](t)⟩ = Ĥ(t)|Ψ[v](t)⟩ (22)

|Ψ[v](t0)⟩ = |Ψ0⟩ (23)

n[v](rt) = ⟨Ψ[v](t)|n̂(r)|Ψ[v](t)⟩ (24)

−∇ · (n([v], rt)∇v(rt)) = q([v], rt) − ∂2
t n([v], rt) (25)

q([v], rt) = −i∇ · ⟨Ψ(t)|
[

ĵ(r), T̂ + Ŵ
]

|Ψ(t)⟩ (26)
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Subtracting both equations we have

|Ψ1⟩ =
∑

j

(18)

∂tn(rt) = −∇ · j(rt) (19)

∂tj(rt) = −i⟨Ψ(t)|
[

ĵ(r), Ĥ(t)
]

|Ψ(t)⟩ (20)

Ĥ(t) = T̂ + V̂ (t) + Ŵ (21)

i∂t|Ψ[v](t)⟩ = Ĥ(t)|Ψ[v](t)⟩ (22)

|Ψ[v](t0)⟩ = |Ψ0⟩ (23)

n[v](rt) = ⟨Ψ[v](t)|n̂(r)|Ψ[v](t)⟩ (24)

−∇ · (n([v], rt)∇v(rt)) = q([v], rt) − ∂2
t n([v], rt) (25)

q([v], rt) = −i∇ · ⟨Ψ(t)|
[

ĵ(r), T̂ + Ŵ
]

|Ψ(t)⟩ (26)

n(rt0) = ⟨Ψ0|n̂(r)|Ψ0⟩ (27)

∂tn(rt0) = −⟨Ψ0|∇ · ĵ(r)|Ψ0⟩ (28)

−∇ · (n(rt)∇v(rt)) = q([v], rt) − ∂2
t n(rt) (29)

∂2
t ρ(r, t) −∇ · (ρ(rt)∇v(rt)) (30)
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with initial conditions

|Ψ1⟩ =
∑

j
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1 oslo equations
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D(

ˆT ) = H2
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dt2
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(x, 0, t) = @
y

'
j

(x, L, t)

v0 v1(rt0)
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j�1] (j  k)
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The unique solution satisfying the initial conditions is 

|Ψ1⟩ =
∑

j

(18)

∂tn(rt) = −∇ · j(rt) (19)

∂tj(rt) = −i⟨Ψ(t)|
[

ĵ(r), Ĥ(t)
]

|Ψ(t)⟩ (20)

Ĥ(t) = T̂ + V̂ (t) + Ŵ (21)

i∂t|Ψ[v](t)⟩ = Ĥ(t)|Ψ[v](t)⟩ (22)

|Ψ[v](t0)⟩ = |Ψ0⟩ (23)

n[v](rt) = ⟨Ψ[v](t)|n̂(r)|Ψ[v](t)⟩ (24)

−∇ · (n([v], rt)∇v(rt)) = q([v], rt) − ∂2
t n([v], rt) (25)

q([v], rt) = −i∇ · ⟨Ψ(t)|
[

ĵ(r), T̂ + Ŵ
]

|Ψ(t)⟩ (26)

n(rt0) = ⟨Ψ0|n̂(r)|Ψ0⟩ (27)

∂tn(rt0) = −⟨Ψ0|∇ · ĵ(r)|Ψ0⟩ (28)

−∇ · (n(rt)∇v(rt)) = q([v], rt) − ∂2
t n(rt) (29)

∂2
t ρ(r, t) −∇ · (ρ(rt)∇v(rt)) (30)

ρ(rt) = n([v], rt) − n(rt) (31)

ρ(rt0) = 0 (32)

∂tρ(rt0) = 0 (33)

ρ(rt) = 0 (34)

n(rt) = n([v], rt) (35)

P : v0 %→ q[v0] (36)

−∇ · (n(rt)∇v1(rt)) = q([v0], rt) − ∂2
t n(rt) (37)

V : q[v0] %→ v1 (38)

F [v0] = (V ◦ P)[v0] = v1 (39)

∥F [v1] − F [v0]∥α ≤ a∥v1 − v0∥α (40)

a < 1 (41)

∥q[v1] − q[v0]∥α ≤
C√
α
∥v1 − v0∥α (42)

∥F [v1] − F [v0]∥α ≤ D∥q[v1] − q[v0]∥α (43)
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Ĥ(t) = T̂ + V̂ (t) + Ŵ (21)
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If we now choose 

∥f∥α ≤
C√
α
∥g∥α (61)

v1 = F [v0] (62)

v2 = F [v1] (63)

−∇ · [n(rt)∇(v2(rt) − v1(rt))] = q([v1], rt) − q([v0], rt) (64)

Q = −∇ · [n(rt)∇] (65)

Qφi = λiφi (66)

λi(t) = ⟨φi|Qφi⟩ =

∫

Ω
drn(rt)|∇φi(rt)|2 ≥ 0 (67)

n(rt) = nW ′([u,Φ0], rt) (68)

nW ′([u,Φ0], rt) = n([v], rt) (69)

Φ0 (70)
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to be the density obtained from the TDSE in a system with different	
interactions W’ , external potential u(rt) and a different initial state 	
then the existence of a solution to

∥f∥α ≤
C√
α
∥g∥α (61)

v1 = F [v0] (62)

v2 = F [v1] (63)

−∇ · [n(rt)∇(v2(rt) − v1(rt))] = q([v1], rt) − q([v0], rt) (64)

Q = −∇ · [n(rt)∇] (65)
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4

|Ψ1⟩ =
∑

j

(18)

∂tn(rt) = −∇ · j(rt) (19)

∂tj(rt) = −i⟨Ψ(t)|
[
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]
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−∇ · (n(rt)∇v(rt)) = q([v], rt) − ∂2
t n(rt) (29)
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implies
1) v-representability of n(rt) in our system	
!
2) uniqueness for W=W’ and                  implies the   	
    Runge-Gross theorem
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|Ψ1⟩ =
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(18)

∂tn(rt) = −∇ · j(rt) (19)

∂tj(rt) = −i⟨Ψ(t)|
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ĵ(r), Ĥ(t)
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|Ψ(t)⟩ (20)
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−∇ · (n([v], rt)∇v(rt)) = q([v], rt) − ∂2
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t ρ(r, t) −∇ · (ρ(rt)∇v(rt)) (30)
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∂tρ(rt0) = 0 (33)

ρ(rt) = 0 (34)

n(rt) = n([v], rt) (35)
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−∇ · (n(rt)∇v1(rt)) = q([v0], rt) − ∂2
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F [v0] = (V ◦ P)[v0] = v1 (39)

∥F [v1] − F [v0]∥α ≤ a∥v1 − v0∥α (40)
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α
∥v1 − v0∥α (42)
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Ĥ(t) = T̂ + V̂ (t) + Ŵ (21)
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]

|Ψ(t)⟩ (20)
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i∂t|Ψ[v](t)⟩ = Ĥ(t)|Ψ[v](t)⟩ (22)

|Ψ[v](t0)⟩ = |Ψ0⟩ (23)

n[v](rt) = ⟨Ψ[v](t)|n̂(r)|Ψ[v](t)⟩ (24)

−∇ · (n([v], rt)∇v(rt)) = q([v], rt) − ∂2
t n([v], rt) (25)

q([v], rt) = −i∇ · ⟨Ψ(t)|
[
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maps potentials to potentials

M.Ruggenthaler, RvL, 	
Europhysics Lett. 95, 13001 (2011)
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t n([v], rt) (25)
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[

ĵ(r), T̂ + Ŵ
]
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∂tn(rt0) = −⟨Ψ0|∇ · ĵ(r)|Ψ0⟩ (28)

−∇ · (n(rt)∇v(rt)) = q([v], rt) − ∂2
t n(rt) (29)

∂2
t ρ(r, t) −∇ · (ρ(rt)∇v(rt)) (30)

ρ(rt) = n([v], rt) − n(rt) (31)

ρ(rt0) = 0 (32)

∂tρ(rt0) = 0 (33)

ρ(rt) = 0 (34)

n(rt) = n([v], rt) (35)

P : v0 %→ q[v0] (36)

−∇ · (n(rt)∇v1(rt)) = q([v0], rt) − ∂2
t n(rt) (37)

V : q[v0] %→ v1 (38)

F [v0] = (V ◦ P)[v0] = v1 (39)

∥F [v1] − F [v0]∥α ≤ a∥v1 − v0∥α (40)

F [v] = v (41)

a < 1 (42)

∥q[v1] − q[v0]∥α ≤
C√
α
∥v1 − v0∥α (43)
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then we are solving
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j
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[
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2

The question whether a solution to this equation exists and is unique is thus	
equivalent to the question whether a unique fixed point of the mapping F exists. 

The main existence and uniqueness question of TDDFT is in this way 	
reformulated as a fixed point question  

A proof strategy is to construct a contractive mapping in appropriate norms



Numerical application of fixed-point iteration
= 2⇡(m�m0)@t

0

@

R x
0

dz
n(z,t)

R L
0

dz
n(z,t)

1

A+
2⇡2(m2 �m02)

⇣

n(x, t)
R L
0

dz
n(z,t)

⌘2+
2⇡(m�m0)
R L
0

dz
n(z,t)

@xS([0, n, x, t])

n(x, t)

�r(nrvk+1) = q[vk]� @2
t n

= @2
t (n[vk]� n)�r(n[vk]rvk))

5

= 2⇡(m�m0)@t

0

@

R x
0

dz
n(z,t)

R L
0

dz
n(z,t)

1

A+
2⇡2(m2 �m02)

⇣

n(x, t)
R L
0

dz
n(z,t)

⌘2+
2⇡(m�m0)
R L
0

dz
n(z,t)

@xS([0, n, x, t])

n(x, t)

�r(nrvk+1) = q[vk]� @2
t n

= @2
t (n[vk]� n)�r(n[vk]rvk))

5

Elimination of  “q” numerically advantageous

Numerical details discussed in	
!
S.Nielsen, M.Ruggenthaler, RvL, Europhys. Lett. 101, 33001 (2013),	
arXiv 1412.3794 (2014)…and poster by Sören 	



A proof for the existence and convergence to a fixed point must consider 	
the two basic mappings:	
!
1) Propagation with the TDSE with a potential obtained from solving the local force 

equation	
2) Solution of the local force equation

Here we consider the first mapping in more detail. 	



Time-dependent Schrödinger equation

Simple example, particle in a box

Density-potential mapping in TDDFT 10

existence of unique solutions to the time-dependent Schrödinger equation. Regularity
properties, e.g., under which conditions we have classical solutions, are discussed
as well. In a next step we then investigate physical quantities derived from the
wave functions. We give exact conditions such that the density obeys the continuity
equation, and discuss which restrictions we need to impose on the density in order
to obey the fundamental equation of TDDFT. Finally we briefly review the linear
response of the wave function due to a change in the external potential. Since the
rigorous discussion of the TDSE involves some abstract concepts we will illustrate
these concepts by discussing a simple by very common physical situation, namely the
propagation of a wave packet.

2.1. Propagation of a wave packet

Rather than formally discussing the time-dependent Schrödinger equation (TDSE) at
this point let us first point out some issues one stumbles upon when trying to solve the
equation in practice. These problems then will force us later to adopt a more careful
and rigorous approach. We will start to consider the simple case of one particle in one
dimension enclosed in a box of length L. The corresponding Hilbert space H is given
by the square integrable functions in the box, or more formally H = L2([0, L]) with
standard inner product

h |�i =
Z L

0

dx ⇤(x)�(x) (19)

between functions  and �. Using the inner product we can assign to any function
 in the Hilbert space the norm k k =

ph | i. Let us now start by considering a
simple free evolution of a single particle wave packet. This means that we want to
calculate a state  (t) 2 H at time t from a given initial state  (0) 2 H. The TDSE
(in atomic units) for this problem is given by

i@t (x, t) = �1

2

d2

dx2
 (x, t) = Ĥ (x, t) Ĥ = �1

2

d2

dx2
(20)

and we specify the initial state  (x, 0) at time t = 0. We have not specified yet any
properties of the initial state  (0) but it is reasonable to assume that it is square
integrable and twice di↵erentiable such that the action of the Hamiltonian Ĥ on it
is well-defined (further conditions will follow soon). A formal solution of Eq.(20) is
given by

 (x, t) = e�iĤt (x, 0) =
1X
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where the exponent of an operator is defined by its Taylor series. This, of course,
assumes that the infinite series converges in some norm sense, which we did not check
at this point (and in fact turns out to be false in general). One sees immediately
that problems arise with Eq.(21) whenever the function  (x, 0) is only a finite times
di↵erentiable so let us assume that  (0) is infinitely di↵erentiable on the real line
(more formally  (0) 2 C1([0, L])). It is, of course, already suspicious that we have to
demand this infinite smoothness condition for the initial state when the TDSE only
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Formal solution of the initial value problem

Density-potential mapping in TDDFT 10

existence of unique solutions to the time-dependent Schrödinger equation. Regularity
properties, e.g., under which conditions we have classical solutions, are discussed
as well. In a next step we then investigate physical quantities derived from the
wave functions. We give exact conditions such that the density obeys the continuity
equation, and discuss which restrictions we need to impose on the density in order
to obey the fundamental equation of TDDFT. Finally we briefly review the linear
response of the wave function due to a change in the external potential. Since the
rigorous discussion of the TDSE involves some abstract concepts we will illustrate
these concepts by discussing a simple by very common physical situation, namely the
propagation of a wave packet.

2.1. Propagation of a wave packet

Rather than formally discussing the time-dependent Schrödinger equation (TDSE) at
this point let us first point out some issues one stumbles upon when trying to solve the
equation in practice. These problems then will force us later to adopt a more careful
and rigorous approach. We will start to consider the simple case of one particle in one
dimension enclosed in a box of length L. The corresponding Hilbert space H is given
by the square integrable functions in the box, or more formally H = L2([0, L]) with
standard inner product

h |�i =
Z L

0

dx ⇤(x)�(x) (19)

between functions  and �. Using the inner product we can assign to any function
 in the Hilbert space the norm k k =

ph | i. Let us now start by considering a
simple free evolution of a single particle wave packet. This means that we want to
calculate a state  (t) 2 H at time t from a given initial state  (0) 2 H. The TDSE
(in atomic units) for this problem is given by

i@t (x, t) = �1

2

d2

dx2
 (x, t) = Ĥ (x, t) Ĥ = �1

2

d2

dx2
(20)

and we specify the initial state  (x, 0) at time t = 0. We have not specified yet any
properties of the initial state  (0) but it is reasonable to assume that it is square
integrable and twice di↵erentiable such that the action of the Hamiltonian Ĥ on it
is well-defined (further conditions will follow soon). A formal solution of Eq.(20) is
given by

 (x, t) = e�iĤt (x, 0) =
1X
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=
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where the exponent of an operator is defined by its Taylor series. This, of course,
assumes that the infinite series converges in some norm sense, which we did not check
at this point (and in fact turns out to be false in general). One sees immediately
that problems arise with Eq.(21) whenever the function  (x, 0) is only a finite times
di↵erentiable so let us assume that  (0) is infinitely di↵erentiable on the real line
(more formally  (0) 2 C1([0, L])). It is, of course, already suspicious that we have to
demand this infinite smoothness condition for the initial state when the TDSE only

Requires the initial state to be infinitely spatially differentiable, but this is	
not sufficient to guarantee a proper solution
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Simple example, particle in a box
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existence of unique solutions to the time-dependent Schrödinger equation. Regularity
properties, e.g., under which conditions we have classical solutions, are discussed
as well. In a next step we then investigate physical quantities derived from the
wave functions. We give exact conditions such that the density obeys the continuity
equation, and discuss which restrictions we need to impose on the density in order
to obey the fundamental equation of TDDFT. Finally we briefly review the linear
response of the wave function due to a change in the external potential. Since the
rigorous discussion of the TDSE involves some abstract concepts we will illustrate
these concepts by discussing a simple by very common physical situation, namely the
propagation of a wave packet.

2.1. Propagation of a wave packet

Rather than formally discussing the time-dependent Schrödinger equation (TDSE) at
this point let us first point out some issues one stumbles upon when trying to solve the
equation in practice. These problems then will force us later to adopt a more careful
and rigorous approach. We will start to consider the simple case of one particle in one
dimension enclosed in a box of length L. The corresponding Hilbert space H is given
by the square integrable functions in the box, or more formally H = L2([0, L]) with
standard inner product

h |�i =
Z L

0

dx ⇤(x)�(x) (19)

between functions  and �. Using the inner product we can assign to any function
 in the Hilbert space the norm k k =

ph | i. Let us now start by considering a
simple free evolution of a single particle wave packet. This means that we want to
calculate a state  (t) 2 H at time t from a given initial state  (0) 2 H. The TDSE
(in atomic units) for this problem is given by

i@t (x, t) = �1

2

d2

dx2
 (x, t) = Ĥ (x, t) Ĥ = �1

2

d2

dx2
(20)

and we specify the initial state  (x, 0) at time t = 0. We have not specified yet any
properties of the initial state  (0) but it is reasonable to assume that it is square
integrable and twice di↵erentiable such that the action of the Hamiltonian Ĥ on it
is well-defined (further conditions will follow soon). A formal solution of Eq.(20) is
given by

 (x, t) = e�iĤt (x, 0) =
1X

n=0

(�itĤ)n

n!
 (x, 0)

=
1X

n=0

✓
it
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d2n

dx2n
 (x, 0) (21)

where the exponent of an operator is defined by its Taylor series. This, of course,
assumes that the infinite series converges in some norm sense, which we did not check
at this point (and in fact turns out to be false in general). One sees immediately
that problems arise with Eq.(21) whenever the function  (x, 0) is only a finite times
di↵erentiable so let us assume that  (0) is infinitely di↵erentiable on the real line
(more formally  (0) 2 C1([0, L])). It is, of course, already suspicious that we have to
demand this infinite smoothness condition for the initial state when the TDSE only
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where the exponent of an operator is defined by its Taylor series. This, of course,
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that problems arise with Eq.(21) whenever the function  (x, 0) is only a finite times
di↵erentiable so let us assume that  (0) is infinitely di↵erentiable on the real line
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Requires the initial state to be infinitely spatially differentiable, but this is	
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contains second spatial derivatives, but let us ignore this issue for the moment and
simply continue. To be specific we take the initial state to be [28]

 (x, 0) =

(
exp

⇣
1

(x�a)2�b2

⌘
|x� a| < b

0 |x� a| � b
(22)

which describes a wave packet localized in the interval [a�b, a+b] where we take a and
b to be positive real numbers such that the wave-packet is properly localized within
[0, L] (for instance we can take a = L/2 and b = L/100). One can check that this
function is infinitely di↵erentiable and that all derivatives are zero for |x�a| � b. Let
us now see what we get if we insert this initial state into the formula of Eq.(21). For
|x�a| � b the formula then tells us that at any positive time  (x, t) = 0 and therefore
that the wave packet does not spread and never leaves the interval [a�b, a+b]. This is
very much in disagreement with our intuition that free wave packets do spread. What
has gone wrong? To understand this it is useful to talk about the exponent of a linear
operator Â in a more abstract sense. Let us try to derive some conditions under which
the definition

eÂ =
1X

n=0

1

n!
Ân (23)

makes sense. First of all when we act with with the exponential operator on a state
 we see that Ân must be well-defined for all n. This is certainly the case when
the domain of the operator Â is the whole Hilbert space, i.e. D(Â) = H, since then
any square integrable function is mapped to another square integrable function and
we can then apply the operator repeatedly. Let us therefore assume that Â is defined
on all of H. Then if we act with eÂ on a state  then every term in the sum (23)
is well-defined. However, this does not mean that the infinite sum is well-defined.
To guarantee that this sum is the case we must have that eÂ 2 H or equivalently
keÂ k < 1. We therefore want to make sense of the sum

keÂ k = k
1X

n=0

1

n!
Ân k 

1X

n=0

1

n!
kÂn k (24)

For the right hand side to give a finite sum the terms kÂn k should not grow too fast
with n. An estimate can be made for so-called bounded operators for which here is a
positive number M such that

kÂ k  Mk k (25)

for all states  in the Hilbert space. In particular, repeated use of this inequality
implies that kÂn k  Mnk k. If we use this in Eq.(24) we have

keÂ k| 
1X

n=0

Mn

n!
k k = eMk k (26)

This means that Eq.(23) is well-defined for bounded operators. The problem with the
Hamiltonian Ĥ in our example is that it is not a bounded operator. Indeed a more
careful analysis of the norms kĤn k for our wave packet [28] shows that these grow
so fast with n that the rightmost infinite sum in Eq.(24) diverges if we take Â = �itĤ
and  to be our initial wave packet (moreover there is also pointwise divergence for any
|x� a| < b in Eq.(21) [28]). As a consequence Eq.(21) does not present the solution
to our initial value problem. Suppose now, however, that we discretize the TDSE of
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If we believe the series then we find the paradoxical result that the initial 
wave packet does not leave its support and does not spread

..but in fact the wave packet does spread…	
what went wrong?
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contains second spatial derivatives, but let us ignore this issue for the moment and
simply continue. To be specific we take the initial state to be [28]

 (x, 0) =
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1

(x�a)2�b2

⌘
|x� a| < b

0 |x� a| � b
(22)

which describes a wave packet localized in the interval [a�b, a+b] where we take a and
b to be positive real numbers such that the wave-packet is properly localized within
[0, L] (for instance we can take a = L/2 and b = L/100). One can check that this
function is infinitely di↵erentiable and that all derivatives are zero for |x�a| � b. Let
us now see what we get if we insert this initial state into the formula of Eq.(21). For
|x�a| � b the formula then tells us that at any positive time  (x, t) = 0 and therefore
that the wave packet does not spread and never leaves the interval [a�b, a+b]. This is
very much in disagreement with our intuition that free wave packets do spread. What
has gone wrong? To understand this it is useful to talk about the exponent of a linear
operator Â in a more abstract sense. Let us try to derive some conditions under which
the definition

eÂ =
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makes sense. First of all when we act with with the exponential operator on a state
 we see that Ân must be well-defined for all n. This is certainly the case when
the domain of the operator Â is the whole Hilbert space, i.e. D(Â) = H, since then
any square integrable function is mapped to another square integrable function and
we can then apply the operator repeatedly. Let us therefore assume that Â is defined
on all of H. Then if we act with eÂ on a state  then every term in the sum (23)
is well-defined. However, this does not mean that the infinite sum is well-defined.
To guarantee that this sum is the case we must have that eÂ 2 H or equivalently
keÂ k < 1. We therefore want to make sense of the sum
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For the right hand side to give a finite sum the terms kÂn k should not grow too fast
with n. An estimate can be made for so-called bounded operators for which here is a
positive number M such that

kÂ k  Mk k (25)

for all states  in the Hilbert space. In particular, repeated use of this inequality
implies that kÂn k  Mnk k. If we use this in Eq.(24) we have
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k k = eMk k (26)

This means that Eq.(23) is well-defined for bounded operators. The problem with the
Hamiltonian Ĥ in our example is that it is not a bounded operator. Indeed a more
careful analysis of the norms kĤn k for our wave packet [28] shows that these grow
so fast with n that the rightmost infinite sum in Eq.(24) diverges if we take Â = �itĤ
and  to be our initial wave packet (moreover there is also pointwise divergence for any
|x� a| < b in Eq.(21) [28]). As a consequence Eq.(21) does not present the solution
to our initial value problem. Suppose now, however, that we discretize the TDSE of
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It is useful to have a more general viewpoint, consider

When is this expression meaningful? We make some estimates

This is a meaningful expression when the operator is bounded, i.e.

since then



The trouble with our example was that the Hamilton operator	
was not bounded.	
!
The terms              grow to fast with n to make the series	
converge.	
!
However, operators on a finite dimensional Hilbert space	
are always bounded.	
!
This is what one does typically when discretising for numerical	
applications….	
!
But then, what goes wrong in the continuum limit?	
!
Let’s see
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that the wave packet does not spread and never leaves the interval [a�b, a+b]. This is
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This means that Eq.(23) is well-defined for bounded operators. The problem with the
Hamiltonian Ĥ in our example is that it is not a bounded operator. Indeed a more
careful analysis of the norms kĤn k for our wave packet [28] shows that these grow
so fast with n that the rightmost infinite sum in Eq.(24) diverges if we take Â = �itĤ
and  to be our initial wave packet (moreover there is also pointwise divergence for any
|x� a| < b in Eq.(21) [28]). As a consequence Eq.(21) does not present the solution
to our initial value problem. Suppose now, however, that we discretize the TDSE of
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Eq.(20) on a finite spatial grid, i.e. we replace the di↵erential operator by a finite
matrix. In that case our Hilbert space is finite dimensional and Ĥ becomes a bounded
operator and therefore the exponent e�itĤ is well-defined by the series expansion.
This immediately raises the question what happens when we make our grid spacing
finer and finer and take a continuum limit. It will be instructive to do this calculation.
The grid points xj = j�x are labelled by an integer j. The second spatial derivative
of  (x, t) in grid point xj can be approximated by the finite di↵erence formula

d2 

dx2
(xj , t) ⇡ 1

(�x)2
( (xj+1, t)� 2 (xj , t) + (xj�1, t)) (27)

where j = 1, . . . , N . We see that the determination of the second derivative of  in
N grid points requires the knowledge of the  in N + 2 grind points. We use this
feature to include the hard wall boundary conditions. The first grid point is taken
to be x0 = 0 and the last will be xN+1 = (N + 1)�x = L where we demand the
 (x0, t) =  (xN+1, t) = 0 for all times, leaving N remaining points in between in
which we have to determine  (xj , t). Our Hilbert space will then be N -dimensional.
By this discretization the Hamiltonian becomes an N ⇥N matrix acting on the time-
dependent vector ( (x1, t), . . . , (xN , t)) with the explicit form

H = � 1

2(�x)2

0
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1
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(28)

while the TDSE becomes an ordinary di↵erential equation of matrix form

i@t (xj , t) =
NX

k=1

Hjk (xk, t) (29)

In this case, since the Hamiltonian is now a bounded operator, we can take the
exponential of a matrix and we find that

 (xj , t) =
NX

k=1

�
e�itH

�
jk
 (xk, 0) =

NX

k=1

1X

m=0

(�it)m

m!
(Hm)jk  (xk, 0)(30)

It remains to calculate the action of Hm on the initial state. To do this we expand
the initial state in the eigenvectors of H. Since H is a symmetric matrix is has N real
eigenvalues ✏(l) and the eigenvectors '(l)(xj) are orthogonal. These are determined
from the equation

NX

k=1

Hjk'
(l)(xk) = ✏(l)'(l)(xj) (31)

The eigenvectors turn out to be real as well for our case. If we therefore normalize
the eigenvectors such that

�x
NX

j=1

'(k)(xj)'
(l)(xj) = �kl (32)
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N grid points requires the knowledge of the  in N + 2 grind points. We use this
feature to include the hard wall boundary conditions. The first grid point is taken
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eigenvalues ✏(l) and the eigenvectors '(l)(xj) are orthogonal. These are determined
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Let’s discretise the equation on a finite grid

The Hamiltonian becomes a finite matrix

acting on the N-dimensional vector
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Eq.(20) on a finite spatial grid, i.e. we replace the di↵erential operator by a finite
matrix. In that case our Hilbert space is finite dimensional and Ĥ becomes a bounded
operator and therefore the exponent e�itĤ is well-defined by the series expansion.
This immediately raises the question what happens when we make our grid spacing
finer and finer and take a continuum limit. It will be instructive to do this calculation.
The grid points xj = j�x are labelled by an integer j. The second spatial derivative
of  (x, t) in grid point xj can be approximated by the finite di↵erence formula
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dx2
(xj , t) ⇡ 1

(�x)2
( (xj+1, t)� 2 (xj , t) + (xj�1, t)) (27)

where j = 1, . . . , N . We see that the determination of the second derivative of  in
N grid points requires the knowledge of the  in N + 2 grind points. We use this
feature to include the hard wall boundary conditions. The first grid point is taken
to be x0 = 0 and the last will be xN+1 = (N + 1)�x = L where we demand the
 (x0, t) =  (xN+1, t) = 0 for all times, leaving N remaining points in between in
which we have to determine  (xj , t). Our Hilbert space will then be N -dimensional.
By this discretization the Hamiltonian becomes an N ⇥N matrix acting on the time-
dependent vector ( (x1, t), . . . , (xN , t)) with the explicit form

H = � 1
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while the TDSE becomes an ordinary di↵erential equation of matrix form
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In this case, since the Hamiltonian is now a bounded operator, we can take the
exponential of a matrix and we find that
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It remains to calculate the action of Hm on the initial state. To do this we expand
the initial state in the eigenvectors of H. Since H is a symmetric matrix is has N real
eigenvalues ✏(l) and the eigenvectors '(l)(xj) are orthogonal. These are determined
from the equation

NX

k=1

Hjk'
(l)(xk) = ✏(l)'(l)(xj) (31)

The eigenvectors turn out to be real as well for our case. If we therefore normalize
the eigenvectors such that
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j=1

'(k)(xj)'
(l)(xj) = �kl (32)
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Eq.(20) on a finite spatial grid, i.e. we replace the di↵erential operator by a finite
matrix. In that case our Hilbert space is finite dimensional and Ĥ becomes a bounded
operator and therefore the exponent e�itĤ is well-defined by the series expansion.
This immediately raises the question what happens when we make our grid spacing
finer and finer and take a continuum limit. It will be instructive to do this calculation.
The grid points xj = j�x are labelled by an integer j. The second spatial derivative
of  (x, t) in grid point xj can be approximated by the finite di↵erence formula
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dx2
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( (xj+1, t)� 2 (xj , t) + (xj�1, t)) (27)

where j = 1, . . . , N . We see that the determination of the second derivative of  in
N grid points requires the knowledge of the  in N + 2 grind points. We use this
feature to include the hard wall boundary conditions. The first grid point is taken
to be x0 = 0 and the last will be xN+1 = (N + 1)�x = L where we demand the
 (x0, t) =  (xN+1, t) = 0 for all times, leaving N remaining points in between in
which we have to determine  (xj , t). Our Hilbert space will then be N -dimensional.
By this discretization the Hamiltonian becomes an N ⇥N matrix acting on the time-
dependent vector ( (x1, t), . . . , (xN , t)) with the explicit form
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It remains to calculate the action of Hm on the initial state. To do this we expand
the initial state in the eigenvectors of H. Since H is a symmetric matrix is has N real
eigenvalues ✏(l) and the eigenvectors '(l)(xj) are orthogonal. These are determined
from the equation
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where j = 1, . . . , N . We see that the determination of the second derivative of  in
N grid points requires the knowledge of the  in N + 2 grind points. We use this
feature to include the hard wall boundary conditions. The first grid point is taken
to be x0 = 0 and the last will be xN+1 = (N + 1)�x = L where we demand the
 (x0, t) =  (xN+1, t) = 0 for all times, leaving N remaining points in between in
which we have to determine  (xj , t). Our Hilbert space will then be N -dimensional.
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It remains to calculate the action of Hm on the initial state. To do this we expand
the initial state in the eigenvectors of H. Since H is a symmetric matrix is has N real
eigenvalues ✏(l) and the eigenvectors '(l)(xj) are orthogonal. These are determined
from the equation
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where j = 1, . . . , N . We see that the determination of the second derivative of  in
N grid points requires the knowledge of the  in N + 2 grind points. We use this
feature to include the hard wall boundary conditions. The first grid point is taken
to be x0 = 0 and the last will be xN+1 = (N + 1)�x = L where we demand the
 (x0, t) =  (xN+1, t) = 0 for all times, leaving N remaining points in between in
which we have to determine  (xj , t). Our Hilbert space will then be N -dimensional.
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while the TDSE becomes an ordinary di↵erential equation of matrix form

i@t (xj , t) =
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In this case, since the Hamiltonian is now a bounded operator, we can take the
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It remains to calculate the action of Hm on the initial state. To do this we expand
the initial state in the eigenvectors of H. Since H is a symmetric matrix is has N real
eigenvalues ✏(l) and the eigenvectors '(l)(xj) are orthogonal. These are determined
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Now we have to solve ordinary differential equations of the form

with a well-defined solution

To make the solution more explicit we calculate the eigenfunctions
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then we find that

'(l)(xj) =

r
2

L
sin

✓
l⇡xj

L

◆
(33)

✏(l) =
2

(�x)2
sin2

✓
l⇡�x

2L

◆
(34)

where xj = j�x, L = (N + 1)�x and l = 1, . . . , N . Let us now expand the initial
state  (xj , 0) in terms of the eigenstates of H. We have

 (xj , 0) =
NX

l=1

cl '
(l)(xj) (35)

where due to the orthonormality condition (32) we easily find that the coe�cients cl
are given by

cl = �x
NX

j=1

'(l)(xj) (xj , 0) (36)

With these preliminaries we can continue the evaluation of the infinite sum in Eq.(30).
Inserting Eq.(35) into this equation we have

 (xj , t) =
NX

k,l=1

cl

1X
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(�it)m

m!
(Hm)jk '

(l)(xk)
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(�it)m

m!
(✏(l))m'(l)(xj) =
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cl e
�it✏(l)'(l)(xj)

If we insert the explicit form of the coe�cient cl of Eq.(36) then we can write this as

 (xj , t) = �x
NX

k,l=1

e�it✏(l)'(l)(xj)'
(l)(xk) (xk, 0) (37)

Or in other words

(e�itH)jk = �x
NX

l=1

e�it✏(l)'(l)(xj)'
(l)(xk) (38)

Now that we have obtained an exact result for our discretized problem we can take the
continuum limit. We let N ! 1 for a fixed value of L = (N + 1)�x for the length of
the box. This means that �x ! 0 and the sum over k in Eq.(37) becomes a Riemann
sum. We then get

 (x, t) =
1X

l=0

e�it✏(l)'(l)(x)

Z L

0

dx0'(l)(x0) (x0, 0) (39)

where

'(l)(x) =
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L
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✓
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◆
(40)

✏(l) =
(l⇡)2

2L2
(41)

Density-potential mapping in TDDFT 13

then we find that

'(l)(xj) =

r
2

L
sin

✓
l⇡xj

L

◆
(33)

✏(l) =
2

(�x)2
sin2

✓
l⇡�x

2L

◆
(34)

where xj = j�x, L = (N + 1)�x and l = 1, . . . , N . Let us now expand the initial
state  (xj , 0) in terms of the eigenstates of H. We have

 (xj , 0) =
NX

l=1

cl '
(l)(xj) (35)

where due to the orthonormality condition (32) we easily find that the coe�cients cl
are given by

cl = �x
NX

j=1

'(l)(xj) (xj , 0) (36)

With these preliminaries we can continue the evaluation of the infinite sum in Eq.(30).
Inserting Eq.(35) into this equation we have

 (xj , t) =
NX

k,l=1

cl

1X

m=0

(�it)m

m!
(Hm)jk '

(l)(xk)

=
NX

l=1

cl

1X

m=0

(�it)m

m!
(✏(l))m'(l)(xj) =

NX

l=1

cl e
�it✏(l)'(l)(xj)

If we insert the explicit form of the coe�cient cl of Eq.(36) then we can write this as

 (xj , t) = �x
NX

k,l=1

e�it✏(l)'(l)(xj)'
(l)(xk) (xk, 0) (37)

Or in other words

(e�itH)jk = �x
NX

l=1

e�it✏(l)'(l)(xj)'
(l)(xk) (38)

Now that we have obtained an exact result for our discretized problem we can take the
continuum limit. We let N ! 1 for a fixed value of L = (N + 1)�x for the length of
the box. This means that �x ! 0 and the sum over k in Eq.(37) becomes a Riemann
sum. We then get

 (x, t) =
1X

l=0

e�it✏(l)'(l)(x)

Z L

0

dx0'(l)(x0) (x0, 0) (39)

where

'(l)(x) =

r
2

L
sin

✓
l⇡x

L

◆
(40)

✏(l) =
(l⇡)2

2L2
(41)

Density-potential mapping in TDDFT 13

then we find that

'(l)(xj) =

r
2

L
sin

✓
l⇡xj

L

◆
(33)

✏(l) =
2

(�x)2
sin2

✓
l⇡�x

2L

◆
(34)

where xj = j�x, L = (N + 1)�x and l = 1, . . . , N . Let us now expand the initial
state  (xj , 0) in terms of the eigenstates of H. We have

 (xj , 0) =
NX

l=1

cl '
(l)(xj) (35)

where due to the orthonormality condition (32) we easily find that the coe�cients cl
are given by

cl = �x
NX

j=1

'(l)(xj) (xj , 0) (36)

With these preliminaries we can continue the evaluation of the infinite sum in Eq.(30).
Inserting Eq.(35) into this equation we have

 (xj , t) =
NX

k,l=1

cl

1X

m=0

(�it)m

m!
(Hm)jk '

(l)(xk)

=
NX

l=1

cl

1X

m=0

(�it)m

m!
(✏(l))m'(l)(xj) =

NX

l=1

cl e
�it✏(l)'(l)(xj)

If we insert the explicit form of the coe�cient cl of Eq.(36) then we can write this as

 (xj , t) = �x
NX

k,l=1

e�it✏(l)'(l)(xj)'
(l)(xk) (xk, 0) (37)

Or in other words

(e�itH)jk = �x
NX

l=1

e�it✏(l)'(l)(xj)'
(l)(xk) (38)

Now that we have obtained an exact result for our discretized problem we can take the
continuum limit. We let N ! 1 for a fixed value of L = (N + 1)�x for the length of
the box. This means that �x ! 0 and the sum over k in Eq.(37) becomes a Riemann
sum. We then get

 (x, t) =
1X

l=0

e�it✏(l)'(l)(x)

Z L

0

dx0'(l)(x0) (x0, 0) (39)

where

'(l)(x) =

r
2

L
sin

✓
l⇡x

L

◆
(40)

✏(l) =
(l⇡)2

2L2
(41)

with the explicit form

The initial state can be expanded in these eigenfunctions
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The explicit solution of our discretised problem is therefore
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We recover the well-known eigenfunctions and energies for the particle in a box. We
can rewrite Eq.(39) as

 (x, t) =

Z L

0

dx0 U(x, x0, t) (x0, 0) (42)

where formally

U(x, x0, t) =
1X

l=1

e�it✏(l)'(l)(x)'(l)(x0) (43)

but strictly speaking the sum is not defined until after integration over x0 as in Eq.(39)
(as at t = 0 it becomes the delta distribution �(x�x0)) and moreover it can depend in
very complicated manner on the space and time arguments even for simple systems as
the particle in a box [29]. We can now define by Eq.(42) an evolution operator Û(t)
with the property

Û(t) (0) =  (t) (44)

we write this evolution operator by definition as Û(t) = e�itĤ . So rather, than defining
the evolution operator by a Taylor series we define it by a spectral representation
involving the eigenfunctions and eigenvectors as in Eq.(42) [30, 31]. It also follows
from Eq.(39) that

kÛ(t) (0)k2 = k (t)k2 =
1X

l=1

|h'(l)| (0)i|2 = k (0)k2 (45)

This means that Û(t) is a bounded operator which preserves the norm (in other words:
it is unitary). This is an obvious requirement from a physical point of view as the
total probability of finding a particle should be conserved in time. A more puzzling
property is that that Û(t) is defined on any square integrable function, including
non-di↵erentiable functions on which the action of the Hamiltonian Ĥ is not defined.
Before we go into these issues let us now go back to our example of the localized
wave-packet. If we now take  (x, 0) as in Eq.(22) and apply Eq.(39) we will find that
the wave-packet correctly spreads in the box ( Here a picture with dynamics ) . One
can in fact prove that a wave packet enclosed in a bounded region of space at time
t = 0 will have tails reaching all over space for any positive time t > 0 [32]. This is
not di�cult to understand from a physical point of view since the Fourier components
of the initially localized wave function has momenta of arbitrarily value allowing the
particle to move arbitrarily fast. This also implies that the localized wave packet in an
enclosed big box with hard walls the presence of the box is detected immediately for
positive times. If we would have used other boundary conditions, such as the periodic
one  (0, t) =  (L, t), d (0, t)/dx = d (L, t)/dx then immediately after t = 0 the
time-evolution will be di↵erent. Clearly the formal series in Eq.(21) which is just
specified by the di↵erentiation rule has no information on such boundary conditions
as they were neither encoded in the initial state nor in the exponential form of the
time evolution operator. It is therefore no surprise that Eq.(21) can not be used to
predict the time-evolution correctly.
However, not all hope is lost in applying Eq.(21). Clearly we can apply Eq.(21) to a
finite linear combination of eigenfunctions of the form

 (x, 0) =
NX

k=1

↵k '
(k)(x) (46)

Density-potential mapping in TDDFT 14

We recover the well-known eigenfunctions and energies for the particle in a box. We
can rewrite Eq.(39) as

 (x, t) =

Z L

0

dx0 U(x, x0, t) (x0, 0) (42)

where formally

U(x, x0, t) =
1X

l=1

e�it✏(l)'(l)(x)'(l)(x0) (43)

but strictly speaking the sum is not defined until after integration over x0 as in Eq.(39)
(as at t = 0 it becomes the delta distribution �(x�x0)) and moreover it can depend in
very complicated manner on the space and time arguments even for simple systems as
the particle in a box [29]. We can now define by Eq.(42) an evolution operator Û(t)
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Before we go into these issues let us now go back to our example of the localized
wave-packet. If we now take  (x, 0) as in Eq.(22) and apply Eq.(39) we will find that
the wave-packet correctly spreads in the box ( Here a picture with dynamics ) . One
can in fact prove that a wave packet enclosed in a bounded region of space at time
t = 0 will have tails reaching all over space for any positive time t > 0 [32]. This is
not di�cult to understand from a physical point of view since the Fourier components
of the initially localized wave function has momenta of arbitrarily value allowing the
particle to move arbitrarily fast. This also implies that the localized wave packet in an
enclosed big box with hard walls the presence of the box is detected immediately for
positive times. If we would have used other boundary conditions, such as the periodic
one  (0, t) =  (L, t), d (0, t)/dx = d (L, t)/dx then immediately after t = 0 the
time-evolution will be di↵erent. Clearly the formal series in Eq.(21) which is just
specified by the di↵erentiation rule has no information on such boundary conditions
as they were neither encoded in the initial state nor in the exponential form of the
time evolution operator. It is therefore no surprise that Eq.(21) can not be used to
predict the time-evolution correctly.
However, not all hope is lost in applying Eq.(21). Clearly we can apply Eq.(21) to a
finite linear combination of eigenfunctions of the form

 (x, 0) =
NX

k=1

↵k '
(k)(x) (46)

Let us now take the continuum limit              , then we find

where

This can be formally written as
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state  (xj , 0) in terms of the eigenstates of H. We have

 (xj , 0) =
NX

l=1

cl '
(l)(xj) (35)

where due to the orthonormality condition (32) we easily find that the coe�cients cl
are given by

cl = �x
NX

j=1

'(l)(xj) (xj , 0) (36)

With these preliminaries we can continue the evaluation of the infinite sum in Eq.(30).
Inserting Eq.(35) into this equation we have
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1X
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(�it)m

m!
(Hm)jk '

(l)(xk)
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NX

l=1

cl

1X

m=0

(�it)m

m!
(✏(l))m'(l)(xj) =

NX

l=1

cl e
�it✏(l)'(l)(xj)

If we insert the explicit form of the coe�cient cl of Eq.(36) then we can write this as

 (xj , t) = �x
NX

k,l=1

e�it✏(l)'(l)(xj)'
(l)(xk) (xk, 0) (37)

Or in other words

(e�itH)jk = �x
NX

l=1

e�it✏(l)'(l)(xj)'
(l)(xk) (38)

Now that we have obtained an exact result for our discretized problem we can take the
continuum limit. We let N ! 1 for a fixed value of L = (N + 1)�x for the length of
the box. This means that �x ! 0 and the sum over k in Eq.(37) becomes a Riemann
sum. We then get

 (x, t) =
1X

l=0

e�it✏(l)'(l)(x)

Z L

0

dx0'(l)(x0) (x0, 0) (39)

where

'(l)(x) =

r
2

L
sin

✓
l⇡x

L

◆
(40)

✏(l) =
(l⇡)2

2L2
(41)

For our single particle problem this becomes more explicitly

This expression is well-defined even for initial states that are not 
differentiable…	
!
We seem to have bumped into a generalised solution of the	
time-dependent Schrödinger equation…..	
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We recover the well-known eigenfunctions and energies for the particle in a box. We
can rewrite Eq.(39) as

 (x, t) =

Z L

0

dx0 U(x, x0, t) (x0, 0) (42)

where formally

U(x, x0, t) =
1X

l=1

e�it✏(l)'(l)(x)'(l)(x0) (43)

but strictly speaking the sum is not defined until after integration over x0 as in Eq.(39)
(as at t = 0 it becomes the delta distribution �(x�x0)) and moreover it can depend in
very complicated manner on the space and time arguments even for simple systems as
the particle in a box [29]. We can now define by Eq.(42) an evolution operator Û(t)
with the property

Û(t) (0) =  (t) (44)

we write this evolution operator by definition as Û(t) = e�itĤ . So rather, than defining
the evolution operator by a Taylor series we define it by a spectral representation
involving the eigenfunctions and eigenvectors as in Eq.(42) [30, 31]. It also follows
from Eq.(39) that

kÛ(t) (0)k2 = k (t)k2 =
1X

l=1

|h'(l)| (0)i|2 = k (0)k2 (45)

This means that Û(t) is a bounded operator which preserves the norm (in other words:
it is unitary). This is an obvious requirement from a physical point of view as the
total probability of finding a particle should be conserved in time. A more puzzling
property is that that Û(t) is defined on any square integrable function, including
non-di↵erentiable functions on which the action of the Hamiltonian Ĥ is not defined.
Before we go into these issues let us now go back to our example of the localized
wave-packet. If we now take  (x, 0) as in Eq.(22) and apply Eq.(39) we will find that
the wave-packet correctly spreads in the box ( Here a picture with dynamics ) . One
can in fact prove that a wave packet enclosed in a bounded region of space at time
t = 0 will have tails reaching all over space for any positive time t > 0 [32]. This is
not di�cult to understand from a physical point of view since the Fourier components
of the initially localized wave function has momenta of arbitrarily value allowing the
particle to move arbitrarily fast. This also implies that the localized wave packet in an
enclosed big box with hard walls the presence of the box is detected immediately for
positive times. If we would have used other boundary conditions, such as the periodic
one  (0, t) =  (L, t), d (0, t)/dx = d (L, t)/dx then immediately after t = 0 the
time-evolution will be di↵erent. Clearly the formal series in Eq.(21) which is just
specified by the di↵erentiation rule has no information on such boundary conditions
as they were neither encoded in the initial state nor in the exponential form of the
time evolution operator. It is therefore no surprise that Eq.(21) can not be used to
predict the time-evolution correctly.
However, not all hope is lost in applying Eq.(21). Clearly we can apply Eq.(21) to a
finite linear combination of eigenfunctions of the form

 (x, 0) =
NX

k=1

↵k '
(k)(x) (46)
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since for this initial state we obtain from Eq.(21) that

 (x, t) =
1X

n=0

NX

k=1

↵k

✓
it

2

◆n 1

n!

d2n

dx2n
'(k)(x)

=
1X

n=0

NX

k=1

↵k

⇣
�it✏(k)

⌘n 1

n!
'(k)(x) =

NX

k=1

↵ke
�it✏(k)

'(k)(x)

which is easily checked to be a valid solution of the TDSE of Eq.(20) with the right
initial conditions. So why did the formal approach work in this case? We first note
that in this case the function  (x, t) is a real analytic function of x and t which has
a Taylor series with non-zero convergence radius around any points x and t in its
domain. It therefore has an expansion of the form

 (x, t) =
1X

k,l=0

ckl (t� t0)
k(x� x0)

l (47)

around any x0 in the interval x0 and any time t0. In fact the function is so nice that
it can be extended to a complex analytic function for complex values of x and t in the
entire complex plane. Could it be that the formal expression of Eq.(21) would work
for real analytic functions? Since the example of our localized wave packet of Eq.(22)
is non-analytic at points x = a ± b (it has a Taylor series with convergence radius
zero at these point) this would then explain in another way the failure of Eq.(21).
One can prove that a function that is exactly zero on an interval of the real line can
not be real analytic unless it is the zero function and therefore any initially localized
wave packet fails to be real analytic. One can now wonder if for real analytic initial
states the formula Eq.(21) is applicable. Let us give an example which shows that
even this requirement is not su�cient. Rather than take the interval [0, L] we take
the free propagation of a wave packet on the real line, i.e. our Hilbert space will be
L2([�1,1]). The Schrödinger equation will again be given by Eq.(20) and as initial
state we take a Lorentzian function

 (x, 0) =
1

1 + x2
=

i

2

✓
1

x+ i
� 1

x� i

◆
(48)

This is a real analytic function on the whole of the real axis with a convergence radius
R of at least 1 for any Taylor expansion of  (x, 0) in powers of x� x0 around x0. If
we insert this initial state into Eq.(21) we obtain the series

 (x, t) =
1X

n=0

✓
� it

2

◆n (2n)!

n!

i

2

✓
1

(x+ i)2n+1
� 1

(x� i)2n+1

◆
(49)

From simple convergence criteria we see that this is a divergent series for any value
of x and t. Therefore real analyticity is not a su�cient criterium to be able to apply
Eq.(21). To get a su�cient condition we follow the derivation given by Kowalevskaya
[33]. Define the two time-dependent functions

 (0)(t) =  (x0, t)  (1)(t) =
d 

dt
(x0, t) (50)

for which we will assume that they are real analytic. Then the general solution of
Eq.(20) can be written as a formal power series

 (x, t) =
1X

⌫=0

✓
d⌫ (0)

dt⌫
(t)

✓
i

2

◆⌫ (x� x0)2⌫

(2⌫)!

Analyticity in space and time
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Our initial series expansion, however does seem to make sense	
for some initial states, for example a finite linear combination of	
eigenfunctions

We obtain a correct solution to the TDSE

This solution is analytic in space and time
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However, analyticity is not enough. Take the following initial wave packet	
on the real line

Then our series expansion gives

This series does not converge at any space-time point and the	
solution is not analytic in time

A necessary condition for convergence is that the initial state is	
at least an entire function ( analytic in the whole complex plane)
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Lorentzian initial state of Eq.(48) we may wonder what are the temporal properties
of the wave function  (x, t) that evolves from this state. The solution can indeed
be obtained in closed form (I may add it in an appendix or so) and from this we
see that the expansion in time involves fractional powers of t. The issue of time
non-analyticity has been raised in some papers in connection with initial states that
are not di↵erentiable at cusps [35]. However, the analysis already carried out by
Kowalewskaya shows that the situation is more severe. A Taylor expansion in time
for  (x, t) does not even exist for a large class of real analytic initial states without
cusps.
We see that by putting rather stringent conditions on the initial state we can give
the expansion in Eq.(21) a meaning. However, by means of the evolution operator
defined in Eq.(42) we can give meaning to time-evolution for a much larger set of
initial wave functions. Let us therefore forget again about analyticity and return to
this more general definition of the evolution operator. In fact the expression is defined
on any square integrable function, even for functions that are not in the domain of
the Hamiltonian operator. Let us illustrate this with an example for the particle in a
box again. We apply the evolution operator in Eq.(42) to the normalized initial state
given by

 (x, 0) = 1/
p
L. (60)

This initial state can be expanded in the eigenstates '(l) with expansion coe�cients

h'(l)| (0)i =
p
2

l⇡
(1� (�1)l) (61)

which only gives a non-zero value when l is odd. The time-evolution is then given
according to Eq.(39) as

 (x, t) =
4

⇡
p
L

1X

k=0

e�i⇡2(2k+1)2t/(2L2)

2k + 1
sin


(2k + 1)⇡x

L

�
(62)

It turns out that this function for a given value of x is continuous but not di↵erentiable
with respect to time for any time value. Moreover for a given value of t it is continuous
but not di↵erentiable as a function of x for any x with the exception of certain times
which form a set of measure zero at which the function is piecewise constant [36, 37].
( here some figures with results ) . This result seems puzzling at first sight, how can
we get a nowhere di↵erentiable function as a solution of a dynamics governed by a
partial di↵erential equation? One would expect that any solution would at least be
once di↵erentiable in time and twice with respect to the spatial coordinates. The
problem is that the initial state is not in the domain D(Ĥ) of the Hamiltonian. What
one can show is that if the initial state is in the domain of the Hamiltonian then a
well-behaved time-evolution, i.e. remaining in the domain, is guaranteed. However,
since this domain is dense in L2 (meaning that any element in L2 can be approached
to arbitrary accuracy with an element of D(Ĥ) as measured by the L2-norm) and the
evolution operator is bounded the domain of the evolution operator can be extended
by continuity to all of L2, such that a time-evolution is well-defined for any square
integrable initial state. A Schrödinger dynamics still exists in the so-called mild sense
but to define this properly the Schrödinger equation needs to be transformed to integral
form

 (x, t) =  (x, 0)� iĤ

Z t

0

ds (x, s)
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Let us go back to the spectrum representation and take as initial state
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Then the time evolution is given by the series

This function is nowhere spatially 	
differentiable at almost all times	
(Weierstrass function)
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non-analyticity has been raised in some papers in connection with initial states that
are not di↵erentiable at cusps [35]. However, the analysis already carried out by
Kowalewskaya shows that the situation is more severe. A Taylor expansion in time
for  (x, t) does not even exist for a large class of real analytic initial states without
cusps.
We see that by putting rather stringent conditions on the initial state we can give
the expansion in Eq.(21) a meaning. However, by means of the evolution operator
defined in Eq.(42) we can give meaning to time-evolution for a much larger set of
initial wave functions. Let us therefore forget again about analyticity and return to
this more general definition of the evolution operator. In fact the expression is defined
on any square integrable function, even for functions that are not in the domain of
the Hamiltonian operator. Let us illustrate this with an example for the particle in a
box again. We apply the evolution operator in Eq.(42) to the normalized initial state
given by

 (x, 0) = 1/
p
L. (60)

This initial state can be expanded in the eigenstates '(l) with expansion coe�cients

h'(l)| (0)i =
p
2

l⇡
(1� (�1)l) (61)

which only gives a non-zero value when l is odd. The time-evolution is then given
according to Eq.(39) as

 (x, t) =
4

⇡
p
L

1X

k=0

e�i⇡2(2k+1)2t/(2L2)

2k + 1
sin


(2k + 1)⇡x

L

�
(62)

It turns out that this function for a given value of x is continuous but not di↵erentiable
with respect to time for any time value. Moreover for a given value of t it is continuous
but not di↵erentiable as a function of x for any x with the exception of certain times
which form a set of measure zero at which the function is piecewise constant [36, 37].
( here some figures with results ) . This result seems puzzling at first sight, how can
we get a nowhere di↵erentiable function as a solution of a dynamics governed by a
partial di↵erential equation? One would expect that any solution would at least be
once di↵erentiable in time and twice with respect to the spatial coordinates. The
problem is that the initial state is not in the domain D(Ĥ) of the Hamiltonian. What
one can show is that if the initial state is in the domain of the Hamiltonian then a
well-behaved time-evolution, i.e. remaining in the domain, is guaranteed. However,
since this domain is dense in L2 (meaning that any element in L2 can be approached
to arbitrary accuracy with an element of D(Ĥ) as measured by the L2-norm) and the
evolution operator is bounded the domain of the evolution operator can be extended
by continuity to all of L2, such that a time-evolution is well-defined for any square
integrable initial state. A Schrödinger dynamics still exists in the so-called mild sense
but to define this properly the Schrödinger equation needs to be transformed to integral
form

 (x, t) =  (x, 0)� iĤ

Z t

0

ds (x, s)
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=  (x, 0) +
i

2

d2

dx2

Z t

0

ds (x, s) (63)

A solution of this equation will be called a mild solution (but later for time-dependent
Hamiltonians we need to generalize the definition of mild solution again so it will only
appear here in this form). It turns out that when we integrate  (x, s) of Eq.(62)
between zero and t the resulting solution becomes twice di↵erentiable with respect
to x and is in the domain of the Hamiltonian such that the last term in Eq.(63) is
well-defined (note that integration and di↵erentiation can not be interchanged). This
is, in fact, a general feature that can be proven using semi-group theory [38]. So our
non-di↵erentiable mild solution (62) is a solution of Eq.(63) rather than of Eq.(20).
What we have been vague about so far is what the domain D(Ĥ) of the Hamiltonian
actually is. It turns out that this domain is uniquely determined by requiring the Ĥ
to be self-adjoint on a domain with specific boundary conditions. What we want to
do now is to make this more precise. We first define what we mean by a symmetric
operator. An operator Â on a Hilbert space is called symmetric when

h�|Â i = hÂ�| i (64)

for all  and � in the domain of Â. Let us give an example for the momentum operator
for our particle in a box. We define the momentum operator by

p̂ = �i
d

dx
(65)

and let its domain be the one times continuous di↵erentiable functions on the interval
[0, L] with boundary conditions  (0) =  (L) = 0 . We have by partial integration.

h�|p̂ i = � i

Z L

0

dx�⇤(x)
d 

dx
(x)

= [�i�⇤(x) (x)]L0 + i

Z L

0

dx
d�⇤

dx
(x) (x) = hp̂�| i (66)

So clearly p̂ is a symmetric operator. Note, however, that we can extend this definition
to larger domains. This is easily seen from our example. Since  (0) =  (L) = 0 we
do not need to put any conditions on the functions � at the boundary to make the
boundary term vanish. It will for example su�ce that they are simple square integrable
and di↵erentiable to make Eq.(66) valid. The operator p̂ acting on � can therefore be
regarded as an adjoint operator acting on a larger domain. Let us make this statement
more precise with a definition. For a given operator Â with domain D(Â) we take
D(Â†) to be the set of all  2 H for which there exists a � such that

h |Â�i = h�|�i (67)

for all � 2 D(Â). This defines the adjoint operator Â† = � on D(Â†). Clearly
it follows from this definition that for symmetric operators D(Â) ✓ D(Â†), i.e. the
domain of Â is equal to or a subset of the domain of Â†. In case D(Â) = D(Â†) the
operator is called self-adjoint. Such operators can be diagonalized (or more precisely
have a spectral representation [30, 31]) and their eigenvalues are real which are key
features used in quantum mechanics. When Â is a self-adjoint operator a unitary
time-evolution Û(t) = e�iÂt (defined by its spectral representation) can be defined on
all of the Hilbert space (L2[0, L] for our example) and if  (0) 2 D(Â) the function
 (t) = Û(t) (0) satisfies the evolution equation

i@t (t) = Â (t) (68)

This is a so-called “mild” solution to the TDSE which solves the integral	
form of the time-dependent Schrödinger equation

The main reason for the non-differentiability is the fact that the	
initial state was outside the domain of the Hamiltonian, i.e. we can 
make a series of smooth functions satisfying the boundary conditions 
such that

We can take an initial state that is in the domain of the Hamiltonian 
but then it could still happen that a higher time-derivative of the wave 
function is outside this domain and leads to complications
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(Fournais et al.  Phys.Rev.A93,062510 (2016))



As a simple example we take
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The time-dependent wave function is nice and differentiable
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Its first time-derivative is however given by

which is the Weierstrass-type function of before.
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does not exist almost anywhere..



Regularity of the time-dependent Schrödinger equation

Hamiltonian

|Ψ1⟩ =
∑

j

(18)

∂tn(rt) = −∇ · j(rt) (19)

∂tj(rt) = −i⟨Ψ(t)|
[

ĵ(rt), Ĥ(t)
]

|Ψ(t)⟩ (20)

Ĥ(t) = T̂ + V̂ (t) + Ŵ (21)

i∂t|Ψ[v](t)⟩ = Ĥ(t)|Ψ[v](t)⟩ (22)

|Ψ[v](t0)⟩ = |Ψ0⟩ (23)

n[v](rt) = ⟨Ψ[v](t)|n̂(r)|Ψ[v](t)⟩ (24)

2

Schrödinger equation

|Ψ1⟩ =
∑

j

(18)

∂tn(rt) = −∇ · j(rt) (19)

∂tj(rt) = −i⟨Ψ(t)|
[
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]

|Ψ(t)⟩ (20)
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For which class of external potentials 
and initial states has the initial value 
problem of the time-dependent 
Schrödinger equation a solution ?	
!
Which class of potentials preserves	
regularity of the initial state?



Self-adjoint domain of the Laplacian
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Ĥ' = ⇠
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Ĥ'n ! ⇠ 2 L2([0, L])
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â†i �
g

!0
n̂i

◆✓
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Let us now go to the many-particle 3D case and ask whether

has a solution. Stone’s theorem tells us that this is possible if the	
kinetic energy operator is defined on a self-adjoint domain	
!
This domain is the set of wave functions for which the norm	
!
!
is finite
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Now we add some interactions

Density-potential mapping in TDDFT 25

have finite kinetic energyb. However, functions that have finite kinetic energy in one
self-adjoint realisation of T̂ might not have finite kinetic energy in another realisation.
For example the expectation value of the kinetic energy for in the initial state (60) in
the example of 2.1 is infinite for hard wall boundary conditions but finite for periodic
ones.
After having discussed the kinetic energy operator we turn our attention to the two-
body interactions and consider the static part Ĥ0 = T̂ + Ŵ of the Hamiltonian. The
corresponding new rule for mapping wave functions is given by

(Ĥ0 )(r)=

2

4
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✓
�1

2
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j

◆
+
1

2

NX

i 6=j

w(ri � rj)

3

5 (r), (80)

where two-body interaction w(r) is a real scalar function defined on R3 which is
typically taken to be Coulombic, i.e. w(r) = 1/|r|. In the following we will take it
always to be a function of the inter-particle distance |r|. We want to ensure that the
operator Ĥ0 is self-adjoint on the same set of (physical) wave functions as that of the
kinetic energy operator. We therefore want that D(Ĥ0) = D(T̂ ). Using the theory of
Kato perturbations [30] we can find simple conditions for this to hold. For the case
that we discuss particles in the whole three-dimensional space R3 the operator Ĥ0

defines a self-adjoint operator with the same domain as the kinetic energy operator
when w can be written as the sum of two pieces w = w1 + w2, one piece of which
is square integrable and another piece is bounded. This class of potentials is also
known as the class of Kato perturbations. In a more mathematical notation we can
write w1 2 L2(R3) and w2 2 L1(R3). The space of functions L1(R3) is the set
of functions w(r) for which there is a positive number M such that |w(r)| < M for
all r (technically speaking this has to hold almost everywhere, meaning up to a set
of measure zero [45, 30] ). The space L1 has a norm but no inner product and is
therefore not a Hilbert space. Instead it is called a Banach space. The class of Kato
potentials on R3 is often written as L2(R3) + L1(R3) and is again a Banach spacec
which we will denote by K(R3). In the case that we discuss particles restricted to a
volume ⌦ it su�ces that the potentials are square integrable since bounded potentials
are automatically square integrable on a finite volume. In that case we will denote the
set of Kato potentials by K(⌦) = L2(⌦). (please check that I am not writing nonsense
here). An important potential which is included in the class Kato potentials K(R3) is
the Coulomb potential since it can be written as

1

|r| =
✓(1� |r|)

|r| +
✓(|r|� 1)

|r|
where ✓(x) = 1 for x > 0 and is zero otherwise. The first term after the equal sign is
square integrable and the second term is bounded.
In a the final step we now add the an explicitly time-dependent external potential

V̂ (t) =
NX

j=1

v(rj , t) (81)

to the time-independent Hamiltonian Ĥ0 to build the full Hamiltonian Ĥ(t) =
Ĥ0+ V̂ (t). Again applying the theory of Kato perturbations we find that Hamiltonian

b The most general set of finite kinetic-energy states is usually bigger, since it only needs to ensure
that the expectation value is finite.
c This Banach space has norm | wkK = {inf(kw1k2 + kw2k1)|w = w1 + w2, w1 2 L2(R3), w2 2
L1(R3)} in which k · k2 and k · k2 are the norms on L2 and L1
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corresponding new rule for mapping wave functions is given by
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to the time-independent Hamiltonian Ĥ0 to build the full Hamiltonian Ĥ(t) =
Ĥ0+ V̂ (t). Again applying the theory of Kato perturbations we find that Hamiltonian
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where two-body interaction w(r) is a real scalar function defined on R3 which is
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defines a self-adjoint operator with the same domain as the kinetic energy operator
when w can be written as the sum of two pieces w = w1 + w2, one piece of which
is square integrable and another piece is bounded. This class of potentials is also
known as the class of Kato perturbations. In a more mathematical notation we can
write w1 2 L2(R3) and w2 2 L1(R3). The space of functions L1(R3) is the set
of functions w(r) for which there is a positive number M such that |w(r)| < M for
all r (technically speaking this has to hold almost everywhere, meaning up to a set
of measure zero [45, 30] ). The space L1 has a norm but no inner product and is
therefore not a Hilbert space. Instead it is called a Banach space. The class of Kato
potentials on R3 is often written as L2(R3) + L1(R3) and is again a Banach spacec
which we will denote by K(R3). In the case that we discuss particles restricted to a
volume ⌦ it su�ces that the potentials are square integrable since bounded potentials
are automatically square integrable on a finite volume. In that case we will denote the
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to the time-independent Hamiltonian Ĥ0 to build the full Hamiltonian Ĥ(t) =
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b The most general set of finite kinetic-energy states is usually bigger, since it only needs to ensure
that the expectation value is finite.
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where two-body interaction w(r) is a real scalar function defined on R3 which is
typically taken to be Coulombic, i.e. w(r) = 1/|r|. In the following we will take it
always to be a function of the inter-particle distance |r|. We want to ensure that the
operator Ĥ0 is self-adjoint on the same set of (physical) wave functions as that of the
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write w1 2 L2(R3) and w2 2 L1(R3). The space of functions L1(R3) is the set
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all r (technically speaking this has to hold almost everywhere, meaning up to a set
of measure zero [45, 30] ). The space L1 has a norm but no inner product and is
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The TDSE initial value problem is solvable for the class of time-dependent 
potentials
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potentials. Such potentials include for example molecular potentials of the form of
Eq.(4) provided vext(t) is a continuous di↵erentiable mapping to the Kato-class. We
note that the di↵erentiability condition with respect to time on the external potential
excludes a sudden switch-on, but by using the technique presented in [50] we can
show existence and uniqueness of a generalised solution also for such situations (see
Appendix B for more details). Further, if the initial state  0 is in the domain of
the kinetic-energy operator D(T̂ ) then also  (t) 2 D(T̂ ) for every time t 2 [0, T ] and
therefore the expectation value of the kinetic and total energy are finite. One can
in that case then also prove that  (t) 2 C1([0, T ],H) which is therefore a classical
solution to the TDSE. Let us summarise the most important results of this Section.
The set of potentials for which we can establish a well-defined time-evolution is the
set of potentials such that both v(t) and @tv(t) are continuous trajectories in the Kato
class of potentials K(R3). We can define this set of allowed potentials as

V = C1([0, T ],K) (85)

where continuity is defined in terms of the norm in K. Now we can make more precise
the mapping from potentials to wave functions that we discussed in Section 1.2. For
a given potential v(t) in V we can solve the TDSE for a given normalizable initial
state. There are now two cases to consider. Either the initial state is in the domain of
the Hamiltonian or it is not. In the latter case the time-evolution of the initial state
defines a continuous trajectory  (t) and the trajectory regarded as functional of v is
given by a map

 : V ! C0([0, T ],H) (86)

v
 07!  [v],

In the case the initial state is in the domain of the Hamiltonian the time-evolution of
the initial state defines a continuous di↵erentiable trajectory  (t) and the trajectory
regarded as functional of v is given by a map

 : V ! C1([0, T ],H) (87)

v
 07!  [v],

We have therefore established well-defined potential to wave function mappings.
Clearly the mapping of Eq.(87) is the most relevant for physical applications as it
guarantees the finiteness of the expectation values of the kinetic energy and the one-
and two-body interactions.

2.5. From the TDSE to observable quantities

After having established a well-defined mapping from potentials to wave functions
we can continue with the discussion of the mapping from wave functions to physical
quantities such as densities and currents. To calculate these quantities properly we
have to take into account the correct spin structure of the wave function of Eq.(73) and
use the inner product of Eq.(72). The solvability properties of the TDSE discussed
in the previous section for each of the spatial parts of the wave function immediately
imply the same solvability properties of the TDSE for full anti-symmetric space-spin
function. Let us now consider the calculation of an arbitrary physical observable. If
such an observable is described by a (time-independent) a self-adjoint operator Ô then
we want to evaluate

O(t) = h (t)|Ô (t)i

i.e, the one times differentiable mappings to the Kato class of potentials

If the initial state is in 
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then there is a classical solution to the TDSE :
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 2 C1([0, T ], L2(R3N ))
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For such a solution the expectation values of the kinetic and	
potential energies are finite.	
!
(proof M.Penz generalisation of a proof by B. Simon….strictly speaking the	
proof by Markus is softened to Lipshitz continuous mappings…but this is less pedagogical	
for this presentation)
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Regularity stability theorem for the TDSE

Let the initial state                          i.e. 
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The static two-body interaction is a Kato perturbation (for example Coulomb).	
Then if the set of time-dependent external potentials is given by
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Then the TDSE is solvable and the time-evolved state 
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In other words for a well-defined set of external potentials its	
differentiability properties are preserved
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To make the local force equation well-defined we need 



For many more discussions on this and other issues I refer to… 



Summary

The density-potential mapping of TDDFT forces us to ask about the class	
of external potentials for which the TDSE can be solved	
!
Solvability is closely related to the self-adjointness of the Hamiltonian	
!
The self-adjointness can be established for the Kato class of interactions	
and external potentials	
!
If the initial state is in the self-adjoint domain then a proper time-
evolution can be defined	
!
It the initial state is outside a time-evolution can still be defined but	
requires a generalisation of TDSE (mild solutions)	
!
A regularity theorem can be proven for the TDSE	
!
…….work is in progress on the density potential mapping ….	
!


