
O(N) model in Euclidean de Sitter space: beyond the leading
IR approximation

Leonardo G. Trombetta
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Motivations

QFT in de Sitter spacetime

• Inflationary stage of the early Universe

Quantum fluctuations give rise to primordial inhomogenities

• Current accelerated expansion

Quantum effects can afect the time evolution through backreaction

IR effects

• Light and massless fields need special treatment due to the large IR fluctuations



QFT in de Sitter spacetime
• N scalar fields φa with O(N)-symmetry and quartic self-interaction

S[φa, gµν ] = −
∫
d4 x
√
−g
[

1

2
φa
(
−� +m2 + ξR

)
φa +

λ

8N
(φaφa)2

]

• Cosmological patch of de Sitter

ds2 = −dt2 + e2Htd~x2

or, defining conformal time η = −e−Ht

ds2 =
1

η2

[
−dη2 + d~x2

]
with −∞ < η < 0

• Quantities of interest: Vacuum expectation values

〈φ2(t, ~x)〉 = G(x, x)

〈Tµν(x)〉 = DµνG(x, x′)

∣∣∣∣∣
x=x′

G(x, x′): field propagator



IR effects

Massive free field propagator

G
(m)
F (x, x′) =

H2Γ( 3
2
− ν)Γ( 3

2
+ ν)

(4π)2 2F1

(
3

2
− ν,

3

2
+ ν; 2; 1−

y

4
− iε

)
where ν =

√
9/4−m2/H2 and

y(x, x′) =
−(η − η′)2 + |~x− ~x′|2

ηη′

(Invariant distance)

• Large spatial separations or late times (y → +∞)

G
(m)
F (y) ∼ y−

m2

3H2

• IR limit (m2 � H2)

G
(m)
F '

3H4

8π2m2

divergence for m→ 0 (not present in flat spacetime)



IR effects

Massless free field

• Field variance

〈φ(t)2〉 =
H3t

4π2

There is no de Sitter invariant vacuum state for a free massless field.

• Large spatial separations or late times (y → +∞):

Subtracting the divergent term, the corresponding massless Feynman propagator

Ĝ
(0)
F (y) = lim

m→0

[
G

(m)
F (y)−

3H4

8π2m2

]
∼ log(y)

Interacting field (i.e.: λφ4)

• Loop corrections ( L = # loops )

∼
(
λHt

4π2

)L
∼
(

λH4

4π2m4

)L
=⇒ The perturbative expansion is invalid at late times or for small masses!

Burgess et al. (2010)



First non-perturbative solution: Stochastic Inflation

Starobinsky & Yokoyama (1994)

Dinamical mass (N = 1)

• Massless field with λφ4/4! interaction:

〈φ2〉 =
3

π

Γ
(

3
4

)
Γ
(

1
4

) H2

√
λ
≡

3H4

8π2m2
dyn

then

m2
dyn =

√
λH2

8π

Γ
(

1
4

)
Γ
(

3
4

)
Result non-analytical in λ =⇒ non perturbative!

• How to compute systematic corrections beyond the IR limit?

Lorentzian QFT (N → ∞)

m2
dyn =

√
3λH2

4π



Euclidean de Sitter space

• Global coordinates in Lorenzian
d-dimensional de Sitter spacetime

ds2 =
1

H2

[
−dt2 + cosh(t)2dΩ2

]
• Analytical continuation

t→ −i
(
τ −

π

2H2

)
• Compactification

τ = τ + 2πH−1

• Euclidean d-sphere

ds2 =
1

H2

[
dτ2 + sin(τ)2dΩ2

]



QFT in euclidean de Sitter

• Euclidean Action

SE =

∫
ddx
√
g

[
1

2
φa
(
−� +m2

)
φa +

λ

8N
(φaφa)2

]
• We expand in d-dimensional spherical harmonics

φa(x) =
∑
~L

φ̃~L,aY~L(x)

• Free propagator (symmetric phase)

Gab(x, x
′) = δab

∑
~L

Hd
Y~L(x)Y~L(x′)

H2L(L+ d− 1) +m2
≡ δabG(x, x′)

• The zero modes (~L = 0) are responsible for this divergence and the breakdown of
the perturbative expansion!

G(x, x′) −→
HdY 2

~0

m2
when m2 → 0

• It can be shown (through the effective potential) that:

m2
dyn =

N

Vd〈φ2
0〉

Vd: surface area of a d-sphere (V4 = 8π2/3H4)



Another nonperturbative solution: Proper treatment of the zero modes

N = 1: Rajaraman (2010)

N > 1: López Nacir, Mazzitelli, LGT (2016)• Separating the zero modes

φa(x) = φ0a + φ̂a(x) ; G(x, x′) = G0 + Ĝ(x, x′)

Generating funcional of the zero modes (LO IR)

• Since φ0 is constant, there is no kinetic term and the path integral turns into an
ordinary integral

• Massless field m = 0

Z0[J0] = N0

∫
dNφ0 exp

[
−Vd

(
λ

8N
|φ0|4 + J0aφ0a

)]
• These expectation values are computed exactly

〈φ2p
0 〉0 =

∫∞
0 dφ0 φ

N−1+2p
0 e−

Vdλ

8N
φ4
0∫∞

0 dφ0 φ
N−1
0 e−

Vdλ

8N
φ4
0

= 2
3p
2

(
N

Vdλ

) p
2 Γ

[
N+2p

4

]
Γ
[
N
4

]
Dinamical Mass (d = 4)

m2
dyn,0 =

√
3λH2

8π

Γ
(

1
4

)
Γ
(

3
4

) (N = 1) ; m2
dyn,0 =

√
3λH2

4π
(N →∞)

the same as the stochastic result!! LO of the 1/N result (2PI)!!



Computing corrections from UV (inhomogeneous) modes

N = 1 Beneke & Moch (2012)

N > 1: López Nacir, Mazzitelli, LGT (2016)
• Perturbative treatment of the UV modes

Sint =
λ

8N

∫
ddx
√
g

[
|φ0|4 + 2|φ0|2|φ̂|2 + 4(φ0 · φ̂)2 + 4(φ0 · φ̂)|φ̂|2 + |φ̂|4

]

= Vdλ
8N
|φ0|4 + S̃int[φ0, φ̂]

Z[J0, Ĵ ] = N
∫ ∞
−∞

dφ0

∫
Dφ̂ exp

[
−SE −

∫
ddx
√
g (J0φ0 + Ĵ φ̂)

]
= exp

(
−S̃int

[
δ

δJ0
,
δ

δĴ

])
Z0[J0]Ẑfree[Ĵ ]

• We expand on S̃int, while treating Vdλ
4!
φ4

0 exactly in Z0[J0]

Example for m = 0:

Each φ0 scales as λ−1/4

Each φ̂ scales as 1 =⇒ λ|φ0|2|φ̂|2 scales as
√
λ



2-point functions in a double expansion in
√
λ and 1/N (m = 0)

IR part

〈φ0aφ0b〉 = δab

[√
2

Vdλ
−

1

2
[Ĝ(0)]ren +

1

8

√
Vdλ

2
[Ĝ(0)]2ren −

1

2

√
λ

2Vd

(
∂[Ĝ(m)]

∂m2

)
0,fin

]
+O(N−1)

UV part

〈φ̂a(x)φ̂b(x
′)〉 = δab

{
Ĝ(0)(x, x′) +

(
∂Ĝ(m)(x, x′)

∂m2

)
0

[√
λ

2Vd
+
λ

4
[Ĝ(0)]ren

]

+
1

2

(
∂2Ĝ(m)(x, x′)

∂(m2)2

)
0

[√
λ

2Vd

]2}
+O(N−1)

where we used that

∫
...

∫
x2,..,xk−1

Ĝ(m)(x1, x2)...Ĝ(m)(xk−1, xk) =
(−1)k

(k − 2)!

∂k−2Ĝ(m)(x1, xk)

∂(m2)k−2

• Agreement with Lorentzian calculations at the given order in
√
λ and 1/N .



Back to Lorentzian spacetime

• Analytical continuation:

y(x, x′) −→
− (|η − η′| − iε)2 + |~x− ~x′|2

ηη′

Ĝ(x, x′) −→ ĜF (x, x′)

• Points x and x′ can now be infinitelly far apart (unlike on the sphere)

• Since the results are built up from massless free propagators Ĝ(0)(x, x′) (and its
derivatives) =⇒ The are still IR issues at large separations and/or late times

• Is there a way of further resumming contributions that afect the behavior in that
regime?



Resumming the leading IR secular terms to the two-point functions
• We focus on the bi-quadratic interaction terms:

λ

4N

∫
dd
√
g
[
|φ0|2|φ̂|2 + 2(φ0 · φ̂)

]
• Consider a generic correction to the 2-point functions with p-insertions of φ2

0:

〈φ2p
0 〉0

x x′

1 2 . . . p

∼ λp〈φ2p
0 〉0

∂pĜ(m)(x, x′)

∂(m2)p

∣∣∣∣∣
0

• This leads to:

〈φ̂a(x)φ̂b(x
′)〉(0) = δab

{ ∞∑
p=0

1

p!

∂pĜ(m)(x, x′)

∂(m2)p

∣∣∣∣∣
0

(
λ

2N

)p [
1 +

(3p − 1)

N

]
〈φ2p

0 〉0

}

• Which can be resummed order by order in 1/N (expanding de factor 〈φ2p
0 〉0). For

example at leading order:

〈φ̂a(x)φ̂b(x
′)〉(0) = Ĝ(mdyn,0)(x, x′) +O(N−1,

√
λ)

with m2
dyn,0 =

√
λ/2Vd



Resumming the leading IR secular terms to the two-point functions

Redefinition of perturbation theory (once again)

• φ0-dependent mass term for φ̂:

λ

4N

∫
dd
√
gm2

ab(φ0)φ̂aφ̂d

• Generating functional

Z[J0, Ĵ ] = N e−
˜̃Sint

[
δ
δJ0

, δ
δĴ

] ∫
dNφ0 e

−
[
λVd
8N
|φ0|4+VdJ0aφ0a

]

×
∫
Dφ̂ exp

(
−

1

2

∫∫
x,y

φ̂aĜ
−1
ab (φ0)φ̂b +

∫
x
Ĵaφ̂a

)
with

Ĝ−1
ab (φ0)(x, x′) =

[
−�δab +m2

ab(φ0)
] δ(d)(x− x′)

√
g

• The remaining interaction terms φ0φ̂3 and φ̂4 are contained in ˜̃Sint and are
treated pertubatively



Example:

Up to order λ we only need the first perturbative correction coming from the term
λ

8N
|φ̂|4

〈φ̂a(x)φ̂b(x
′
)〉(1) =

1

Z(1)[0, 0]

δ2Z(1)[J0, Ĵ]

δĴa(x)δĴb(x
′)

∣∣∣∣∣
J0,Ĵ=0

〈φ̂a(x)φ̂b(x
′
)〉(0) = δab

{ ∞∑
p=0

1

p!

∂pĜ(m)(x, x′)

∂(m2)p

∣∣∣∣∣
0

(
λ

2N

)p [
1 +

(3p − 1)

N

]
〈φ2p

0 〉0

−
λ2(N + 2)

4N
Vd[Ĝ

(0)
]ren ×

∞∑
p=0

1

p!

∂pĜ(m)(x, x′)

∂(m2)p

∣∣∣∣∣
0

(
λ

2N

)p [
1 +

(3p − 1)

N

] [
〈φ2(p+1)

0 〉0 − 〈φ
2
0〉0〈φ

2p
0 〉0

]}
,

and

∆〈φ̂a(x)φ̂b(x
′
)〉 = δab

λ(N + 2)

2N
[Ĝ

(0)
]ren

×
∞∑
p=0

1

p!

∂p+1Ĝ(m)(x, x′)

∂(m2)p+1

∣∣∣∣∣
0

(
λ

2N

)p [
1 +

(3p − 1)

N

]
〈φ2p

0 〉.



Result

〈φ̂a(x)φ̂b(x
′)〉(1) = δab

{
Ĝ(m)(x, x′) +

λ

4
[Ĝ(0)]ren

∂Ĝ(m)(x, x′)

∂m2

+
1

2N

[
2Ĝ(
√

3m)(x, x′)− 2Ĝ(m)(x, x′)

−

√
λ

2Vd

∂Ĝ(m)(x, x′)

∂m2
+

λ

2Vd

∂2Ĝ(m)(x, x′)

∂(m2)2

+
λ

4
[Ĝ(0)]ren

(
7
∂Ĝ(m)(x, x′)

∂m2
− 6

∂Ĝ(
√

3m)(x, x′)

∂m2

)]}
mdyn,0

,

Remarks

• All free propagators that build up the expression now have masses ∼
√
λ

=⇒ Decay at large distances and/or late times!!

• Other recent results in Lorentzian QFT (Gautier & Serreau (2015)) obtain a decay
in the massless case in the IR limit. But their approximations are not systematic.

• Our results are consistent with, and improve on, the know Lorentzian
calculations.

• It is possible to go to higher orders in both
√
λ and 1/N in a systematic way



Summary

• The QFT in euclidean de Sitter space with a proper treatment of the zero mode,
allows to recover known non-perturbative results in the IR limit (dynamical mass
generation).

• Furthermore, the computation of corrections from the UV modes is systematic
order by order in

√
λ and 1/N , unlike other methods.

• However, the nonperturbative treatment of the zero mode alone does not solve
the IR problems associated with large separations and/or late times.

• As we have shown, it is possible to also resum the leading secular terms in order
to obtain a proper decay in that regime



Outlook

• Computation of higher correlation functions

〈φ(x1) . . . φ(xn)〉

How to do the analytical continuation?

• The vacumm expectation value of the stress-energy tensor

〈Tµν〉

as a source of the Einstein semiclassical equations.
Stress-tensor fluctuations

〈Tµν(x)Tµ′ν′ (x
′)〉

to study the validity of the semiclassical treatment

• Generalization to m2 < 0 to study spontaneous symmetry breaking and symmetry
restoration

φ0 scales as λ−1/2 =⇒ λ|φ0|2|φ̂|2 ∼ λ0

• In the Lorenztian QFT, there is a continuum of modes. How can we define the
analogue of the zero mode? Is it posible to do a systematic nonperturbative
treatment as in the Euclidean case?



THANK YOU FOR YOUR ATTENTION!!
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