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QFT in de Sitter spacetime
e N scalar fields ¢ with O(N)-symmetry and quartic self-interaction
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e Cosmological patch of de Sitter
ds? = dpime2 e g2
or, defining conformal time n = —eHt

d? = n% [—dn? + di?]

with —co < <0

e Quantities of interest: Vacuum expectation values
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G(z,z'): field propagator
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divergence for m — 0 (not present in flat spacetim




IR effects
Massless free field
e Field variance
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There is no de Sitter invariant vacuum state for a free massless field.

o large spatial separations or late times (y — +o0):
Subtracting the divergent term, the corresponding massless Feynman propagator
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Interacting field (i.e.: A¢*)
e Loop corrections ( L = # loops )
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= The perturbative expansion is invalid at late times or for small masses!

Burgess et al. (2010)







Euclidean de Sitter space

Global coordinates in Lorenzian
d-dimensional de Sitter spacetime
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ds® = - [—dt2 +cosh(t)2d92]

e Analytical continuation
: ™
to—i(r- )
2H?2
e Compactification
T=T 4+ 2TH

e Euclidean d-sphere
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QFT in euclidean de Sitter

Euclidean Action
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e We expand in d-dimensional spherical harmonics
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Free propagator (symmetric phase)
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o The zero modes (L = 0) are responsible for this divergence and the breakdown of
the perturbative expansion!
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when m? =0

G(z,2') —
e It can be shown (through the effective potential) that:
5 N

Mdyn = Vd<¢(2)>

Vg: surface area of a d-sphere (V4 = 872 /3H*)



Another nonperturbative solution: Proper treatment of the zero modes
N = 1: Rajaraman (2010)

o Separatiie theidreh i N > 1: Lépez Nacir, Mazzitelli, LGT (2016)

$a(2) = d0a + dalx) 5 G(z,2') = Go+G(z,2)
Generating funcional of the zero modes (LO IR)

e Since ¢q is constant, there is no kinetic term and the path integral turns into an
ordinary integral
o Massless field m =0
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e These expectation values are computed exactly
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Computing corrections from UV (inhomogeneous) modes
N = 1 Beneke & Moch (2012)

N > 1: Lépez Nacir, Mazzitelli, LGT (2016)
o Perturbative treatment of the UV modes
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e We expand on S;

o exactly in Zo[Jo]

Example for m = 0:
Each Q?O scales as \—1/4 ‘
Each ¢ scales as 1 —  \|do|?|¢|? scales as VA



2-point functions in a double expansion in v/A and 1/N (m = 0)

IR part
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e Agreement with Lorentzian calculations at the given order in v/A and 1/N.



Back to Lorentzian spacetime

e Analytical continuation:
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G’(a:,z') — éF(m,x’)
e Points z and z’ can now be infinitelly far apart (unlike on the sphere)

e Since the results are built up from massless free propagators G(°) (z,z') (and its
derivatives) = The are still IR issues at large separations and/or late times

e Is there a way of further resumming contributions that afect the behavior in that
regime?



Resumming the leading IR secular terms to the two-point functions

e We focus on the bi-quadratic interaction terms:
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e Consider a generic correction to the 2-point functions with p-insertions of ¢g:

2
< 0p>0 ’
I
" ', \t\ j
13
T > N 7 ~ AP (g5 >OW
15752 ¥ p (0]

e This leads to:
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e Which can be resummed order by order in 1/N (expanding de factor <¢gp>0). For
example at leading order:
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Resumming the leading IR secular terms to the two-point functions

Redefinition of perturbation theory (once again)

e ¢po-dependent mass term for ¢:
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e Generating functional
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e The remaining interaction terms ¢mf>3 and (;34 are contained in S;n: and are
treated pertubatively

with
G (g0)(z,2") = [~O8ap + m2y(¢0)]






Result
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Remarks

e All free propagators that build up the expression now have masses ~ v/A
= | Decay at large distances and/or late times!! ‘

e Other recent results in Lorentzian QFT (Gautier & Serreau (2015)) obtain a decay
in the massless case in the IR limit. But their approximations are not systematic.

e Our results are consistent with, and improve on, the know Lorentzian
calculations.

e It is possible to go to higher orders in both v/A and 1/N in a systematic way



Summary

e The QFT in euclidean de Sitter space with a proper treatment of the zero mode,
allows to recover known non-perturbative results in the IR limit (dynamical mass
generation).

o Furthermore, the computation of corrections from the UV modes is systematic
order by order in V/A and 1/N, unlike other methods.

e However, the nonperturbative treatment of the zero mode alone does not solve
the IR problems associated with large separations and/or late times.

e As we have shown, it is possible to also resum the leading secular terms in order
to obtain a proper decay in that regime



Outlook

e Computation of higher correlation functions

(¢(z1) ... ¢(zn))

How to do the analytical continuation?

e The vacumm expectation value of the stress-energy tensor

(Tw)

as a source of the Einstein semiclassical equations.
Stress-tensor fluctuations

(Tyuw (@) Ty (2))

to study the validity of the semiclassical treatment

e Generalization to m? < 0 to study spontaneous symmetry breaking and symmetry
restoration

$o scales as A=1/2 — X|¢o|2||2 ~ AO
e In the Lorenztian QFT, there is a continuum of modes. How can we define the

analogue of the zero mode? Is it posible to do a systematic nonperturbative
treatment as in the Euclidean case?
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