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Overview

- The density-potential or Runge-Gross mapping in quantum dynamics
- New insights in the time-dependent Schrodinger equation

(PhD thesis of Markus Penz)
- Conclusions
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Existence, uniqueness, and construction of
the density-potential mapping in
time-dependent density-functional theory



Time-dependent DFT

Basic assumptions (we will later see how rigorous this is):

For a given density and initial state there is at most one potential (up to
a gauge) that produces this density by solution of the time-dependent
Schrodinger equation.

(uniqueness theorem for the Runge-Gross mapping)

V1 Any observable is a functional of the
/\—/\/ density and the initial state
n(t)




From potentials to densities

Hamiltonian n

Ht)=T+V(#t)+W

Schrodinger equation
10, W] (t)) = H(t)|[v](t)) U[v](to)) = |To)
Density

nlv|(rt) = (Vo] (#)|n(r)|¥]v](#))

This maps from a certain domain of potentials to a certain domain
of densities

For which class of external potentials and initial states has the initial value
problem of the time-dependent Schrodinger equation a solution ?



Local force equation

Equations of motion for the density and current operators (RG |1984)
on(rt) = =V - j(rt)
D,7(rt) = —i(W(1)| [3(r), ﬁ[(t)] W(t)) <== local force

Combination of both then gives

=V - (n([v], xt)Vo(rt)) = g([v], xt) — 9 n([v],rt)

wnere

A

a([v),xt) = =iV - (W) [j(x), T+ W] [w (@)



Let us now replace n([v],rt) by a given density n(rt) subject to the conditions

n(rtg) = (Wo|i(r)|Wo) Oin(rt) = —(Wo|V - j(r)|Wo)

This is a nonlinear equation for v(rt)

—V - (n(rt)Vo(rt)) = q([v],rt) — 07n(rt)

If we propagate the TDSE with the solution v(rt) also have
V- (n([o], xt)Vo(rt)) = q([u], vt) — O2n([o], vt)

Subtracting both equations we have

Rp(r,t) — V- (p(xt)Vo(rt) =0 p(xt) = n([v],rt) — n(rt

with initial conditions

p(rtg) =0 Op(rty) =0



The unique solution satisfying the initial conditions is ,O(I't) =0
n(rt) = n(lv],rt)

If we now choose

n(rt) = ny(|u, ®ol, rt)

to be the density obtained from the TDSE in a system with different
interactions W’ , external potential u(rt) and a different initial state &,
then the existence of a solution to

—V - (n(rt)Vo(rt)) = q([v],rt) — 07n(rt)

implies - .
P |) v-representability of n(rt) in our system

2) uniqueness for W=W’ and ®g = W implies the
Runge-Gross theorem



From time-propagation we have

F=V.P
P vy — qlug]
We then solve -y T
v,

—V - (n(rt)Vui(rt)) = q([vg], rt) — 0*n(rt)

for vi(rt). This yields a mapping ’\/ .q[vo]

Vi qlvg] — v

The combined mapping f[v()] _ (V 5 P)[Uo] —

maps potentials to potentials

M.Ruggenthaler, RvL,
Europhysics Lett. 95, 13001 (2011)



Whenever we have

F=V.P
Flv| =0 Q-v P

then we are solving

—V - (n(rt)Vo(rt)) = q([v], rt) — O2n(rt) vV qlv,]

The question whether a solution to this equation exists and is unique is thus
equivalent to the question whether a unique fixed point of the mapping F exists.

The main existence and uniqueness question of TDDFT is in this way
reformulated as a fixed point question

A proof strategy is to construct a contractive mapping in appropriate norms



Numerical application of fixed-point iteration

—V(nVuii1) = qlog] — 8152n

— 92(nfvg] — n) — V(n[vg| Vi)

¢ "

Elimination of “q” numerically advantageous

Numerical details discussed in

S.Nielsen, M.Ruggenthaler, RvL, Europhys. Lett. 101, 33001 (201 3),
arXiv 1412.3794 (2014)...and poster by Soren



A proof for the existence and convergence to a fixed point must consider
the two basic mappings:

|) Propagation with the TDSE with a potential obtained from solving the local force

equation
2) Solution of the local force equation

Here we consider the first mapping in more detail.



Time-dependent Schrodinger equation

Simple example, particle in a box

1 d? .
iat\lj(xvt) — —5@\11(28,75) — H\Ij(xvt) H=—-—-—

U(0,¢) = U(L,t) =0

Formal solution of the initial value problem

o0

U(z,t) = e M 0(2,0)= Y

n=0

= (it\" 1 &
= — v
nz:% ( 2 ) n! dx?n (z,0)

(—itH)"

n!

U(zx,0)

Requires the initial state to be infinitely spatially differentiable, but this is
not sufficient to guarantee a proper solution
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Take the following infinitely smooth initial state

]' R
o= leg) o

If we believe the series then we find the paradoxical result that the initial
wave packet does not leave its support and does not spread

U(r,t) =0 Vt>0,lr—al>b

.but in fact the wave packet does spread...
what went wrong!




It is useful to have a more general viewpoint, consider

O

6A _ An
n'
n=0

When is this expression meaningful? We make some estimates

letw =] Z n,A”‘PH < Z Am|

This is a meanlngful expression when the operator is bounded, i.e.

| AV < M|

since then

[etw)] < Z H‘PH = e[| 7|



The trouble with our example was that the Hamilton operator
was not bounded.

The terms ||[H"¥|| grow to fast with n to make the series
converge.

However, operators on a finite dimensional Hilbert space
are always bounded.

This is what one does typically when discretising for numerical
applications....

But then, what goes wrong in the continuum limit?

Let’s see



Let’s discretise the equation on a finite grid

RAVj 1

O (a50t) ~ s (Vo 41.1) = 20(a5,8) + ¥z, 0)

(Az)?
\IJ(CCQ,t) — \P($N+1,t) =0

The Hamiltonian becomes a finite matrix

(—2 1 0o ...
1 -2 1 0
0 1 -2 1

7 1
- 2(Ax)?

o ... O 1
o ... ... 0

\ 0

acting on the N-dimensional vector

(U(x1,t),...,V(zN, 1))




Now we have to solve ordinary differential equations of the form
10V (z5,1) Zij\If Tk, t)

with a well-defined solution

N

W(z;,t) = (e_itH)jk U(zy,0) = Z Z Sl (Hm)jk U (zk,0)

k=1 k=1 m=0

To make the solution more explicit we calculate the eigenfunctions

N
N Hjnp® () = eV (a))

k=1

Ay Z oM ()0 D (2;) = b1



with the explicit form

2 [ .
) =y Zsm< LJ>
2 lmA\x
(1) _ ' 2
¢ (Ax)? S ( 2L )

The initial state can be expanded in these eigenfunctions

N

U(z;,0) =Y ae(z))

[=1

N
a=A2z) oW (x;)¥(z;,0)
j=1



and therefore

N 00 i+
i)™ m)
V(z;,t) = chz e €] )i Y (k)
k,l=1 m=0

N

= (—it)™ e
cz?( €Oy (@5) = 3 e et GO (z)

[=1 =1

The explicit solution of our discretised problem is therefore

N

4 e( )
U(ay,t) = Az Y e o0 (a;)00 (4) ¥ (xy, 0)
k,l=1

N
—i —itel®)
(™) = Az Y e oW ()0 ()

=1



Let us now take the continuum limit Az — 0, then we find

oS L
Ua,t) =Y e @) [ da'o ()0, 0
0

[=0

where

This can be formally written as

L
\I!(x,t):/ de' Uz, z',t)¥(z',0)
0

33 .CIZ‘ t Ze—zte(l) (l) (l)(ZC/)
=1



The correct way to define the evolution operator is by its spectral
representation

et =Y e ) (W)

J

For our single particle problem this becomes more explicitly

o0 L
=Y ) [ a0
0

[=0

This expression is well-defined even for initial states that are not
differentiable...

We seem to have bumped into a generalised solution of the
time-dependent Schrodinger equation.....



Analyticity in space and time

Our initial series expansion, however does seem to make sense
for some initial states, for example a finite linear combination of
eigenfunctions

U(x,0) = Z a, P (2)

We obtain a correct solution to the TDSE

>~ X t\" 1 d2n
U(x,t) = ZZO% (5) adﬂn@(k)(x)

n=0 k=1
oo N n 1 N o

= 33 ()" ) = e
n=0 k=1 k=1

This solution is analytic in space and time

U(x,t) = i cr (t — to)k(x — SEQ)l

k,l=0



However, analyticity is not enough. Take the following initial wave packet
on the real line

| i (1 1
U(z,0) = = -
(@,0) = 17 Q(x—l—i x—i)

Then our series expansion gives

n=0

This series does not converge at any space-time point and the
solution is not analytic in time

A necessary condition for convergence is that the initial state is
at least an entire function ( analytic in the whole complex plane)

(Sophie Kowalewskaya, Journal fiir Reine und Angewandte Mathematik 80, | (1875))



Mild solutions

Let us go back to the spectrum representation and take as initial state

w0 ={ VI reA0 COO) = Y201 - (1))

[T

Then the time evolution is given by the series

4 ©  _—in?(2k+1)%t/(2L?) 2% + 1
U(x,t) = —= - sin (2k + Dme
L — 2k + 1 L
This function is nowhere spatially l
differentiable at almost all times

(Weierstrass function)

W K""‘“'\f“*m




This is a so-called “mild” solution to the TDSE which solves the integral
form of the time-dependent Schrodinger equation

ot . ot
U(x,t) = Y(x,0) — iH/ dsV(x,s) = U(z,0) + Ed— dsV(x,s)
0 2 d.fCQ 0

The main reason for the non-differentiability is the fact that the
initial state was outside the domain of the Hamiltonian, i.e. we can

make a series of smooth functions satisfying the boundary conditions
such that

pn — VYo |Hen| — o

We can take an initial state that is in the domain of the Hamiltonian

but then it could still happen that a higher time-derivative of the wave
function is outside this domain and leads to complications

(Fournais et al. Phys.Rev.A93,062510 (2016))



As a simple example we take Uo(r) = (L — )

The time-dependent wave function is nice and differentiable

© —im?(2k+1)%t/(2L)? (2k + 1)
e , X
U(z,t)=C g e sin [ 7 ]
k=0

Its first time-derivative is however given by

00 —in?(2k+1)%t/(2L)? 2k + 1
e . TwXr
OV (wt) ~ )~ sin [( L) ]
k=0

which is the Weierstrass-type function of before.

5’,52\11(:17, t) does not exist almost anywhere..



Regularity of the time-dependent Schrodinger equation

Hamiltonian

Schrodinger equation

10| W[o](1)) = H(t)|C[o)(t)) [[o](to))
=0
For which class of external potentials 7\ &

The Density-Potential Mapping in
(Quantum Dynamics

and initial states has the initial value
problem of the time-dependent
Schrodinger equation a solution !

Which class of potentials preserves
regularity of the initial state?



Self-adjoint domain of the Laplacian

Let us now go to the many-particle 3D case and ask whether

N
. A . 1_,
j=1
has a solution. Stone’s theorem tells us that this is possible if the
kinetic energy operator is defined on a self-adjoint domain

This domain is the set of wave functions for which the norm
W\ 2 = ||| + [|[T]]

is finite

U(0) € H*(R3V) WU(t) e H*R*Y) = D(T)



Now we add some interactions

A A

Hy=T+W

(HoW)(r)= Z (—%V?>+%Zw(ri—rg’) W(r)

1]

We want to choose the interactions such that this Hamiltonian
remains self-adjoint on the domain of the kinetic energy. This problem
was solved by Kato

w = w1 + Ws wy € LQ‘(RS) wy € L>®(R?)

% L
L 01 —|r]) O(r—1)

— = +
r| r| r|




Finally we add external potentials

N

[:]()—I—‘A/(t) V(t)=) u(r;1)

g=1

The same Kato theory applies again. The full Hamiltonian is
self-adjoint on the same domain if the external potentials are
again in the class of Kato perturbations

K = L>°(R%) 4+ L*(R")

Now finally we can make a rigorous statement on the solvability
of the TDSE



The TDSE initial value problem is solvable for the class of time-dependent
potentials

1 lo(t + A — v(t)| > 0 (At — 0)
YV =C(0,T],K) 100(t+ AL) — Bp(8)]| — 0 (At — 0)

i.e, the one times differentiable mappings to the Kato class of potentials

If the initial state is in  D(T) = H2(R3*") and the interaction is in the Kato class

then there is a classical solution to the TDSE :

U(t+ At) — U(t 0 (At —0

U e Cl([O,T],LQ(RSN)) |W(t+ At) & —0 (At —0)
18, (t + At) — BT ()| = 0 (At — 0)

For such a solution the expectation values of the kinetic and
potential energies are finite.

(proof M.Penz generalisation of a proof by B. Simon....strictly speaking the
proof by Markus is softened to Lipshitz continuous mappings...but this is less pedagogical

for this presentation)



Regularity stability theorem for the TDSE

Let the initial state ¥y € H*™ lLe. pog,er? o] <2m

The static two-body interaction is a Kato perturbation (for example Coulomb).
Then if the set of time-dependent external potentials is given by

v € Lip([0, T], W2(m=1->)

WM = {v|D% € S(L* 4+ L), |a| < m}

Then the TDSE is solvable and the time-evolved state ~ W(t) € H*™

In other words for a well-defined set of external potentials its
differentiability properties are preserved

. 4
To make the local force equation well-defined we need Vo € H



For many more discussions on this and other issues | refer to...

~ W

/—‘\\
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N2/ Marius penz




Summary

The density-potential mapping of TDDFT forces us to ask about the class
of external potentials for which the TDSE can be solved

Solvability is closely related to the self-adjointness of the Hamiltonian

The self-adjointness can be established for the Kato class of interactions
and external potentials

If the initial state is in the self-adjoint domain then a proper time-
evolution can be defined

It the initial state is outside a time-evolution can still be defined but
requires a generalisation of TDSE (mild solutions)

A regularity theorem can be proven for the TDSE

....... work is in progress on the density potential mapping ....



