A simple inflationary quintessential model

Jaume Haro and Jaume Amorós

Departament de Matemàtica Aplicada Universitat Politècnica de Catalunya

Cosmology and the Quantum Vacuum (Benás, Benasque, Benasc) 2016

This talk is based in the manuscript:

Simple inflationary quintessential model II: Power law potentials J. de Haro, J. Amorós, S. Pan, [arXiv:1607.06726].

and in the previous papers:

- Evolution and Dynamics of a Matter creation model S. Pan, J. de Haro, A. Paliathanasis, R. Jan Slagter, Mon. Not. Roy. Astron. Soc. 460 (2), 1445-1456 (2016), [arXiv:1601.03955].
- Simple inflationary quintessential model J. de Haro, J. Amorós, S. Pan, Phys. Rev. D 93, 084018 (2016), [arXiv:1601.08175].
- Inflation and late-time acceleration from a double-well potential with cosmological constant J. de Haro, E. Elizalde, Gen. Rel. Grav. 48, 77 (2016) [arXiv:1602.03433].

Outline

The family of models

- The models and properties
- The potential (Reconstruction method)

Viability from Planck's observational data

- Slow roll and spectral parameters
- Comparison with Planck2013 and Planck2015 observational data
- Reheating temperature
 - Gravitational particle production
 - Thermalization and reheating
- Number of e-folds
 - Detailed calculation

< □ > < 同 > < 回 > < 回

The models and properties

We assume the following simple dynamics:

$$\dot{H} = \begin{cases} (-3H_E^2 + \Lambda) \left(\frac{H}{H_E}\right)^{\alpha} & \text{for} \quad H \ge H_E \\ -3H^2 + \Lambda & \text{for} \quad H \le H_E, \end{cases}$$

where H_E is an specific value of the Hubble parameter, $\Lambda \ll H_E^2$ is a cosmological constant and $\alpha \in [0,1]$ is the parameter, which defines the family of models.

Properties:

- The model has an accelerated period at early times. Since $\frac{\ddot{a}}{a} = \dot{H} + H^2 = -\frac{H^{\alpha}}{3} \left(3H_E^{2-\alpha} H^{2-\alpha} \right)$, one can see that for $H > 3^{\frac{1}{2-\alpha}}H_E$, the universe accelerates. It has a fixed point at $H = \sqrt{\frac{\Lambda}{3}}$ which depicts the current cosmic acceleration.
- Phase transition to a kinetion (or deflationary) regime when H = H_E, to produce enough particles to reheat the universe.
 The universe is nonsingular in cosmic time.

The models and properties

Effective Equation of State parameter

$$w_{eff} = -1 - \frac{2\dot{H}}{3H^2}$$

In our case

$$w_{eff} = \begin{cases} -1 + 2\left(1 - \frac{\Lambda}{3H_E^2}\right)\left(\frac{H}{H_E}\right)^{\alpha - 2} & H \ge H_E\\ 1 - \frac{2\Lambda}{3H^2} & H \le H_E. \end{cases}$$

Conclusion:

- For $H \gg H_E \Longrightarrow w_{eff} \cong -1$. Early time acceleration (Inflation).
- For $H \cong H_E \Longrightarrow w_{eff} \cong 1$. Kination regime.
- For $H \cong \sqrt{\frac{\Lambda}{3}} \Longrightarrow w_{eff} \cong -1$. Current acceleration.

The models and properties

Equation of State for $\Lambda\cong 0$

$$P = \begin{cases} -\rho + 2\left(\frac{\rho}{\rho_E}\right)^{\frac{\alpha-2}{2}}\rho & \rho \ge \rho_E\\ \rho & \rho \le \rho_E. \end{cases}$$

For $\alpha=0$

$$P = \begin{cases} -\rho + 2\rho_E & \rho \ge \rho_E \\ \rho & \rho \le \rho_E. \end{cases}$$

For $\alpha = 1$

$$P = \begin{cases} -\rho + 2\sqrt{\rho\rho_E} & \rho \ge \rho_E \\ \rho & \rho \le \rho_E. \end{cases}$$

The models and properties

Case $\alpha = 1$.

$$H(t) = \begin{cases} H_E e^{\frac{(-3H_E^2 + \Lambda)t}{H_E}} & t \le 0\\ \sqrt{\frac{\Lambda}{3}} \frac{3H_E + \sqrt{3\Lambda} \tanh(\sqrt{3\Lambda}t)}{3H_E \tanh(\sqrt{3\Lambda}t) + \sqrt{3\Lambda}} & t \ge 0, \end{cases}$$

and since $\Lambda\cong 0$ one has

$$H(t) \cong \begin{cases} H_E e^{-3H_E t} & t \le 0\\ \frac{H_E}{3H_E t + 1} & t \gtrsim 0. \end{cases}$$

$$a(t) \cong \begin{cases} a_E e^{-\frac{1}{3}[e^{-3H_E t} - 1]} & t \le 0\\ a_E(3H_E t + 1)^{\frac{1}{3}} & t \gtrsim 0. \end{cases}$$

For $t \gtrsim 0$ the universe enters in a kination regime.

The models and properties

Case $0 \le \alpha < 1$. $\Lambda \cong 0$

$$H(t) = \begin{cases} H_E \left(3(\alpha - 1)H_E t + 1 \right)^{\frac{1}{1-\alpha}} & t \le 0\\ \frac{H_E}{3H_E t + 1} & t \gtrsim 0. \end{cases}$$

$$a(t) = \begin{cases} a_E e^{-\frac{1}{3(2-\alpha)} [(3(\alpha-1)H_E t+1)^{\frac{2-\alpha}{1-\alpha}} - 1]} & t \le 0\\ a_E (3H_E t+1)^{\frac{1}{3}} & t \gtrsim 0. \end{cases}$$

For $t \gtrsim 0$ the universe enters in a kinetion regime.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The potential (Reconstruction method)

Formula:

$$\varphi = M_{pl} \int \sqrt{-2\dot{H}} dt = -M_{pl} \int \sqrt{-\frac{2}{\dot{H}}} dH.$$

In our case:

$$\varphi = \begin{cases} -\frac{2\sqrt{2}}{\sqrt{3}(2-\alpha)} M_{pl} \left(\frac{H}{H_E}\right)^{\frac{2-\alpha}{2}} \frac{H_E}{\sqrt{H_E^2 - \frac{\Lambda}{3}}} & H \ge H_E \\ -\sqrt{\frac{2}{3}} M_{pl} \left[\ln\left(\frac{H}{H_E}\right) + \frac{2}{2-\alpha}\right] & H \lesssim H_E. \end{cases}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The potential (Reconstruction method)

Conversely

$$H = \begin{cases} H_E \left(\frac{\varphi}{\varphi_E}\right)^{\frac{2}{2-\alpha}} & \varphi \le \varphi_E \\ H_E e^{-\sqrt{\frac{3}{2}}\frac{\varphi}{M_{pl}} - \frac{2}{2-\alpha}} & \varphi \gtrsim \varphi_E, \end{cases}$$

where
$$\varphi_E \equiv -\frac{2\sqrt{2}}{\sqrt{3}(2-\alpha)} \frac{H_E}{\sqrt{H_E^2 - \frac{\Lambda}{3}}} M_{pl} \cong -\frac{2\sqrt{2}}{\sqrt{3}(2-\alpha)} M_{pl}$$
.

Formula

$$V(H) = 3H^2 M_{pl}^2 + \dot{H} M_{pl}^2 \Longrightarrow V(\varphi) = 3H^2(\varphi) M_{pl}^2 + \dot{H}(\varphi) M_{pl}^2.$$

< □ > < 同 > < 回 > < 回

The potential (Reconstruction method)

For our family of models:

$$V(H) = \begin{cases} 3H^{\alpha} \left(H^{2-\alpha} - \frac{H_E^2 - \frac{\Lambda}{3}}{H_E^{\alpha}} \right) M_{pl}^2 & H \ge H_E \\ \Lambda M_{pl}^2 & H \le H_E. \end{cases}$$

$$V(\varphi) = \begin{cases} 3\left(\frac{H_E M_{pl}}{\varphi_E}\right)^2 \left(\frac{\varphi}{\varphi_E}\right)^{\frac{2\alpha}{2-\alpha}} \begin{bmatrix} \varphi^2 - \varphi_E^2 \left(1 - \frac{\Lambda}{3H_E^2}\right) \end{bmatrix} & \varphi \le \varphi_E\\ \Lambda M_{pl}^2 & \varphi \ge \varphi_E. \end{cases}$$

For $\alpha = 0$ quadratic potential, for $\alpha = \frac{2}{3}$ cubic and for $\alpha = 1$ quartic.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Slow roll and spectral parameters

Slow roll parameters

$$\epsilon = -\frac{\dot{H}}{H^2}, \quad \eta = 2\epsilon - \frac{\dot{\epsilon}}{2H\epsilon}$$

Spectral index (n_s), its running (α_s), and the ratio of tensor to scalar perturbations (r)

$$n_s - 1 = -6\epsilon + 2\eta, \quad \alpha_s = \frac{H\dot{n}_s}{H^2 + \dot{H}}, \quad r = 16\epsilon.$$

Number of e-folds

$$N = \int_{t_*}^{t_{end}} H dt = -\int_{H_{end}}^{H_*} \frac{H}{\dot{H}} dH.$$

Slow roll and spectral parameters

For our family:

Spectral index (n_s), its running (α_s), the ratio of tensor to scalar perturbations (r), and the number of e-folds (N)

$$n_s - 1 = (\alpha - 4)\epsilon_*, \quad \alpha_s = \frac{(\alpha - 4)(2 - \alpha)\epsilon_*^2}{1 - \epsilon_*}, \quad r = 16\epsilon_*.$$
$$N = \frac{1}{2 - \alpha} \left(\frac{1}{\epsilon_*} - 1\right).$$

with

$$\epsilon_* = 3 \left(\frac{H_E}{H_*}\right)^{2-\alpha},$$

where H_* is the value of the Hubble parameter when the pivot scale crosses the Hubble radius.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Slow roll and spectral parameters

REMARK:

For potentials of the form $V(\varphi)=\lambda\varphi^{\frac{4}{2-\alpha}},$ and using that

$$\epsilon \cong \frac{M_{pl}^2}{2} \left(\frac{V_{\varphi}}{V}\right)^2, \qquad \eta \cong M_{pl}^2 \frac{V_{\varphi\varphi}}{V}$$

one also obtains $n_s - 1 \cong (\alpha - 4)\epsilon_*$

This means that, our family of potentials, during the inflationary regime, are like power law potentials

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Slow roll and spectral parameters

In terms of the number of e-folds:

Spectral index (n_s), its running (α_s) and the ratio of tensor to scalar perturbations (r)

$$n_{s} - 1 = \frac{\alpha - 4}{1 + (2 - \alpha)N}, \quad r = \frac{16}{1 + (2 - \alpha)N}$$
$$\alpha_{s} = \frac{\alpha - 4}{N(1 + (2 - \alpha)N)}.$$

REMARK: From nucleosynthesis bounds, i.e., if one admits reheating temperatures from 10^9 GeV to 1 MeV, in quintessential inflation, the number of e-folds will range approximately between 65 and 75.

Comparison with Planck2013 data

From the formulas

$$\mathcal{P} = \frac{H_*^2}{8\pi^2 \epsilon_* M_{pl}^2} \sim 2 \times 10^{-9}, \quad H_* = \frac{H_E}{\left(\frac{\epsilon_*}{3}\right)^{\frac{1}{2-\alpha}}}, \quad \epsilon_* = \frac{1-n_s}{4-\alpha}$$

One obtains

$$H_E \sim 7 \times 10^{-4} \left(\frac{1-n_s}{3(4-\alpha)}\right)^{\frac{4-\alpha}{2(2-\alpha)}} M_{pl}$$

Taking, as usual, $n_s \cong 0.96$ one has the value of H_E for each value of the parameter α . For $\alpha = 0$, one has $H_E \sim 2 \times 10^{-6} M_{pl} \sim 5 \times 10^{12} \text{ GeV}$ For $\alpha = 1$, one has $H_E \sim 10^{-7} M_{pl} \sim 2 \times 10^{11} \text{ GeV}$

Comparison with Planck2013 data

- Confidence region for the values of (n_s, r) , with (red region) and without (blue region) allowing the running, according to Planck 2013.
- For indicated values of α , the interval of values of (n_s, r) yielded by our model from N = 65 (small circle) to N = 75 efolds (big circle) of expansion is superimposed on the Planck confidence regions.

Comparison with Planck2015 data

- Confidence region for the values of (n_s, r) , with running, according to Planck 2015 and 2013.
- Planck2015 with running only allow values of $\alpha \in [0, \frac{2}{3}]$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Comparison with Planck2015 data

- Confidence region for the values of (n_s, r) , without running, according to Planck 2015 and 2013.
- Planck2015 without running only allow values of $\alpha \in [0, \frac{1}{2}]$.

< ロ > < 同 > < 回 > < 回 >

Gravitational particle production

Massive quantum field conformally coupled with gravity

 $\chi_k'' + \omega_k^2(\tau)\chi_k = 0,$

where ' denotes the derivative with respect the conformal time τ and $\omega_k(\tau) = \sqrt{k^2 + m^2 a^2(\tau)}$ is the frequency of the particle in the *k*-mode. Adiabatic regime near the phase transition

$$H_E \ll m \Longrightarrow \omega'_k(\tau) \ll \omega_k^2(\tau),$$

means that one can use the first order WKB solution to define approximately the vacuum modes:

$$\chi_{1,k}^{WKB}(\tau) \equiv \sqrt{\frac{1}{2W_{1,k}(\tau)}} e^{-i\int^{\tau} W_{1,k}(\eta)d\eta},$$

where

$$W_{1,k} = \omega_k - \frac{1}{4} \frac{\omega_k''}{\omega_k^2} + \frac{3}{8} \frac{(\omega_k')^2}{\omega_k^3}.$$

・ロト ・同ト ・ヨト ・ヨト

Gravitational particle production

Before the phase transition the vacuum is depicted approximately by $\chi_{1,k}^{WKB}(\tau)$, but after it this mode becomes a mixure of positive and negative frequencies of the form $\alpha_k \chi_{1,k}^{WKB}(\tau) + \beta_k (\chi_{1,k}^{WKB})^*(\tau)$. The β_k -Bogoliubov coefficient could be obtained, as usual, matching both expressions at the transition time τ_E , obtaining

$$\beta_k = \frac{\mathcal{W}[\chi_{1,k}^{WKB}(\tau_E^-), \chi_{1,k}^{WKB}(\tau_E^+)]}{\mathcal{W}[(\chi_{1,k}^{WKB})^*(\tau_E^+), \chi_{1,k}^{WKB}(\tau_E^+)]} \qquad \mathcal{W} \quad \text{is the Wronskian.}$$

The square modulus of the β_k -Bogoliubov coefficient will be given by

$$|\beta_k|^2 \cong \frac{m^4 a_E^{10} \left(\ddot{H}_E^+ - \ddot{H}_E^-\right)^2}{256(k^2 + m^2 a_E^2)^5} = \frac{81(2-\alpha)^2 m^4 a_E^{10} H_E^6}{256(k^2 + m^2 a_E^2)^5}$$

伺 ト イヨ ト イヨ

Gravitational particle production

number and energy density

$$n_{\chi} \equiv \frac{1}{2\pi^2 a^3} \int_0^\infty k^2 |\beta_k|^2 dk, \quad \rho_{\chi} \equiv \frac{1}{2\pi^2 a^4} \int_0^\infty \omega_k k^2 |\beta_k|^2 dk,$$

For our models

$$n_{\chi} \sim 3 \times 10^{-3} (2-\alpha)^2 \frac{H_E^6}{m^3} \left(\frac{a_E}{a}\right)^3, \quad \rho_{\chi} \sim m n_{\chi}.$$

Particles are far from being in thermal equilibrium and, at the beginning, their energy density scales as a^{-3} , eventually they will decay into lighter particles, which will interact through multiple scattering. At the end of these process, the universe becomes filled by a relativistic plasma in thermal equilibrium whose energy density decays as a^{-4} .

Thermalization and reheating

The thermalization process, where the cross section for $2\to 3$ scattering with gauge bosons exchange whose typical energy is $\rho_{\chi}^{\frac{1}{4}}(\tau_E)$, is given by $\sigma=\beta^3\rho_{\chi}^{-\frac{1}{2}}(\tau_E)$, with $\beta^2\sim 10^{-3}$. The thermalization rate is

$$\Gamma = \sigma n_{\chi}(\tau_E) \sim 5 \times 10^{-2} (2 - \alpha) \beta^3 \left(\frac{H_E}{m}\right)^2 H_E.$$

Thermal equilibrium is reached when $\Gamma \sim H(t_{eq}) \cong H_E\left(\frac{a_E}{a_{eq}}\right)^3$, which leads to the relation $\frac{a_E}{a_{eq}} \sim 4 \times 10^{-1} (2-\alpha)^{1/3} \beta \left(\frac{H_E}{m}\right)^{2/3}$. Then, at the equilibrium one has

$$\rho_{\chi}(t_{eq}) \sim 10^{-4} (2-\alpha)^3 \beta^3 \left(\frac{H_E}{m}\right)^4 H_E^4,$$

$$\rho(t_{eq}) \sim 7 \times 10^{-3} (2-\alpha)^2 \beta^6 \left(\frac{H_E}{m}\right)^4 H_E^2 M_{pl}^2.$$

Thermalization and reheating

After this thermalization, the relativistic plasma and the background evolve as

$$\rho_{\chi}(t) = \rho_{\chi}(t_{eq}) \left(\frac{a_{eq}}{a}\right)^4, \quad \rho(t) = \rho(t_{eq}) \left(\frac{a_{eq}}{a}\right)^6.$$

The reheating is obtained when both energy densities are of the same order, which happens when $\frac{a_{eq}}{a_R} \sim \sqrt{\frac{\rho_{\chi}(t_{eq})}{\rho(t_{eq})}}$, and thus, obtaining a reheating temperature of the order

$$T_R \sim \rho_{\chi}^{\frac{1}{4}}(t_{eq}) \sqrt{\frac{\rho_{\chi}(t_{eq})}{\rho(t_{eq})}} \sim 10^{-1} \left(\frac{H_E}{M_{pl}}\right)^2 \left(\frac{H_E}{m}\right) M_{pl}.$$

Since, $H_E \ll m$, if we consider masses of the order $10^2 H_E$ one has

$$T_R \sim 10^{-3} \left(\frac{H_E}{M_{pl}}\right)^2 M_{pl} \sim 5 \times 10^{-10} \left(\frac{1-n_s}{3(4-\alpha)}\right)^{\frac{4-\alpha}{2-\alpha}} M_{pl}.$$

Thermalization and reheating

- Quadratic potential: $\alpha = 0 \Longrightarrow T_R \sim 5 \times 10^{-15} M_{pl} \sim 10^4$ GeV.
- Cubic potential: $\alpha = \frac{2}{3} \Longrightarrow T_R \sim 5 \times 10^{-16} M_{pl} \sim 10^3$ GeV.
- Quartic potential: $\alpha = 1 \Longrightarrow T_R \sim 4 \times 10^{-17} M_{pl} \sim 10^2$ GeV.

So, one obtains a reheating temperature that preserves nucleosynthesis success.

Detailed calculation

Main formula

$$\frac{k_*}{a_0 H_0} = e^{-N_*} \frac{H_*}{H_0} \frac{a_{end}}{a_E} \frac{a_E}{a_R} \frac{a_M}{a_M} \frac{a_M}{a_0}$$
$$= e^{-N_*} \frac{H_*}{H_0} \frac{a_{end}}{a_E} \frac{\rho_R^{-1/12} \rho_M^{1/4}}{\rho_E^{1/6}} \frac{a_M}{a_0},$$

where, "end", R and M means at the end of inflation, the beginning of radiation era, the beginning of matter domination and the subindex 0 means the current time. We have used the relations

$$\left(\frac{a_E}{a_R}\right)^6 = \frac{\rho_R}{\rho_E}, \quad \left(\frac{a_R}{a_M}\right)^4 = \frac{\rho_M}{\rho_R}.$$

< ロ > < 同 > < 回 > < 回 >

Detailed calculation

Taking as a pivot scale $k_* = 0.05 \text{ Mpc}^{-1}$, and since the current horizon scale is $a_0H_0 \cong 2 \times 10^{-4} \text{ Mpc}^{-1}$, one obtains

Main formula

$$N_* = -5.52 + \ln\left(\frac{H_*}{H_0}\right) + \ln\left(\frac{a_{end}}{a_E}\right) + \frac{1}{4}\ln\left(\frac{\rho_M}{\rho_R}\right) + \frac{1}{6}\ln\left(\frac{\rho_R}{\rho_E}\right) + \ln\left(\frac{a_M}{a_0}\right).$$

< □ > < 同 > < 回 > < 回

Detailed calculation

We have to use the important and well-known formula $T_0 = \frac{a_M}{a_0}T_M$. Moreover, $\rho_M \cong \frac{\pi^2}{15}g_M T_M^4$ and $\rho_R \cong \frac{\pi^2}{30}g_R T_R^4$

Main formula

$$N_* = -5.52 + \ln\left(\frac{H_*}{H_0}\right) + \ln\left(\frac{a_{end}}{a_E}\right) + \frac{1}{4}\ln\left(\frac{2g_M}{g_R}\right) + \frac{1}{6}\ln\left(\frac{\rho_R}{\rho_E}\right) + \ln\left(\frac{T_0}{T_R}\right).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Detailed calculation

Using that $H_0 \sim 6 \times 10^{-61} M_{pl}$ and $\mathcal{P} = \frac{H_*^2}{8\pi^2 \epsilon_* M_{pl}^2} \sim 2 \times 10^{-9}$ one obtains

$$\ln\left(\frac{H_*}{H_0}\right) = 131.38 + \frac{1}{2}\ln\left(\frac{1-n_s}{3(4-\alpha)}\right)$$

Using that $T_0 \cong 2.73 \text{ K} \cong 2 \times 10^{-13} \text{ GeV}$ and $g_M = 3.36$ one has

$$\frac{1}{4}\ln\left(\frac{2g_M}{g_R}\right) + \ln\left(\frac{T_0}{T_R}\right) = -28.76 - \ln\left(\frac{g_R^{\frac{1}{4}}T_R}{\text{GeV}}\right)$$

From the value of the Hubble parameter at the transition time, one will obtain

$$\frac{1}{6}\ln\left(\frac{\rho_R}{\rho_E}\right) = -26.16 - \frac{4-\alpha}{6(2-\alpha)}\ln\left(\frac{1-n_s}{3(4-\alpha)}\right) + \frac{2}{3}\ln\left(\frac{g_R^{\frac{1}{4}}T_R}{\mathsf{GeV}}\right)$$

Detailed calculation

Collecting all the terms one obtains

Main formula

$$N_* = 70.94 + \ln\left(\frac{a_{end}}{a_E}\right) + \frac{1-\alpha}{3(2-\alpha)}\ln\left(\frac{1-n_s}{3(4-\alpha)}\right) - \frac{1}{3}\ln\left(\frac{g_R^{\frac{1}{4}}T_R}{\text{GeV}}\right)$$

On the other hands, a simple calculation leads to

$$\ln\left(\frac{a_{end}}{a_E}\right) = \int_{H_E}^{H_{end}} \frac{H}{\dot{H}} dH = -\frac{2}{3(2-\alpha)}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Detailed calculation

Final formula

$$N_* = 70.94 - \frac{1}{3(2-\alpha)} \left[2 - (1-\alpha) \ln\left(\frac{1-n_s}{3(4-\alpha)}\right) \right] - \frac{1}{3} \ln\left(\frac{g_R^{\frac{1}{4}} T_R}{\text{GeV}}\right)$$

Using that for our models $T_R \sim 10^8 \left(\frac{1-n_s}{3(4-\alpha)}\right)^{\frac{4-\alpha}{2-\alpha}}$ GeV, and the fact that $g_R = 107$ for $T_R \ge 175$ GeV, one gets

Final formula

$$N_* = 64.41 - \frac{1}{3(2-\alpha)} \left[2 + 3\ln\left(\frac{1-n_s}{3(4-\alpha)}\right) \right]$$

Detailed calculation

Taking as usual $n_s \cong 0.96$ one has

•
$$\alpha = 0 \Longrightarrow N_* = 67.$$

•
$$\alpha = \frac{2}{3} \Longrightarrow N_* = 68.$$

•
$$\alpha = 1 \Longrightarrow N_* = 69.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

THANK YOU VERY MUCH FOR YOUR ATTENTION!!!!

3