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Tµν = ρUµUν + (p − 3Hζ)hµν

−2ησµν + QµUν + QνUµ

hµν = gµν + UµUν

Scalar expansion θ = 3H = Uµ;µ.

σµν = θµν − Hhµν

θµν = hαµh
β
νU(α;β)

Qµ = −κhµνT,ν
Expansion tensor θµν , shear tensor σµν .



If Qµ = 0, Shear viscosity η = 0:

Tµν = ρUµUν + (p − 3Hζ)hµν

FRW metric:

ds2 = −dt2 + a2(t)dx2

Λ = 0, k = 0

Equations of motion

Rµν −
1

2
gµνR = 8πGTµν

Assume a simple equation of state

p = wρ, w = constant ≡ −1 + α

From 2015 Planck data: w = −1.019+0.075
−0.080, ⇒

αmin = −0.099, αmax = +0.056

Quintessence region: −1 < w < −1/3,
Phantom region: w < −1



If the fluid starts out from the phantom region at t = 0, it will encounter a Big Rip
when

ts =
2

|α|
√

24πGρ0

where H0 is the Hubble parameter at present time.

Softer variants of the future singularity:
Little Rip,
Pseudo Rip,
Quasi Rip.
(Caldwell, Nojiri, Odintsov, Frampton, Brevik, Wei...)
For a multicomponent fluid:

ρ =
∑
i

ρi

ΛCDM model:
Ω0m + ΩΛ + Ω0K = 1,

where

ΩΛ = 0.6911± 0.0062, Ω0m = 0.3089± 0.0062, |Ω0K | < 0.005



Ansatz for the bulk viscosity:

ζ(ρ) = ζ0

(
H

H0

)2λ

= ζ0

(
ρ

ρ0

)λ
,

where λ =constant ≥ 0 and ζ0 is present viscosity.
Most popular:

λ =
1

2
,

⇒
ζ ∝ H ∝ √ρ,

or
λ = 1,

⇒
ζ ∝ H2 ∝ ρ.

Assume standard FRW metric, assuming k = 0,

ds2 = −dt2 + a2(t) dx2. (1)

Energy-momentum tensor for the whole fluid:

Tµν = ρUµUν + (p − 3Hζ)hµν ,

where
hµν = gµν + UµUν



Friedmann equations

H2 =
8

3
πGρ,

Ḣ +
3

2
H2 = −4πG [p − 3Hζ(ρ)].

Conservation equations for energy and momentum

Tµν ;ν = 0 ⇒ ρ̇+ 3H(ρ+ p) = 9H2ζ when µ = 0.

Note: if the conservation equation is imposed for the matter subsystem i = m, one
gets for µ = 0

ρ̇m + 3H(ρm + pm) = 9H2ζm,

with ζm referring to the matter. Compare with the balance equations for energy for an
interacting system consisting of matter and dark energy:

ρ̇m + (ρm + pm)θ = Q,

ρ̇de + (ρde + pde)θ = −Q,



Coupling due to viscosity. Viscosity chosen to be a function of the fluid as a whole:

ζ = ζ(ρ), eventually ζ = ζ(H).

Useful definition
B ≡ 12πGζ0

where ζ0 is the present viscosity.
Relation to physical units:

ζ0 = B[astro.units]× 1.15× 106 Pa s.

Energy conservation equation can be written as

a∂aρ(a) + 3[ρ(a) + p] = 3ζ(ρ)θ



We have so far made no assumption about the form of ρ(a). For a general
multicomponent fluid one can write ρ =

∑
i ρi .

If there is no viscosity, (i.e. ζ = 0)

p =
∑
i

wiρi , assumption 1

ρh(a) =
∑
i

ρhi (a) =
∑
i

ρ0ia
−3(wi+1),

where ρ0i are the present densities (a0 = 1). Including viscosity the general solution is
a sum of a homogeneous and a particular one,

ρ(a) =
∑
i

ρhi (a)+ρp(a, ζ) =
∑
i

ρhi (a) [1 + ui (a, ζ)] =
∑
i

ρ0ia
−3(wi+1) [1 + ui (a, ζ)]



ρ(a) = ρh(a) [1 + u(a)] , assumption 2.

This assumption simplifies the formalism:

∂u(a)

∂a
= 9

ζ(a)

aρh(a)

√
8πG

3
ρh(a) [1 + u(a, ζ)].

The solution is

u(z,B, λ) =


[

1− (1− 2λ)
B

H0

∫ z

0

1

(1 + z)
√

Ω
1−2λ

dz

] 2
1−2λ

− 1 forλ 6= 1
2
,

(1 + z)
− 2B

H0 forλ = 1
2
,



the redshift introduced through a = 1/(1 + z). The initial condition chosen such that
ρ(z = 0, ζ = 0) =

∑
i ρ0i . Also introducing abbreviations

Ω ≡
∑
i

Ω0i (1 + z)3(1+wi ) where Ω0i =
ρ0i

ρc
and ρc =

3H2
0

8π G

and as defined previously; B = 12πGζ0. Dimensionless Hubble parameter E(z):

E2(z) = Ω [1 + u(λ, ζ0)] .

In the case of zero viscosity, the equation reduces to the first Friedmann equation on
dimensionless form. The general solution is involved, but can be solved for the cases
λ = 1/2 and λ = 1.



The experiments on the Hubble parameter go back to redshifts z ∼ 2.3. This
stretches deep into the matter dominated epoch. At redshift z = 0.25 dark energy
becomes the main constituent. It is natural as a first approach to assume the universe
consisting of dust (w = 0) and a constant dark energy term (w = −1). With
ρ(z)→ ρm(z) + ρde, we find

E2(z) = [Ωde + Ω0m(1 + z)3] (1 + u) ,

We will not consider a one component fluid, but will assign a bulk viscosity to the fluid
as a whole. This gives a natural transition into a one-component phenomenological
description of the future cosmic fluid. In the following, we shall implement the three
most used cases ζ = const, ζ ∝ √ρ and ζ ∝ ρ in order to estimate the magnitude of
the viscosity ζ0. Main point here to determine its impact on the future cosmic fluid.

Cosmological Evolution
Cosmic time scale factor a Era Redshifts
t = 13.8 Gy 1 Present 0
9.8 Gy< t < 13.8 Gy a(t) = eH0t DE dominance -
t = 9.8 Gy 0.75 onset of DE dominance 0.25

47 ky< t < 9.8 Gy a(t) ∝ t2/3 matter dominance -
t = 47 ky 1.2 · 10−4 onset of matter dominance 3400

t < 47 ky a(t) ∝ t1/2 radiation dominance -
t = 10−10 s 1.7 · 10−15 electroweak phase transition -

10−44s< t < 10−10s a(t) ∝ t1/2 Possible inflation or bounce -
t < 10−44 1.7 · 10−32 Planck time 5.9 · 1031



Solving the integral for u(z) in the three different cases, one gets

E(z) =



√
Ω(z)

[
1−

2B

3H0
√

Ωde

arctanh

(√
Ω(z)

Ωde

)
+ I0

]
when ζ = const.,

√
Ω(z)(1 + z)

− B
H0 when ζ = ζ0

(
ρ

ρ0

)1/2

,
√

Ω√
1 + 2B

3H0

[√
Ω

(
1−
√

Ωde√
Ω

arctanh
√

1 + Ω0m
Ωde

(1 + z)3

)]
+ C

when ζ ∝ ρ.



where we have rewritten the expressions in terms of relative densities. The integration
constants are determined by the initial condition E(z = 0) = Ω(z = 0) ≡ Ω0 = 1.
Minimizes

χ2
H(H0, ζ) =

N∑
i=1

[
Hth(zi ;H0, ζ)− Hobs(zi )

]2
σ2
H,i

through a non-linear least square procedure. Here N is the number of data points,
Hth(zi ) is the theoretical Hubble parameter value at redshift zi , H

obs(zi ) is the
observed value at redshift zi and σ2

H,i is the variance in observation i .

H0 = 67.74 km s−1 Mpc−1 , Ω0m = 0.3089, Ωde = 0.6911

Summary of Model fitting
Model for ζ Adjusted R2 Fit-value for B 95%CI

[−] (km s−1 Mpc−1)
ζ =const. 0.9601 0.6873 (-2.788, 4.163)

ζ ∝ ρ1/2 ∝ H 0.9604 0.7547 (-1.706, 3.215)
ζ ∝ ρ ∝ H2 0.9609 0.5906 (-0.8498, 2.031)

Table: Results of the different models.



On the value of ζ0

From experiments (Wang and Meng 2014, Velten and Schwarz 2012, Sasidharan and
Mathew 2015)

104 Pa s < ζ0 < 106 Pa s

As the viscosity coefficients appear in connection with first order modification to
thermodynamical equilibrium, one expects that the pressure modification caused by
the bulk viscosity should be much smaller than the equilibrium pressure. With critical
density (ρc ∼ 10−26 kg m−3) as a measure of the present day energy in the universe,
and with w to be of order unity, this leads to

|p| = |wρ| � |Hζ0| → |ζ0| � 108Pa s
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LATE UNIVERSE: CALCULATION OF THE RIP TIME

Let t = 0 refer to the present time, and let ζ = ζ(ρ) refer to the cosmological fluid as
a whole. With k = 0 and Λ = 0 we obtain

Ḣ +
3

2
αH2 − 12πGζ(ρ) = 0,

which can be rewritten in terms of the density as

ρ̇+
√

24πG αρ3/2 − 24πGζ(ρ)ρ = 0.

The solution is

t =
1

√
24πG

∫ ρ

ρ0

dρ

ρ3/2
[
−α+

√
24πG ζ(ρ)/

√
ρ
] .



We will consider two models for the bulk viscosity:

Case 1: ζ = constant. Assume ζ equal to its present value,

ζ = ζ0 = 105 Pa s.

It corresponds to the viscosity time

tc =
c2

12πGζ0
= 3.58× 1020 s.

The rip time is in this case

ts = tc ln

(
1 +

2

|α|θ0tc

)
,

( α < 0 must be negative to lead to a big rip). Choose

α = −0.05.

With θ0 = 6.60× 10−18 s−1:

ts = 6.00× 1018 s = 190 Gy,

which is much larger than the age 13.8 Gy of our present universe.



Case 2: ζ ∝ √ρ. Take

ζ(ρ) = ζ0

√
ρ̃, ρ̃ = ρ/ρ0,

with ζ0 as above. Then

t =
1

√
24πG

2

−α+ ζ0

√
24πG/ρ0

(
1
√
ρ0
−

1
√
ρ

)
.

Remarkable property: it permits a big rip singularity even if the fluid is initially in the
quintessence region α > 0. Condition only that

−α+ ζ0

√
24πG/ρ0 > 0.

If this condition holds, the universe runs into a singularity (ρ =∞) at a finite rip time

ts =
1

√
24πGρ0

2

−α+ (ζ0/c2)
√

24πG/ρ0

.



Identifying ρ0 with the critical energy density ρc = 2× 10−26 kg/m3 (assuming h
parameter equal to 0.7), we can write the rip time in the form

ts =
2

−α+ 0.0056
× 1017 s,

showing the delicate dependence upon α. If the universe starts from the quintessence
region, it may run into the big rip if α < 0.0056, thus very small. If the universe starts
from the phantom region, it will always encounter the singularity. In the special case
when α = 0 we obtain ts = 3.6× 1019 s, greater than the previous expression for the
constant viscosity case. If α = −0.05 we find ts = 3.59× 1018 s=114 Gy.
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CONCLUSION

• Assumptions:
Viscous, isotropic Friedmann universe with k = 0.
Equation of state p =

∑
i wiρi , with wi = constant for all components in the fluid.

Three options:
(i) ζ =const, (ii) ζ ∝ √ρ, and (iii) ζ ∝ ρ.
• Differences between the predictions from various viscosity models are small. Even
the ansatz ζ =constant reproduces experimental data quite well. These models
underpredict H(z) for large redshifts. In the literature, the ansatz ζ ∝ √ρ, is widely
accepted.
• Present bulk viscosity ζ0 lies within an interval, from 104 to 106 Pa s,
• Future universe:choosing ζ0 = 105 Pa s. Big rip singularity in the far future. Rip
time ts . With α defined as α = w + 1, even the case ζ = ζ0 =const allows big rip to
occur, if α is negative, i.e., lying in the phantom region. Of special interest is the case
ζ ∝ √ρ: the fate of the universe is critically dependent on the magnitude of α. If
α < 0, the big rip is inevitable. If α > 0 (the quintessence region), the big rip can also
occur if α is very small, less than about 0.005. This possibility of sliding through the
phantom divide was actually pointed out several years ago (Brevik and Gorbunova
2005), but can now be better quantified. Typical rip times are found to lie roughly in
the interval from 100 to 200 Gy.
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