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This talk is based in the manuscript:

Simple inflationary quintessential model II: Power law potentials J. de
Haro, J. Amorós, S. Pan, [arXiv:1607.06726].

and in the previous papers:
1 Evolution and Dynamics of a Matter creation model S. Pan, J. de

Haro, A. Paliathanasis, R. Jan Slagter, Mon. Not. Roy. Astron.
Soc. 460 (2), 1445-1456 (2016), [arXiv:1601.03955].

2 Simple inflationary quintessential model J. de Haro, J. Amorós,
S. Pan, Phys. Rev. D 93, 084018 (2016), [arXiv:1601.08175].

3 Inflation and late-time acceleration from a double-well potential
with cosmological constant J. de Haro, E. Elizalde, Gen. Rel.
Grav. 48, 77 (2016) [arXiv:1602.03433].
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The models and properties
We assume the following simple dynamics:

Ḣ =

{
(−3H2

E + Λ)
(
H
HE

)α
for H ≥ HE

−3H2 + Λ for H ≤ HE ,

where HE is an specific value of the Hubble parameter, Λ� H2
E is a

cosmological constant and α ∈ [0, 1] is the parameter, which defines
the family of models.
Properties:

1 The model has an accelerated period at early times. Since
ä
a = Ḣ +H2 = −H

α

3

(
3H2−α

E −H2−α), one can see that for
H > 3

1
2−αHE , the universe accelerates. It has a fixed point at

H =
√

Λ
3 which depicts the current cosmic acceleration.

2 Phase transition to a kinetion (or deflationary) regime when
H = HE , to produce enough particles to reheat the universe.

3 The universe is nonsingular in cosmic time.
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The models and properties

Effective Equation of State parameter

weff = −1− 2Ḣ

3H2

In our case

weff =

{
−1 + 2

(
1− Λ

3H2
E

)(
H
HE

)α−2

H ≥ HE

1− 2Λ
3H2 H ≤ HE .

Conclusion:
For H � HE =⇒ weff ∼= −1. Early time acceleration (Inflation).
For H ∼= HE =⇒ weff ∼= 1. Kination regime.

For H ∼=
√

Λ
3 =⇒ weff ∼= −1. Current acceleration.
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The models and properties

Equation of State for Λ ∼= 0

P =

 −ρ+ 2
(
ρ
ρE

)α−2
2

ρ ρ ≥ ρE
ρ ρ ≤ ρE .

For α = 0

P =

{
−ρ+ 2ρE ρ ≥ ρE

ρ ρ ≤ ρE .

For α = 1

P =

{
−ρ+ 2

√
ρρE ρ ≥ ρE

ρ ρ ≤ ρE .
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The models and properties

Case α = 1.

H(t) =

 HEe
(−3H2

E+Λ)t

HE t ≤ 0√
Λ
3

3HE+
√

3Λ tanh(
√

3Λt)

3HE tanh(
√

3Λt)+
√

3Λ
t ≥ 0,

and since Λ ∼= 0 one has

H(t) ∼=
{
HEe

−3HEt t ≤ 0
HE

3HEt+1 t & 0.

a(t) ∼=

{
aEe

− 1
3 [e−3HEt−1] t ≤ 0

aE(3HEt+ 1)
1
3 t & 0.

For t & 0 the universe enters in a kination regime.
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The models and properties

Case 0 ≤ α < 1. Λ ∼= 0

H(t) =

{
HE (3(α− 1)HEt+ 1)

1
1−α t ≤ 0

HE
3HEt+1 t & 0.

a(t) =

{
aEe

− 1
3(2−α)

[(3(α−1)HEt+1)
2−α
1−α−1] t ≤ 0

aE(3HEt+ 1)
1
3 t & 0.

For t & 0 the universe enters in a kinetion regime.
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The potential (Reconstruction method)

Formula:

ϕ = Mpl

∫ √
−2Ḣdt = −Mpl

∫ √
− 2

Ḣ
dH.

In our case:

ϕ =

 −
2
√

2√
3(2−α)

Mpl

(
H
HE

) 2−α
2 HE√

H2
E−

Λ
3

H ≥ HE

−
√

2
3Mpl

[
ln
(
H
HE

)
+ 2

2−α

]
H . HE .
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The potential (Reconstruction method)

Conversely

H =

 HE

(
ϕ
ϕE

) 2
2−α

ϕ ≤ ϕE

HEe
−
√

3
2

ϕ
Mpl
− 2

2−α ϕ & ϕE ,

where ϕE ≡ − 2
√

2√
3(2−α)

HE√
H2
E−

Λ
3

Mpl
∼= − 2

√
2√

3(2−α)
Mpl.

Formula

V (H) = 3H2M2
pl + ḢM2

pl =⇒ V (ϕ) = 3H2(ϕ)M2
pl + Ḣ(ϕ)M2

pl.
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The potential (Reconstruction method)

For our family of models:

V (H) =

{
3Hα

(
H2−α − H2

E−Λ
3

HαE

)
M2
pl H ≥ HE

ΛM2
pl H ≤ HE .

V (ϕ) =

 3
(
HEMpl

ϕE

)2 (
ϕ
ϕE

) 2α
2−α

[
ϕ2 − ϕ2

E

(
1− Λ

3H2
E

)]
ϕ ≤ ϕE

ΛM2
pl ϕ ≥ ϕE .

For α = 0 quadratic potential, for α = 2
3 cubic and for α = 1 quartic.
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Slow roll and spectral parameters

Slow roll parameters

ε = − Ḣ

H2
, η = 2ε− ε̇

2Hε

Spectral index (ns), its running (αs), and the ratio of tensor to
scalar perturbations (r)

ns − 1 = −6ε+ 2η, αs =
Hṅs

H2 + Ḣ
, r = 16ε.

Number of e-folds

N =

∫ tend

t∗

Hdt = −
∫ H∗

Hend

H

Ḣ
dH.
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Slow roll and spectral parameters

For our family:

Spectral index (ns), its running (αs), the ratio of tensor to scalar
perturbations (r), and the number of e-folds (N )

ns − 1 = (α− 4)ε∗, αs =
(α− 4)(2− α)ε2∗

1− ε∗
, r = 16ε∗.

N =
1

2− α

(
1

ε∗
− 1

)
.

with

ε∗ = 3

(
HE

H∗

)2−α

,

where H∗ is the value of the Hubble parameter when the pivot scale
crosses the Hubble radius.
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Slow roll and spectral parameters

REMARK:
For potentials of the form V (ϕ) = λϕ

4
2−α , and using that

ε ∼=
M2
pl

2

(
Vϕ
V

)2

, η ∼= M2
pl

Vϕϕ
V

one also obtains ns − 1 ∼= (α− 4)ε∗

This means that, our family of potentials, during the inflationary
regime, are like power law potentials
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Slow roll and spectral parameters

In terms of the number of e-folds:

Spectral index (ns), its running (αs) and the ratio of tensor to
scalar perturbations (r)

ns − 1 =
α− 4

1 + (2− α)N
, r =

16

1 + (2− α)N
.

αs =
α− 4

N(1 + (2− α)N
.

REMARK: From nucleosynthesis bounds, i.e., if one admits reheating
temperatures from 109 GeV to 1 MeV, in quintessential inflation, the
number of e-folds will range approximately between 65 and 75.
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Comparison with Planck2013 data

From the formulas

P =
H2
∗

8π2ε∗M2
pl

∼ 2× 10−9, H∗ =
HE(
ε∗
3

) 1
2−α

, ε∗ =
1− ns
4− α

One obtains

HE ∼ 7× 10−4

(
1− ns

3(4− α)

) 4−α
2(2−α)

Mpl

Taking, as usual, ns ∼= 0.96 one has the value of HE for each value of
the parameter α.
For α = 0, one has HE ∼ 2× 10−6Mpl ∼ 5× 1012 GeV
For α = 1, one has HE ∼ 10−7Mpl ∼ 2× 1011 GeV
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Comparison with Planck2013 data

Confidence region for the values of (ns, r), with (red region) and without
(blue region) allowing the running, according to Planck 2013.
For indicated values of α, the interval of values of (ns, r) yielded by our
model from N = 65 (small circle) to N = 75 efolds (big circle) of
expansion is superimposed on the Planck confidence regions.
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Comparison with Planck2015 data

Confidence region for the values of (ns, r), with running, according to
Planck 2015 and 2013.

Planck2015 with running only allow values of α ∈ [0, 2
3
].
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Comparison with Planck2015 data

Confidence region for the values of (ns, r), without running, according to
Planck 2015 and 2013.

Planck2015 without running only allow values of α ∈ [0, 1
2
].
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Gravitational particle production
Massive quantum field conformally coupled with gravity

χ′′k + ω2
k(τ)χk = 0,

where ′ denotes the derivative with respect the conformal time τ and
ωk(τ) =

√
k2 +m2a2(τ) is the frequency of the particle in the k-mode.

Adiabatic regime near the phase transition

HE � m =⇒ ω′k(τ)� ω2
k(τ),

means that one can use the first order WKB solution to define
approximately the vacuum modes:

χWKB
1,k (τ) ≡

√
1

2W1,k(τ)
e−i

∫ τ W1,k(η)dη,

where

W1,k = ωk −
1

4

ω′′k
ω2
k

+
3

8

(ω′k)2

ω3
k

.
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Gravitational particle production

Before the phase transition the vacuum is depicted approximately by
χWKB

1,k (τ), but after it this mode becomes a mixure of positive and
negative frequencies of the form αkχ

WKB
1,k (τ) + βk(χWKB

1,k )∗(τ).
The βk-Bogoliubov coefficient could be obtained, as usual, matching
both expressions at the transition time τE , obtaining

βk =
W[χWKB

1,k (τ−E ), χWKB
1,k (τ+

E )]

W[(χWKB
1,k )∗(τ+

E ), χWKB
1,k (τ+

E )]
W is the Wronskian.

The square modulus of the βk-Bogoliubov coefficient will be given by

|βk|2 ∼=
m4a10

E

(
Ḧ+
E − Ḧ

−
E

)2

256(k2 +m2a2
E)5

=
81(2− α)2m4a10

E H
6
E

256(k2 +m2a2
E)5

.
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Gravitational particle production

number and energy density

nχ ≡
1

2π2a3

∫ ∞
0

k2|βk|2dk, ρχ ≡
1

2π2a4

∫ ∞
0

ωkk
2|βk|2dk,

For our models

nχ ∼ 3× 10−3(2− α)2H
6
E

m3

(aE
a

)3

, ρχ ∼ mnχ.

Particles are far from being in thermal equilibrium and, at the
beginning, their energy density scales as a−3, eventually they will
decay into lighter particles, which will interact through multiple
scattering. At the end of these process, the universe becomes filled
by a relativistic plasma in thermal equilibrium whose energy density
decays as a−4.
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Thermalization and reheating
The thermalization process, where the cross section for 2→ 3
scattering with gauge bosons exchange whose typical energy is
ρ

1
4
χ (τE), is given by σ = β3ρ

− 1
2

χ (τE), with β2 ∼ 10−3. The
thermalization rate is

Γ = σnχ(τE) ∼ 5× 10−2(2− α)β3

(
HE

m

)2

HE .

Thermal equilibrium is reached when Γ ∼ H(teq) ∼= HE

(
aE
aeq

)3

, which

leads to the relation aE
aeq
∼ 4× 10−1(2− α)1/3β

(
HE
m

)2/3
. Then, at the

equilibrium one has

ρχ(teq) ∼ 10−4(2− α)3β3

(
HE

m

)4

H4
E ,

ρ(teq) ∼ 7× 10−3(2− α)2β6

(
HE

m

)4

H2
EM

2
pl.
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Thermalization and reheating
After this thermalization, the relativistic plasma and the background
evolve as

ρχ(t) = ρχ(teq)
(aeq
a

)4

, ρ(t) = ρ(teq)
(aeq
a

)6

.

The reheating is obtained when both energy densities are of the

same order, which happens when aeq
aR
∼
√

ρχ(teq)
ρ(teq)

, and thus, obtaining
a reheating temperature of the order

TR ∼ ρ
1
4
χ (teq)

√
ρχ(teq)

ρ(teq)
∼ 10−1

(
HE

Mpl

)2(
HE

m

)
Mpl.

Since, HE � m, if we consider masses of the order 102HE one has

TR ∼ 10−3

(
HE

Mpl

)2

Mpl ∼ 5× 10−10

(
1− ns

3(4− α)

) 4−α
2−α

Mpl.
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Thermalization and reheating

Quadratic potential: α = 0 =⇒ TR ∼ 5× 10−15Mpl ∼ 104 GeV.
Cubic potential: α = 2

3 =⇒ TR ∼ 5× 10−16Mpl ∼ 103 GeV.
Quartic potential: α = 1 =⇒ TR ∼ 4× 10−17Mpl ∼ 102 GeV.

So, one obtains a reheating temperature that preserves
nucleosynthesis success.
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Detailed calculation

Main formula

k∗
a0H0

= e−N∗
H∗
H0

aend
aE

aE
aR

aR
aM

aM
a0

= e−N∗
H∗
H0

aend
aE

ρ
−1/12
R ρ

1/4
M

ρ
1/6
E

aM
a0

,

where, “end”, R and M means at the end of inflation, the beginning of
radiation era, the beginning of matter domination and the subindex 0
means the current time. We have used the relations(

aE
aR

)6

=
ρR
ρE

,

(
aR
aM

)4

=
ρM
ρR

.
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Detailed calculation

Taking as a pivot scale k∗ = 0.05 Mpc−1, and since the current
horizon scale is a0H0

∼= 2× 10−4 Mpc−1, one obtains

Main formula

N∗ = −5.52 + ln

(
H∗
H0

)
+ ln

(
aend
aE

)
+

1

4
ln

(
ρM
ρR

)
+

1

6
ln

(
ρR
ρE

)
+ ln

(
aM
a0

)
.
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Detailed calculation

We have to use the important and well-known formula T0 = aM
a0
TM .

Moreover, ρM ∼= π2

15 gMT
4
M and ρR ∼= π2

30 gRT
4
R

Main formula

N∗ = −5.52 + ln

(
H∗
H0

)
+ ln

(
aend
aE

)
+

1

4
ln

(
2gM
gR

)
+

1

6
ln

(
ρR
ρE

)
+ ln

(
T0

TR

)
.

Jaume Haro A simple inflationary quintessential model



The family of models
Viability from Planck’s observational data

Reheating temperature
Number of e-folds

Detailed calculation

Using that H0 ∼ 6× 10−61Mpl and P =
H2

∗
8π2ε∗M2

pl
∼ 2× 10−9 one

obtains

ln

(
H∗
H0

)
= 131.38 +

1

2
ln

(
1− ns

3(4− α)

)
.

Using that T0
∼= 2.73 K ∼= 2× 10−13 GeV and gM = 3.36 one has

1

4
ln

(
2gM
gR

)
+ ln

(
T0

TR

)
= −28.76− ln

(
g

1
4

RTR
GeV

)

From the value of the Hubble parameter at the transition time, one will
obtain

1

6
ln

(
ρR
ρE

)
= −26.16− 4− α

6(2− α)
ln

(
1− ns

3(4− α)

)
+

2

3
ln

(
g

1
4

RTR
GeV

)
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Detailed calculation

Collecting all the terms one obtains

Main formula

N∗ = 70.94 + ln

(
aend
aE

)
+

1− α
3(2− α)

ln

(
1− ns

3(4− α)

)
− 1

3
ln

(
g

1
4

RTR
GeV

)

On the other hands, a simple calculation leads to

ln

(
aend
aE

)
=

∫ Hend

HE

H

Ḣ
dH = − 2

3(2− α)
.
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Detailed calculation

Final formula

N∗ = 70.94− 1

3(2− α)

[
2− (1− α) ln

(
1− ns

3(4− α)

)]
− 1

3
ln

(
g

1
4

RTR
GeV

)

Using that for our models TR ∼ 108
(

1−ns
3(4−α)

) 4−α
2−α

GeV, and the fact
that gR = 107 for TR ≥ 175 GeV, one gets

Final formula

N∗ = 64.41− 1

3(2− α)

[
2 + 3 ln

(
1− ns

3(4− α)

)]
.
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Detailed calculation

Taking as usual ns ∼= 0.96 one has
α = 0 =⇒ N∗ = 67.
α = 2

3 =⇒ N∗ = 68.
α = 1 =⇒ N∗ = 69.
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THANK YOU VERY MUCH FOR YOUR ATTENTION!!!!
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