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Derivation of Inflationary Tensor Spectrum
after horizon re-entry. Together these three lectures therefore provide a complete account of both the

generation and the observational consequences of the quantum fluctuations produced by inflation.

It is a beautiful story. Let us begin to unfold it.

11 Quantum Mechanics of the Harmonic Oscillator

“The career of a young theoretical physicist consists of treating the harmonic oscillator

in ever-increasing levels of abstraction.”

Sidney Coleman

The computation of quantum fluctuations generated during inflation is algebraically quite inten-

sive and it is therefore instructive to start with a simpler example which nevertheless contains most

of the relevant physics. We therefore warm up by considering the quantization of a one-dimensional

simple harmonic oscillator. Harmonic oscillators are one of the few physical systems that physicists

know how to solve exactly. Fortunately, almost all more complicated physical systems can be rep-

resented by a collection of simple harmonic oscillators with di↵erent amplitudes and frequencies.

This is of course what Fourier analysis is all about. We will show below that free fields in curved

spacetime (and de Sitter space in particular) are similar to collections of harmonic oscillators with

time-dependent frequencies. The detailed treatment of the quantum harmonic oscillator in this sec-

tion will therefore not be in vain, but will provide important intuition for the inflationary calculation.

This section is based on the excellent treatment of [26].

11.1 Action

The classical action of a harmonic oscillator with time-dependent frequency is

S =

Z
dt
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dt L , (155)

where x is the deviation of the particle from its equilibrium state, x ⌘ 0, and for convenience we

have set the particle mass to one, m ⌘ 1. For concreteness one may wish to consider a particle of

mass m on a spring which is heated by an external source so that its spring constant depends on

time, k(t), where !2 = k/m. The classical equation of motion follows from variation of the action

with respect to the particle coordinate x

�S

�x
= 0 ) ẍ + !2(t) x = 0 . (156)

11.2 Canonical Quantization

Canonical quantization of the system proceeds in the standard way: We define the momentum

conjugate to x

p ⌘ dL

dẋ
= ẋ, (157)

which agrees with the standard notion of the particle’s momentum p = mv. We then promote the

classical variables x, p to quantum operators x̂, p̂ and impose the canonical commutator

[x̂, p̂] = i~ , (158)
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= 0 ) ẍ + !2(t) x = 0 . (156)

11.2 Canonical Quantization

Canonical quantization of the system proceeds in the standard way: We define the momentum

conjugate to x

p ⌘ dL

dẋ
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ẋ2 � 1

2
!2(t)x2

◆
⌘

Z
dt L , (155)

where x is the deviation of the particle from its equilibrium state, x ⌘ 0, and for convenience we

have set the particle mass to one, m ⌘ 1. For concreteness one may wish to consider a particle of

mass m on a spring which is heated by an external source so that its spring constant depends on

time, k(t), where !2 = k/m. The classical equation of motion follows from variation of the action

with respect to the particle coordinate x

�S

�x
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Q.M.: (quantization)
where [x̂, p̂] ⌘ x̂p̂ � p̂x̂. The equation of motion implies that the commutator holds at all times if

imposed at some initial time. In particular, for our present example

[x(t), ẋ(t)] = i~ . (159)

Note that we are in the Heisenberg picture where operators vary in time while states are time-

independent. The operator x̂ is then expanded in terms of creation and annihilation operators

x̂ = v(t) â + v⇤(t) â† , (160)

where the (complex) mode function satisfies the classical equation of motion

v̈ + !2(t)v = 0 . (161)

The commutator (158) becomes

hv, vi[â, â†] = 1 , (162)

where

hv, wi ⌘ i

~ (v⇤@tw � (@tv
⇤)w) . (163)

Without loss of generality, let us assume that the solution v is chosen so that the real number hv, vi
is positive. The function v can then be rescaled such that hv, vi ⌘ 1 and hence

[â, â†] = 1 . (164)

Eqn. (164) is the standard relation for the raising and lowering operators of a harmonic oscillator.

We have hence identified the following annihilation and creation operators

â = hv, x̂i (165)

â† = �hv⇤, x̂i , (166)

and can define the vacuum state |0i via the prescription

â|0i = 0 , (167)

i.e. the vacuum is annihilated by â. Excited states of the system are created by repeated application

of creation operators

|ni ⌘ 1p
n!

(â†)n|0i . (168)

These states are eigenstates of the number operator N̂ = â†â with eigenvalue n, i.e.

N̂ |ni = n|ni . (169)

11.3 Non-Uniqueness of the Mode Functions

We haven’t yet determined unique mode functions and hence we haven’t fixed the vacuum state. Any

change in v(t) that keeps the solution x(t) unchanged will lead to a change in the creating operator

â = hv, x̂i and hence a change in the definition of the vacuum. For the simple harmonic oscillator

with time-dependent frequency !(t) (and for quantum fields in curved spacetime) there is in fact

53
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hv, vi[â, â†] = 1 , (162)

where

hv, wi ⌘ i

~ (v⇤@tw � (@tv
⇤)w) . (163)

Without loss of generality, let us assume that the solution v is chosen so that the real number hv, vi
is positive. The function v can then be rescaled such that hv, vi ⌘ 1 and hence
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where the (complex) mode function satisfies the classical equation of motion

v̈ + !2(t)v = 0 . (161)

The commutator (158) becomes
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N̂ |ni = n|ni . (169)

11.3 Non-Uniqueness of the Mode Functions

We haven’t yet determined unique mode functions and hence we haven’t fixed the vacuum state. Any

change in v(t) that keeps the solution x(t) unchanged will lead to a change in the creating operator
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[â, â†] = 1 . (164)

Eqn. (164) is the standard relation for the raising and lowering operators of a harmonic oscillator.

We have hence identified the following annihilation and creation operators
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i.e. the vacuum is annihilated by â. Excited states of the system are created by repeated application

of creation operators

|ni ⌘ 1p
n!
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â† = �hv⇤, x̂i , (166)

and can define the vacuum state |0i via the prescription
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â = hv, x̂i and hence a change in the definition of the vacuum. For the simple harmonic oscillator

with time-dependent frequency !(t) (and for quantum fields in curved spacetime) there is in fact

53



1) Review of QM Harmonic Oscillator

where [x̂, p̂] ⌘ x̂p̂ � p̂x̂. The equation of motion implies that the commutator holds at all times if

imposed at some initial time. In particular, for our present example
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where the (complex) mode function satisfies the classical equation of motion

v̈ + !2(t)v = 0 . (161)

The commutator (158) becomes
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(â†)n|0i . (168)

These states are eigenstates of the number operator N̂ = â†â with eigenvalue n, i.e.
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where the (complex) mode function satisfies the classical equation of motion

v̈ + !2(t)v = 0 . (161)

The commutator (158) becomes

hv, vi[â, â†] = 1 , (162)

where

hv, wi ⌘ i

~ (v⇤@tw � (@tv
⇤)w) . (163)

Without loss of generality, let us assume that the solution v is chosen so that the real number hv, vi
is positive. The function v can then be rescaled such that hv, vi ⌘ 1 and hence
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[x(t), ẋ(t)] = i~ . (159)

Note that we are in the Heisenberg picture where operators vary in time while states are time-

independent. The operator x̂ is then expanded in terms of creation and annihilation operators
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i.e. the vacuum is annihilated by â. Excited states of the system are created by repeated application

of creation operators

|ni ⌘ 1p
n!
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i.e. the vacuum is annihilated by â. Excited states of the system are created by repeated application

of creation operators

|ni ⌘ 1p
n!
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i.e. the vacuum is annihilated by â. Excited states of the system are created by repeated application

of creation operators

|ni ⌘ 1p
n!
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[x(t), ẋ(t)] = i~ . (159)

Note that we are in the Heisenberg picture where operators vary in time while states are time-

independent. The operator x̂ is then expanded in terms of creation and annihilation operators
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i.e. the vacuum is annihilated by â. Excited states of the system are created by repeated application

of creation operators

|ni ⌘ 1p
n!
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hv, vi[â, â†] = 1 , (162)

where

hv, wi ⌘ i

~ (v⇤@tw � (@tv
⇤)w) . (163)

Without loss of generality, let us assume that the solution v is chosen so that the real number hv, vi
is positive. The function v can then be rescaled such that hv, vi ⌘ 1 and hence
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(â†)n|0i . (168)

These states are eigenstates of the number operator N̂ = â†â with eigenvalue n, i.e.
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hv, vi[â, â†] = 1 , (162)

where

hv, wi ⌘ i

~ (v⇤@tw � (@tv
⇤)w) . (163)

Without loss of generality, let us assume that the solution v is chosen so that the real number hv, vi
is positive. The function v can then be rescaled such that hv, vi ⌘ 1 and hence
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â = hv, x̂i and hence a change in the definition of the vacuum. For the simple harmonic oscillator

with time-dependent frequency !(t) (and for quantum fields in curved spacetime) there is in fact

53

choice of vacuum
(not completely fixed)

where [x̂, p̂] ⌘ x̂p̂ � p̂x̂. The equation of motion implies that the commutator holds at all times if

imposed at some initial time. In particular, for our present example

[x(t), ẋ(t)] = i~ . (159)

Note that we are in the Heisenberg picture where operators vary in time while states are time-

independent. The operator x̂ is then expanded in terms of creation and annihilation operators
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i.e. the vacuum is annihilated by â. Excited states of the system are created by repeated application

of creation operators

|ni ⌘ 1p
n!
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i.e. the vacuum is annihilated by â. Excited states of the system are created by repeated application

of creation operators

|ni ⌘ 1p
n!
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,no unique choice for the mode function v(t). Hence, there is no unique decomposition of x̂ into

annihilation and creation operators and no unique notion of the vacuum. Di↵erent choices for the

solution v(t) give di↵erent vacuum solutions. This problem and its standard (but not uncontested)

resolution in the case of inflation will be discussed in more detail below.

In the present case we can make progress by considering the special case of a constant-frequency

harmonic oscillator11 !(t) = !. In that case a preferred choice of v(t) is the one that makes the

vacuum state |0i the ground state of the Hamiltonian. First, we evaluate the Hamiltonian for a

general mode function v(t),

Ĥ =
1

2
p̂2 +

1

2
!2x̂2 (170)

=
1

2

h
(v̇2 + !2v2)ââ + (v̇2 + !2v2)⇤ â†â† + (|v̇|2 + !2|v|2)(ââ† + â†â)

i
.

Using â|0i = 0 and [â, â†] = 1, we hence find the following action of the Hamiltonian operator on

the vacuum state

Ĥ|0i =
1

2
(v̇2 + !2v2)⇤ â†â†|0i +

1

2
(|v̇|2 + !2|v|2)|0i . (171)

The requirement that |0i be an eigenstate of Ĥ means that the first term must vanish which implies

the condition

v̇ = ±i!v , (172)

and hence

hv, vi = ⌥2!

~ |v|2 . (173)

Positivity of the normalization condition hv, vi > 0 selects the minus sign in Eqn. (172)

v̇ = �i!v . (174)

Properly normalized (hv, vi = 1) this gives the following positive-frequency solution

v(t) =

r
~
2!

e�i!t . (175)

With this choice of mode function v the Hamiltonian is

Ĥ = ~!
✓

N̂ +
1

2

◆
, (176)

for which the vacuum |0i is the state of minimum energy ~!/2.

Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
inside the horizon.
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[x(t), ẋ(t)] = i~ . (159)

Note that we are in the Heisenberg picture where operators vary in time while states are time-

independent. The operator x̂ is then expanded in terms of creation and annihilation operators
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no unique choice for the mode function v(t). Hence, there is no unique decomposition of x̂ into

annihilation and creation operators and no unique notion of the vacuum. Di↵erent choices for the

solution v(t) give di↵erent vacuum solutions. This problem and its standard (but not uncontested)

resolution in the case of inflation will be discussed in more detail below.

In the present case we can make progress by considering the special case of a constant-frequency

harmonic oscillator11 !(t) = !. In that case a preferred choice of v(t) is the one that makes the
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The requirement that |0i be an eigenstate of Ĥ means that the first term must vanish which implies

the condition
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and hence

hv, vi = ⌥2!
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Positivity of the normalization condition hv, vi > 0 selects the minus sign in Eqn. (172)

v̇ = �i!v . (174)

Properly normalized (hv, vi = 1) this gives the following positive-frequency solution

v(t) =

r
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e�i!t . (175)

With this choice of mode function v the Hamiltonian is

Ĥ = ~!
✓

N̂ +
1

2

◆
, (176)

for which the vacuum |0i is the state of minimum energy ~!/2.

Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
inside the horizon.
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Ĥ|0i =
1

2
(v̇2 + !2v2)⇤ â†â†|0i +

1

2
(|v̇|2 + !2|v|2)|0i . (171)
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â = hv, x̂i and hence a change in the definition of the vacuum. For the simple harmonic oscillator

with time-dependent frequency !(t) (and for quantum fields in curved spacetime) there is in fact

53

where [x̂, p̂] ⌘ x̂p̂ � p̂x̂. The equation of motion implies that the commutator holds at all times if

imposed at some initial time. In particular, for our present example
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â† = �hv⇤, x̂i , (166)

and can define the vacuum state |0i via the prescription
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no unique choice for the mode function v(t). Hence, there is no unique decomposition of x̂ into

annihilation and creation operators and no unique notion of the vacuum. Di↵erent choices for the

solution v(t) give di↵erent vacuum solutions. This problem and its standard (but not uncontested)

resolution in the case of inflation will be discussed in more detail below.

In the present case we can make progress by considering the special case of a constant-frequency

harmonic oscillator11 !(t) = !. In that case a preferred choice of v(t) is the one that makes the

vacuum state |0i the ground state of the Hamiltonian. First, we evaluate the Hamiltonian for a

general mode function v(t),

Ĥ =
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Using â|0i = 0 and [â, â†] = 1, we hence find the following action of the Hamiltonian operator on
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The requirement that |0i be an eigenstate of Ĥ means that the first term must vanish which implies

the condition
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and hence
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~ |v|2 . (173)

Positivity of the normalization condition hv, vi > 0 selects the minus sign in Eqn. (172)

v̇ = �i!v . (174)

Properly normalized (hv, vi = 1) this gives the following positive-frequency solution

v(t) =
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e�i!t . (175)

With this choice of mode function v the Hamiltonian is

Ĥ = ~!
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for which the vacuum |0i is the state of minimum energy ~!/2.

Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
inside the horizon.
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Ĥ =
1

2
p̂2 +

1

2
!2x̂2 (170)

=
1

2

h
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where
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Without loss of generality, let us assume that the solution v is chosen so that the real number hv, vi
is positive. The function v can then be rescaled such that hv, vi ⌘ 1 and hence

[â, â†] = 1 . (164)

Eqn. (164) is the standard relation for the raising and lowering operators of a harmonic oscillator.

We have hence identified the following annihilation and creation operators

â = hv, x̂i (165)

â† = �hv⇤, x̂i , (166)

and can define the vacuum state |0i via the prescription

â|0i = 0 , (167)

i.e. the vacuum is annihilated by â. Excited states of the system are created by repeated application

of creation operators

|ni ⌘ 1p
n!

(â†)n|0i . (168)

These states are eigenstates of the number operator N̂ = â†â with eigenvalue n, i.e.

N̂ |ni = n|ni . (169)

11.3 Non-Uniqueness of the Mode Functions

We haven’t yet determined unique mode functions and hence we haven’t fixed the vacuum state. Any

change in v(t) that keeps the solution x(t) unchanged will lead to a change in the creating operator

â = hv, x̂i and hence a change in the definition of the vacuum. For the simple harmonic oscillator

with time-dependent frequency !(t) (and for quantum fields in curved spacetime) there is in fact
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hv, vi[â, â†] = 1 , (162)

where

hv, wi ⌘ i

~ (v⇤@tw � (@tv
⇤)w) . (163)

Without loss of generality, let us assume that the solution v is chosen so that the real number hv, vi
is positive. The function v can then be rescaled such that hv, vi ⌘ 1 and hence
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where the (complex) mode function satisfies the classical equation of motion

v̈ + !2(t)v = 0 . (161)

The commutator (158) becomes
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no unique choice for the mode function v(t). Hence, there is no unique decomposition of x̂ into

annihilation and creation operators and no unique notion of the vacuum. Di↵erent choices for the

solution v(t) give di↵erent vacuum solutions. This problem and its standard (but not uncontested)

resolution in the case of inflation will be discussed in more detail below.

In the present case we can make progress by considering the special case of a constant-frequency

harmonic oscillator11 !(t) = !. In that case a preferred choice of v(t) is the one that makes the

vacuum state |0i the ground state of the Hamiltonian. First, we evaluate the Hamiltonian for a
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i
.
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The requirement that |0i be an eigenstate of Ĥ means that the first term must vanish which implies

the condition

v̇ = ±i!v , (172)

and hence

hv, vi = ⌥2!

~ |v|2 . (173)

Positivity of the normalization condition hv, vi > 0 selects the minus sign in Eqn. (172)

v̇ = �i!v . (174)

Properly normalized (hv, vi = 1) this gives the following positive-frequency solution

v(t) =

r
~
2!

e�i!t . (175)

With this choice of mode function v the Hamiltonian is
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In the present case we can make progress by considering the special case of a constant-frequency

harmonic oscillator11 !(t) = !. In that case a preferred choice of v(t) is the one that makes the

vacuum state |0i the ground state of the Hamiltonian. First, we evaluate the Hamiltonian for a

general mode function v(t),

Ĥ =
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and hence
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Positivity of the normalization condition hv, vi > 0 selects the minus sign in Eqn. (172)
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Properly normalized (hv, vi = 1) this gives the following positive-frequency solution
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With this choice of mode function v the Hamiltonian is
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for which the vacuum |0i is the state of minimum energy ~!/2.

Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
inside the horizon.
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no unique choice for the mode function v(t). Hence, there is no unique decomposition of x̂ into

annihilation and creation operators and no unique notion of the vacuum. Di↵erent choices for the

solution v(t) give di↵erent vacuum solutions. This problem and its standard (but not uncontested)

resolution in the case of inflation will be discussed in more detail below.

In the present case we can make progress by considering the special case of a constant-frequency

harmonic oscillator11 !(t) = !. In that case a preferred choice of v(t) is the one that makes the
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v̇ = �i!v . (174)
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With this choice of mode function v the Hamiltonian is
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for which the vacuum |0i is the state of minimum energy ~!/2.

Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
inside the horizon.
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for which the vacuum |0i is the state of minimum energy ~!/2.

Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
inside the horizon.
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Using â|0i = 0 and [â, â†] = 1, we hence find the following action of the Hamiltonian operator on

the vacuum state
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11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
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no unique choice for the mode function v(t). Hence, there is no unique decomposition of x̂ into

annihilation and creation operators and no unique notion of the vacuum. Di↵erent choices for the
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i
.
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for which the vacuum |0i is the state of minimum energy ~!/2.

Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
inside the horizon.
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Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
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solution v(t) give di↵erent vacuum solutions. This problem and its standard (but not uncontested)

resolution in the case of inflation will be discussed in more detail below.
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harmonic oscillator11 !(t) = !. In that case a preferred choice of v(t) is the one that makes the
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no unique choice for the mode function v(t). Hence, there is no unique decomposition of x̂ into

annihilation and creation operators and no unique notion of the vacuum. Di↵erent choices for the

solution v(t) give di↵erent vacuum solutions. This problem and its standard (but not uncontested)

resolution in the case of inflation will be discussed in more detail below.

In the present case we can make progress by considering the special case of a constant-frequency

harmonic oscillator11 !(t) = !. In that case a preferred choice of v(t) is the one that makes the
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With this choice of mode function v the Hamiltonian is
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for which the vacuum |0i is the state of minimum energy ~!/2.

Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
inside the horizon.
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no unique choice for the mode function v(t). Hence, there is no unique decomposition of x̂ into

annihilation and creation operators and no unique notion of the vacuum. Di↵erent choices for the

solution v(t) give di↵erent vacuum solutions. This problem and its standard (but not uncontested)

resolution in the case of inflation will be discussed in more detail below.

In the present case we can make progress by considering the special case of a constant-frequency

harmonic oscillator11 !(t) = !. In that case a preferred choice of v(t) is the one that makes the
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With this choice of mode function v the Hamiltonian is
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for which the vacuum |0i is the state of minimum energy ~!/2.

Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
inside the horizon.
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where [x̂, p̂] ⌘ x̂p̂ � p̂x̂. The equation of motion implies that the commutator holds at all times if

imposed at some initial time. In particular, for our present example

[x(t), ẋ(t)] = i~ . (159)

Note that we are in the Heisenberg picture where operators vary in time while states are time-

independent. The operator x̂ is then expanded in terms of creation and annihilation operators

x̂ = v(t) â + v⇤(t) â† , (160)

where the (complex) mode function satisfies the classical equation of motion

v̈ + !2(t)v = 0 . (161)

The commutator (158) becomes

hv, vi[â, â†] = 1 , (162)

where

hv, wi ⌘ i

~ (v⇤@tw � (@tv
⇤)w) . (163)

Without loss of generality, let us assume that the solution v is chosen so that the real number hv, vi
is positive. The function v can then be rescaled such that hv, vi ⌘ 1 and hence

[â, â†] = 1 . (164)

Eqn. (164) is the standard relation for the raising and lowering operators of a harmonic oscillator.

We have hence identified the following annihilation and creation operators

â = hv, x̂i (165)

â† = �hv⇤, x̂i , (166)

and can define the vacuum state |0i via the prescription

â|0i = 0 , (167)

i.e. the vacuum is annihilated by â. Excited states of the system are created by repeated application

of creation operators

|ni ⌘ 1p
n!

(â†)n|0i . (168)

These states are eigenstates of the number operator N̂ = â†â with eigenvalue n, i.e.

N̂ |ni = n|ni . (169)

11.3 Non-Uniqueness of the Mode Functions

We haven’t yet determined unique mode functions and hence we haven’t fixed the vacuum state. Any

change in v(t) that keeps the solution x(t) unchanged will lead to a change in the creating operator

â = hv, x̂i and hence a change in the definition of the vacuum. For the simple harmonic oscillator

with time-dependent frequency !(t) (and for quantum fields in curved spacetime) there is in fact
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no unique choice for the mode function v(t). Hence, there is no unique decomposition of x̂ into

annihilation and creation operators and no unique notion of the vacuum. Di↵erent choices for the

solution v(t) give di↵erent vacuum solutions. This problem and its standard (but not uncontested)

resolution in the case of inflation will be discussed in more detail below.

In the present case we can make progress by considering the special case of a constant-frequency

harmonic oscillator11 !(t) = !. In that case a preferred choice of v(t) is the one that makes the

vacuum state |0i the ground state of the Hamiltonian. First, we evaluate the Hamiltonian for a

general mode function v(t),
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The requirement that |0i be an eigenstate of Ĥ means that the first term must vanish which implies

the condition

v̇ = ±i!v , (172)

and hence

hv, vi = ⌥2!

~ |v|2 . (173)

Positivity of the normalization condition hv, vi > 0 selects the minus sign in Eqn. (172)

v̇ = �i!v . (174)

Properly normalized (hv, vi = 1) this gives the following positive-frequency solution
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With this choice of mode function v the Hamiltonian is

Ĥ = ~!
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for which the vacuum |0i is the state of minimum energy ~!/2.

Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
inside the horizon.
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no unique choice for the mode function v(t). Hence, there is no unique decomposition of x̂ into

annihilation and creation operators and no unique notion of the vacuum. Di↵erent choices for the

solution v(t) give di↵erent vacuum solutions. This problem and its standard (but not uncontested)

resolution in the case of inflation will be discussed in more detail below.

In the present case we can make progress by considering the special case of a constant-frequency
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i
.
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With this choice of mode function v the Hamiltonian is
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for which the vacuum |0i is the state of minimum energy ~!/2.

Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
inside the horizon.
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no unique choice for the mode function v(t). Hence, there is no unique decomposition of x̂ into

annihilation and creation operators and no unique notion of the vacuum. Di↵erent choices for the

solution v(t) give di↵erent vacuum solutions. This problem and its standard (but not uncontested)

resolution in the case of inflation will be discussed in more detail below.

In the present case we can make progress by considering the special case of a constant-frequency

harmonic oscillator11 !(t) = !. In that case a preferred choice of v(t) is the one that makes the

vacuum state |0i the ground state of the Hamiltonian. First, we evaluate the Hamiltonian for a
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Using â|0i = 0 and [â, â†] = 1, we hence find the following action of the Hamiltonian operator on

the vacuum state
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(v̇2 + !2v2)⇤ â†â†|0i +
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(|v̇|2 + !2|v|2)|0i . (171)

The requirement that |0i be an eigenstate of Ĥ means that the first term must vanish which implies

the condition

v̇ = ±i!v , (172)

and hence

hv, vi = ⌥2!

~ |v|2 . (173)

Positivity of the normalization condition hv, vi > 0 selects the minus sign in Eqn. (172)

v̇ = �i!v . (174)

Properly normalized (hv, vi = 1) this gives the following positive-frequency solution

v(t) =
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e�i!t . (175)

With this choice of mode function v the Hamiltonian is

Ĥ = ~!
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for which the vacuum |0i is the state of minimum energy ~!/2.

Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
inside the horizon.
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no unique choice for the mode function v(t). Hence, there is no unique decomposition of x̂ into

annihilation and creation operators and no unique notion of the vacuum. Di↵erent choices for the

solution v(t) give di↵erent vacuum solutions. This problem and its standard (but not uncontested)

resolution in the case of inflation will be discussed in more detail below.

In the present case we can make progress by considering the special case of a constant-frequency

harmonic oscillator11 !(t) = !. In that case a preferred choice of v(t) is the one that makes the

vacuum state |0i the ground state of the Hamiltonian. First, we evaluate the Hamiltonian for a

general mode function v(t),
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and hence
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~ |v|2 . (173)

Positivity of the normalization condition hv, vi > 0 selects the minus sign in Eqn. (172)

v̇ = �i!v . (174)

Properly normalized (hv, vi = 1) this gives the following positive-frequency solution

v(t) =
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With this choice of mode function v the Hamiltonian is
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for which the vacuum |0i is the state of minimum energy ~!/2.

Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
inside the horizon.
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no unique choice for the mode function v(t). Hence, there is no unique decomposition of x̂ into
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solution v(t) give di↵erent vacuum solutions. This problem and its standard (but not uncontested)
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for which the vacuum |0i is the state of minimum energy ~!/2.

Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
inside the horizon.
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no unique choice for the mode function v(t). Hence, there is no unique decomposition of x̂ into

annihilation and creation operators and no unique notion of the vacuum. Di↵erent choices for the

solution v(t) give di↵erent vacuum solutions. This problem and its standard (but not uncontested)

resolution in the case of inflation will be discussed in more detail below.

In the present case we can make progress by considering the special case of a constant-frequency

harmonic oscillator11 !(t) = !. In that case a preferred choice of v(t) is the one that makes the
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general mode function v(t),
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Properly normalized (hv, vi = 1) this gives the following positive-frequency solution
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With this choice of mode function v the Hamiltonian is

Ĥ = ~!
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for which the vacuum |0i is the state of minimum energy ~!/2.

Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
inside the horizon.
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no unique choice for the mode function v(t). Hence, there is no unique decomposition of x̂ into

annihilation and creation operators and no unique notion of the vacuum. Di↵erent choices for the

solution v(t) give di↵erent vacuum solutions. This problem and its standard (but not uncontested)

resolution in the case of inflation will be discussed in more detail below.

In the present case we can make progress by considering the special case of a constant-frequency

harmonic oscillator11 !(t) = !. In that case a preferred choice of v(t) is the one that makes the

vacuum state |0i the ground state of the Hamiltonian. First, we evaluate the Hamiltonian for a

general mode function v(t),
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The requirement that |0i be an eigenstate of Ĥ means that the first term must vanish which implies

the condition

v̇ = ±i!v , (172)

and hence

hv, vi = ⌥2!

~ |v|2 . (173)

Positivity of the normalization condition hv, vi > 0 selects the minus sign in Eqn. (172)

v̇ = �i!v . (174)

Properly normalized (hv, vi = 1) this gives the following positive-frequency solution

v(t) =
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e�i!t . (175)

With this choice of mode function v the Hamiltonian is

Ĥ = ~!
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for which the vacuum |0i is the state of minimum energy ~!/2.

Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
inside the horizon.
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no unique choice for the mode function v(t). Hence, there is no unique decomposition of x̂ into

annihilation and creation operators and no unique notion of the vacuum. Di↵erent choices for the

solution v(t) give di↵erent vacuum solutions. This problem and its standard (but not uncontested)

resolution in the case of inflation will be discussed in more detail below.

In the present case we can make progress by considering the special case of a constant-frequency

harmonic oscillator11 !(t) = !. In that case a preferred choice of v(t) is the one that makes the

vacuum state |0i the ground state of the Hamiltonian. First, we evaluate the Hamiltonian for a

general mode function v(t),
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The requirement that |0i be an eigenstate of Ĥ means that the first term must vanish which implies
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and hence

hv, vi = ⌥2!

~ |v|2 . (173)

Positivity of the normalization condition hv, vi > 0 selects the minus sign in Eqn. (172)

v̇ = �i!v . (174)

Properly normalized (hv, vi = 1) this gives the following positive-frequency solution
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e�i!t . (175)

With this choice of mode function v the Hamiltonian is

Ĥ = ~!
✓

N̂ +
1

2

◆
, (176)

for which the vacuum |0i is the state of minimum energy ~!/2.

Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
inside the horizon.
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no unique choice for the mode function v(t). Hence, there is no unique decomposition of x̂ into

annihilation and creation operators and no unique notion of the vacuum. Di↵erent choices for the

solution v(t) give di↵erent vacuum solutions. This problem and its standard (but not uncontested)

resolution in the case of inflation will be discussed in more detail below.

In the present case we can make progress by considering the special case of a constant-frequency

harmonic oscillator11 !(t) = !. In that case a preferred choice of v(t) is the one that makes the

vacuum state |0i the ground state of the Hamiltonian. First, we evaluate the Hamiltonian for a

general mode function v(t),
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i
.

Using â|0i = 0 and [â, â†] = 1, we hence find the following action of the Hamiltonian operator on

the vacuum state
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The requirement that |0i be an eigenstate of Ĥ means that the first term must vanish which implies
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v̇ = ±i!v , (172)

and hence

hv, vi = ⌥2!

~ |v|2 . (173)

Positivity of the normalization condition hv, vi > 0 selects the minus sign in Eqn. (172)

v̇ = �i!v . (174)

Properly normalized (hv, vi = 1) this gives the following positive-frequency solution

v(t) =
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~
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e�i!t . (175)

With this choice of mode function v the Hamiltonian is

Ĥ = ~!
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N̂ +
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for which the vacuum |0i is the state of minimum energy ~!/2.

Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
inside the horizon.
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no unique choice for the mode function v(t). Hence, there is no unique decomposition of x̂ into

annihilation and creation operators and no unique notion of the vacuum. Di↵erent choices for the

solution v(t) give di↵erent vacuum solutions. This problem and its standard (but not uncontested)

resolution in the case of inflation will be discussed in more detail below.

In the present case we can make progress by considering the special case of a constant-frequency

harmonic oscillator11 !(t) = !. In that case a preferred choice of v(t) is the one that makes the

vacuum state |0i the ground state of the Hamiltonian. First, we evaluate the Hamiltonian for a

general mode function v(t),
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Ĥ|0i =
1

2
(v̇2 + !2v2)⇤ â†â†|0i +
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the condition
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~ |v|2 . (173)

Positivity of the normalization condition hv, vi > 0 selects the minus sign in Eqn. (172)

v̇ = �i!v . (174)

Properly normalized (hv, vi = 1) this gives the following positive-frequency solution

v(t) =
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e�i!t . (175)

With this choice of mode function v the Hamiltonian is

Ĥ = ~!
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for which the vacuum |0i is the state of minimum energy ~!/2.

Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
inside the horizon.
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no unique choice for the mode function v(t). Hence, there is no unique decomposition of x̂ into

annihilation and creation operators and no unique notion of the vacuum. Di↵erent choices for the

solution v(t) give di↵erent vacuum solutions. This problem and its standard (but not uncontested)

resolution in the case of inflation will be discussed in more detail below.

In the present case we can make progress by considering the special case of a constant-frequency

harmonic oscillator11 !(t) = !. In that case a preferred choice of v(t) is the one that makes the

vacuum state |0i the ground state of the Hamiltonian. First, we evaluate the Hamiltonian for a
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1

2
(|v̇|2 + !2|v|2)|0i . (171)
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e�i!t . (175)

With this choice of mode function v the Hamiltonian is
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for which the vacuum |0i is the state of minimum energy ~!/2.

Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
inside the horizon.
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no unique choice for the mode function v(t). Hence, there is no unique decomposition of x̂ into

annihilation and creation operators and no unique notion of the vacuum. Di↵erent choices for the

solution v(t) give di↵erent vacuum solutions. This problem and its standard (but not uncontested)

resolution in the case of inflation will be discussed in more detail below.

In the present case we can make progress by considering the special case of a constant-frequency

harmonic oscillator11 !(t) = !. In that case a preferred choice of v(t) is the one that makes the
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The requirement that |0i be an eigenstate of Ĥ means that the first term must vanish which implies

the condition

v̇ = ±i!v , (172)

and hence

hv, vi = ⌥2!

~ |v|2 . (173)

Positivity of the normalization condition hv, vi > 0 selects the minus sign in Eqn. (172)

v̇ = �i!v . (174)
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With this choice of mode function v the Hamiltonian is
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for which the vacuum |0i is the state of minimum energy ~!/2.

Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
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no unique choice for the mode function v(t). Hence, there is no unique decomposition of x̂ into

annihilation and creation operators and no unique notion of the vacuum. Di↵erent choices for the

solution v(t) give di↵erent vacuum solutions. This problem and its standard (but not uncontested)

resolution in the case of inflation will be discussed in more detail below.

In the present case we can make progress by considering the special case of a constant-frequency

harmonic oscillator11 !(t) = !. In that case a preferred choice of v(t) is the one that makes the
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Ĥ|0i =
1

2
(v̇2 + !2v2)⇤ â†â†|0i +
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Positivity of the normalization condition hv, vi > 0 selects the minus sign in Eqn. (172)
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The requirement that |0i be an eigenstate of Ĥ means that the first term must vanish which implies

the condition

v̇ = ±i!v , (172)

and hence

hv, vi = ⌥2!

~ |v|2 . (173)

Positivity of the normalization condition hv, vi > 0 selects the minus sign in Eqn. (172)

v̇ = �i!v . (174)

Properly normalized (hv, vi = 1) this gives the following positive-frequency solution

v(t) =

r
~
2!

e�i!t . (175)

With this choice of mode function v the Hamiltonian is
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Ĥ = ~!
✓

N̂ +
1

2

◆
, (176)

for which the vacuum |0i is the state of minimum energy ~!/2.

Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
inside the horizon.

54



1) Review of QM Harmonic Oscillator

no unique choice for the mode function v(t). Hence, there is no unique decomposition of x̂ into

annihilation and creation operators and no unique notion of the vacuum. Di↵erent choices for the

solution v(t) give di↵erent vacuum solutions. This problem and its standard (but not uncontested)

resolution in the case of inflation will be discussed in more detail below.

In the present case we can make progress by considering the special case of a constant-frequency

harmonic oscillator11 !(t) = !. In that case a preferred choice of v(t) is the one that makes the

vacuum state |0i the ground state of the Hamiltonian. First, we evaluate the Hamiltonian for a

general mode function v(t),
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Ĥ|0i =
1

2
(v̇2 + !2v2)⇤ â†â†|0i +
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The requirement that |0i be an eigenstate of Ĥ means that the first term must vanish which implies

the condition

v̇ = ±i!v , (172)

and hence

hv, vi = ⌥2!

~ |v|2 . (173)

Positivity of the normalization condition hv, vi > 0 selects the minus sign in Eqn. (172)

v̇ = �i!v . (174)

Properly normalized (hv, vi = 1) this gives the following positive-frequency solution

v(t) =

r
~
2!

e�i!t . (175)

With this choice of mode function v the Hamiltonian is

Ĥ = ~!
✓

N̂ +
1

2

◆
, (176)

for which the vacuum |0i is the state of minimum energy ~!/2.

Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
inside the horizon.
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11.4 Zero-Point Fluctuations in the Ground State

Consider the mean square expectation value of the position operator x̂ in the ground state |0i

h|x̂|2i ⌘ h0|x̂†x̂|0i
= h0|(v⇤â† + vâ)(vâ + v⇤â†)|0i
= |v(!, t)|2h0|ââ†|0i
= |v(!, t)|2h0|[â, â†]|0i
= |v(!, t)|2 . (177)

This characterizes the zero-point fluctuations of the position in the vacuum state as the square of

the mode function

h|x̂|2i = |v(!, t)|2 =
~
2!

. (178)

This is all we need to know about quantum mechanics to compute the fluctuation spectrum created

by inflation. However, first we need to do quite a bit of work to derive the mode equation for the

scalar mode of cosmological perturbations, i.e. the analogue of Eqn. (161).

12 Quantum Fluctuations in de Sitter Space

We have finally come to the highlight of this lecture: the full computation of the quantum-mechanical

fluctuations generated during inflation and their relation to cosmological perturbations. Our calcu-

lation follows closely the treatment by Maldacena [24].

12.1 Summary of the Computational Strategy

The last two sections might have bored you, but they provided important background for the com-

putation of inflationary fluctuations. We have defined the gauge-invariant curvature perturbation

R. It is conserved outside of the horizon, so we can compute it at horizon exit and remain ignorant

about the subhorizon physics during and after reheating until horizon re-entry of a given R-mode.

We have recalled the quantization of the simple harmonic oscillator, so by writing the equation of

motion for R in simple harmonic oscillator form we are in the position to study the quantization of

scalar fluctuations during inflation.

Here is a summary of the steps we will perform in the following sections:

1. We expand the action for single-field slow-roll inflation to second order in fluctuations. Spe-

cially, we derive the second-order expansion of the action in terms of R. The action approach

guarantees the correct normalization for the quantization of fluctuations.

2. From the action we derive the equation of motion for R and show that it is of SHO form.

3. The mode equations for R will be hard to solve exactly so we consider several approximate

solutions valid during slow-roll evolution.
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Vacuum unique thanks to

no unique choice for the mode function v(t). Hence, there is no unique decomposition of x̂ into

annihilation and creation operators and no unique notion of the vacuum. Di↵erent choices for the

solution v(t) give di↵erent vacuum solutions. This problem and its standard (but not uncontested)

resolution in the case of inflation will be discussed in more detail below.

In the present case we can make progress by considering the special case of a constant-frequency

harmonic oscillator11 !(t) = !. In that case a preferred choice of v(t) is the one that makes the

vacuum state |0i the ground state of the Hamiltonian. First, we evaluate the Hamiltonian for a

general mode function v(t),

Ĥ =
1

2
p̂2 +

1

2
!2x̂2 (170)

=
1

2

h
(v̇2 + !2v2)ââ + (v̇2 + !2v2)⇤ â†â† + (|v̇|2 + !2|v|2)(ââ† + â†â)

i
.

Using â|0i = 0 and [â, â†] = 1, we hence find the following action of the Hamiltonian operator on
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Properly normalized (hv, vi = 1) this gives the following positive-frequency solution
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2

◆
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for which the vacuum |0i is the state of minimum energy ~!/2.

Exercise 7 (Non-Uniqueness for Time-Dependent Oscillators) What goes wrong with the

above argument for the case of a simple harmonic oscillator with time-dependent frequency?

11It will turn out that this is the relevant case for inflation at very early times when all modes are deep
inside the horizon.
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Derivation of Inflationary Tensor Spectrum
after horizon re-entry. Together these three lectures therefore provide a complete account of both the

generation and the observational consequences of the quantum fluctuations produced by inflation.

It is a beautiful story. Let us begin to unfold it.

11 Quantum Mechanics of the Harmonic Oscillator

“The career of a young theoretical physicist consists of treating the harmonic oscillator

in ever-increasing levels of abstraction.”

Sidney Coleman

The computation of quantum fluctuations generated during inflation is algebraically quite inten-

sive and it is therefore instructive to start with a simpler example which nevertheless contains most

of the relevant physics. We therefore warm up by considering the quantization of a one-dimensional

simple harmonic oscillator. Harmonic oscillators are one of the few physical systems that physicists

know how to solve exactly. Fortunately, almost all more complicated physical systems can be rep-

resented by a collection of simple harmonic oscillators with di↵erent amplitudes and frequencies.

This is of course what Fourier analysis is all about. We will show below that free fields in curved

spacetime (and de Sitter space in particular) are similar to collections of harmonic oscillators with

time-dependent frequencies. The detailed treatment of the quantum harmonic oscillator in this sec-

tion will therefore not be in vain, but will provide important intuition for the inflationary calculation.

This section is based on the excellent treatment of [26].

11.1 Action

The classical action of a harmonic oscillator with time-dependent frequency is

S =

Z
dt

✓
1

2
ẋ2 � 1

2
!2(t)x2

◆
⌘

Z
dt L , (155)

where x is the deviation of the particle from its equilibrium state, x ⌘ 0, and for convenience we

have set the particle mass to one, m ⌘ 1. For concreteness one may wish to consider a particle of

mass m on a spring which is heated by an external source so that its spring constant depends on

time, k(t), where !2 = k/m. The classical equation of motion follows from variation of the action

with respect to the particle coordinate x

�S

�x
= 0 ) ẍ + !2(t) x = 0 . (156)

11.2 Canonical Quantization

Canonical quantization of the system proceeds in the standard way: We define the momentum

conjugate to x

p ⌘ dL

dẋ
= ẋ, (157)

which agrees with the standard notion of the particle’s momentum p = mv. We then promote the

classical variables x, p to quantum operators x̂, p̂ and impose the canonical commutator

[x̂, p̂] = i~ , (158)
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where we have defined the two slow-roll parameters

✏� ⌘ 3

2

�̇2

V
, ⌘� ⌘ � �̈

H�̇
(106)

The approximations in rhs of Eqs (104), (105) are consistent only as long as both slow-

roll parameters are su�ciently small, ✏� ⌧ 1 and ⌘� ⌧ 1. It is then useful also to define

the potential slow-roll parameters

✏V ⌘ m2
Pl

2

✓
V 0

V

◆2

, ⌘V ⌘ m2
Pl

V 00

V
, (107)

related to the former parameters by ✏� ' ✏V and ✏� ' ⌘V � ✏V . Demanding ✏V ⌧ 1 and

⌘V ⌧ 1 represents therefore a su�cient (though not necessary) condition, for obtaining

and sustaining an inflationary slow-roll regime. The ✏ slow-roll parameter control the

deviation of the equation of state from pure de Sitter, w ⌘ (1
2
�̇2 + V )/(1

2
�̇2 � V ) '

�1 + 2
3
✏�, hence determining as well the rate of change of the inflationary Hubble rate,

✏H ⌘ � Ḣ

H2
⌘ 3

2
(1 + w) ' ✏� . (108)

Note that even though we have shown that ✏� ' ✏V ' ✏H , this double equivalence does

not necessarily hold in scenarios beyond the SRSF paradigm.

If the inflaton potential is su�ciently flat (i.e. ⌘V ⌧ 1) over a su�cient range of

scalar field values, we ensure this way that the universe inflates (i.e. ✏V ⌧ 1) during a

su�cient amount of time, to solve the initial condition problems of the Hot Big Bang

model. In the slow-roll regime, the equation of state w is close to �1, leading to a

quasi-exponential expansion a(t) ⇠ eH t, with H approximately constant, though slowly

decreasing with time as �H/H ' ✏�N , according to Eq. (108).

The tensor anisotropic stress of a scalar field, i.e. the source term in the GW

equation of motion, vanishes at linear order in the field fluctuations⇤. However,

unavoidable quantum fluctuations of hij are parametrically amplified by the quasi-

exponential expansion of the universe during inflation. To describe this phenomenon,

we need to quantize the tensor modes of the metric, considered as perturbations over

the homogeneous and isotropic inflationary background. Throughout this sub-section,

we will work at lowest order in the small slow-roll parameters Eq. (107), but we will

provide at the end, for completeness, the expression for the higher-order corrections

from Ref. [145].

The first step to quantize the system is to identify the canonical degrees of freedom.

This can be done by expanding the pure gravitational part of action (103) with the

metric Eq. (??), at second order in hij [CITE]

S(2)
g = � m2

Pl

8

Z
d⌘ d3x a2(⌘) ⌘µ⌫ @µhij @⌫hij

⇤GWs produced by a non-zero anisotropic stress at second order in the scalar perturbations will be
discussed in sub-section 5.3.1. Other sources of a non-zero anisotropic stress during inflation will be
discussed in sub-sections 5.1 and ??.
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⇤GWs produced by a non-zero anisotropic stress at second order in the scalar perturbations will be
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=
m2

Pl

4

X

r=+,⇥

Z
d⌘ d3k a2(⌘)

⇥
|h0

r(k, ⌘)|2 � k2 |hr(k, ⌘)|2
⇤

(109)

=
1

2

X

r=+,⇥

Z
d⌘ d3k


|v0

r|2 � k2 |vr|2 +
a00

a
|vr|2

�
, (110)

where we have used the decomposition Eq. (9) and the orthonormal condition (11) in

the second equality, and for the third equality we have introduced the variables

vr(k, ⌘) =
mPlp
2
a(⌘)hr(k, ⌘) . (111)

Action Eq. (109) is equivalent to the action of two real scalar fields vr(x, ⌘) in Minkowski

spacetime, with canonically conjugate momenta ⇡r(x, ⌘) ⌘ v0
r(x, ⌘), and time-dependent

frequency !2
k(⌘) = k2 � a00

a
. The quantization proceeds by promoting vr and ⇡r to

operators v̂r and ⇡̂r that satisfy the standard commutation relations on hypersurfaces

of constant ⌘,

[v̂r(x, ⌘) , ⇡̂r0(x
0, ⌘)] = i �rr0 �

(3)(x � x0)

[v̂r(x, ⌘) , v̂r0(x
0, ⌘)] = [⇡̂r(x, ⌘) , ⇡̂r0(x

0, ⌘)] = 0 . (112)

The fields can be decomposed on the basis of the solutions of the dynamical equations

derived from action Eq. (109). Since the background is spatially isotropic, we can write

v̂r(x, ⌘) =

Z
d3k

(2⇡)3/2

⇥
vk(⌘) e

ikx â
kr + v⇤

k(⌘) e
�ikx â+

kr

⇤
(113)

with â+
kr and â

kr are creation and annihilation operators satisfying the usual

commutation relations
⇥
â
kr , â

+
k

0r0

⇤
= �rr0 �

(3)(k � k0) , [â
kr , âk0r0 ] =

⇥
â+
kr , â

+
k

0r0

⇤
= 0 , (114)

and the mode functions vk(⌘) satisfying the equation of motion

v00
k + !2

k(⌘) vk = 0 , with !k(⌘)
2 ⌘ k2 � a00

a
(115)

Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition

vk v
0⇤
k � v⇤

k v
0
k = i . (116)

Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
(+)
k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv

(+)
k = +kv

(+)
k .

hij =
X

r=+,x

e(r)ij hr hr(x, ⌘) ⌘
Z

dk e�ikx hr(k, ⌘){ , {
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quasi-exponential expansion a(t) ⇠ eH t, with H approximately constant, though slowly
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The tensor anisotropic stress of a scalar field, i.e. the source term in the GW

equation of motion, vanishes at linear order in the field fluctuations⇤. However,

unavoidable quantum fluctuations of hij are parametrically amplified by the quasi-

exponential expansion of the universe during inflation. To describe this phenomenon,

we need to quantize the tensor modes of the metric, considered as perturbations over

the homogeneous and isotropic inflationary background. Throughout this sub-section,

we will work at lowest order in the small slow-roll parameters Eq. (107), but we will

provide at the end, for completeness, the expression for the higher-order corrections

from Ref. [145].

The first step to quantize the system is to identify the canonical degrees of freedom.

This can be done by expanding the pure gravitational part of action (103) with the

metric Eq. (??), at second order in hij [CITE]
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Z
d⌘ d3x a2(⌘) ⌘µ⌫ @µhij @⌫hij

⇤GWs produced by a non-zero anisotropic stress at second order in the scalar perturbations will be
discussed in sub-section 5.3.1. Other sources of a non-zero anisotropic stress during inflation will be
discussed in sub-sections 5.1 and ??.
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operators v̂r and ⇡̂r that satisfy the standard commutation relations on hypersurfaces

of constant ⌘,

[v̂r(x, ⌘) , ⇡̂r0(x
0, ⌘)] = i �rr0 �

(3)(x � x0)

[v̂r(x, ⌘) , v̂r0(x
0, ⌘)] = [⇡̂r(x, ⌘) , ⇡̂r0(x

0, ⌘)] = 0 . (112)

The fields can be decomposed on the basis of the solutions of the dynamical equations

derived from action Eq. (109). Since the background is spatially isotropic, we can write

v̂r(x, ⌘) =

Z
d3k
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kr + v⇤

k(⌘) e
�ikx â+
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with â+
kr and â

kr are creation and annihilation operators satisfying the usual

commutation relations
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and the mode functions vk(⌘) satisfying the equation of motion

v00
k + !2

k(⌘) vk = 0 , with !k(⌘)
2 ⌘ k2 � a00

a
(115)

Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition

vk v
0⇤
k � v⇤

k v
0
k = i . (116)

Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
(+)
k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv

(+)
k = +kv

(+)
k .
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kr |0i = 0, we can associate the

annihilation operators â
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where we have defined the two slow-roll parameters

✏� ⌘ 3

2

�̇2

V
, ⌘� ⌘ � �̈

H�̇
(106)

The approximations in rhs of Eqs (104), (105) are consistent only as long as both slow-

roll parameters are su�ciently small, ✏� ⌧ 1 and ⌘� ⌧ 1. It is then useful also to define

the potential slow-roll parameters

✏V ⌘ m2
Pl

2

✓
V 0

V

◆2

, ⌘V ⌘ m2
Pl

V 00

V
, (107)

related to the former parameters by ✏� ' ✏V and ✏� ' ⌘V � ✏V . Demanding ✏V ⌧ 1 and

⌘V ⌧ 1 represents therefore a su�cient (though not necessary) condition, for obtaining

and sustaining an inflationary slow-roll regime. The ✏ slow-roll parameter control the

deviation of the equation of state from pure de Sitter, w ⌘ (1
2
�̇2 + V )/(1

2
�̇2 � V ) '

�1 + 2
3
✏�, hence determining as well the rate of change of the inflationary Hubble rate,

✏H ⌘ � Ḣ

H2
⌘ 3

2
(1 + w) ' ✏� . (108)

Note that even though we have shown that ✏� ' ✏V ' ✏H , this double equivalence does

not necessarily hold in scenarios beyond the SRSF paradigm.

If the inflaton potential is su�ciently flat (i.e. ⌘V ⌧ 1) over a su�cient range of

scalar field values, we ensure this way that the universe inflates (i.e. ✏V ⌧ 1) during a

su�cient amount of time, to solve the initial condition problems of the Hot Big Bang

model. In the slow-roll regime, the equation of state w is close to �1, leading to a

quasi-exponential expansion a(t) ⇠ eH t, with H approximately constant, though slowly

decreasing with time as �H/H ' ✏�N , according to Eq. (108).

The tensor anisotropic stress of a scalar field, i.e. the source term in the GW

equation of motion, vanishes at linear order in the field fluctuations⇤. However,

unavoidable quantum fluctuations of hij are parametrically amplified by the quasi-

exponential expansion of the universe during inflation. To describe this phenomenon,

we need to quantize the tensor modes of the metric, considered as perturbations over

the homogeneous and isotropic inflationary background. Throughout this sub-section,

we will work at lowest order in the small slow-roll parameters Eq. (107), but we will

provide at the end, for completeness, the expression for the higher-order corrections

from Ref. [145].

The first step to quantize the system is to identify the canonical degrees of freedom.

This can be done by expanding the pure gravitational part of action (103) with the

metric Eq. (??), at second order in hij [CITE]

S(2)
g = � m2

Pl

8

Z
d⌘ d3x a2(⌘) ⌘µ⌫ @µhij @⌫hij

⇤GWs produced by a non-zero anisotropic stress at second order in the scalar perturbations will be
discussed in sub-section 5.3.1. Other sources of a non-zero anisotropic stress during inflation will be
discussed in sub-sections 5.1 and ??.
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where we have used the decomposition Eq. (9) and the orthonormal condition (11) in

the second equality, and for the third equality we have introduced the variables

vr(k, ⌘) =
mPlp
2
a(⌘)hr(k, ⌘) . (111)

Action Eq. (109) is equivalent to the action of two real scalar fields vr(x, ⌘) in Minkowski

spacetime, with canonically conjugate momenta ⇡r(x, ⌘) ⌘ v0
r(x, ⌘), and time-dependent

frequency !2
k(⌘) = k2 � a00

a
. The quantization proceeds by promoting vr and ⇡r to

operators v̂r and ⇡̂r that satisfy the standard commutation relations on hypersurfaces

of constant ⌘,

[v̂r(x, ⌘) , ⇡̂r0(x
0, ⌘)] = i �rr0 �

(3)(x � x0)

[v̂r(x, ⌘) , v̂r0(x
0, ⌘)] = [⇡̂r(x, ⌘) , ⇡̂r0(x

0, ⌘)] = 0 . (112)

The fields can be decomposed on the basis of the solutions of the dynamical equations

derived from action Eq. (109). Since the background is spatially isotropic, we can write

v̂r(x, ⌘) =

Z
d3k

(2⇡)3/2

⇥
vk(⌘) e

ikx â
kr + v⇤

k(⌘) e
�ikx â+

kr

⇤
(113)

with â+
kr and â

kr are creation and annihilation operators satisfying the usual

commutation relations
⇥
â
kr , â

+
k

0r0

⇤
= �rr0 �

(3)(k � k0) , [â
kr , âk0r0 ] =

⇥
â+
kr , â

+
k

0r0

⇤
= 0 , (114)

and the mode functions vk(⌘) satisfying the equation of motion

v00
k + !2

k(⌘) vk = 0 , with !k(⌘)
2 ⌘ k2 � a00

a
(115)

Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition

vk v
0⇤
k � v⇤

k v
0
k = i . (116)

Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
(+)
k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv

(+)
k = +kv

(+)
k .

Stochastic gravitational wave backgrounds and early universe cosmology. 46

=
m2

Pl

4

X

r=+,⇥

Z
d⌘ d3k a2(⌘)

⇥
|h0

r(k, ⌘)|2 � k2 |hr(k, ⌘)|2
⇤

(109)

=
1

2

X

r=+,⇥

Z
d⌘ d3k


|v0

r|2 � k2 |vr|2 +
a00

a
|vr|2

�
, (110)

where we have used the decomposition Eq. (9) and the orthonormal condition (11) in

the second equality, and for the third equality we have introduced the variables

vr(k, ⌘) =
mPlp
2
a(⌘)hr(k, ⌘) . (111)

Action Eq. (109) is equivalent to the action of two real scalar fields vr(x, ⌘) in Minkowski

spacetime, with canonically conjugate momenta ⇡r(x, ⌘) ⌘ v0
r(x, ⌘), and time-dependent

frequency !2
k(⌘) = k2 � a00

a
. The quantization proceeds by promoting vr and ⇡r to

operators v̂r and ⇡̂r that satisfy the standard commutation relations on hypersurfaces

of constant ⌘,

[v̂r(x, ⌘) , ⇡̂r0(x
0, ⌘)] = i �rr0 �

(3)(x � x0)

[v̂r(x, ⌘) , v̂r0(x
0, ⌘)] = [⇡̂r(x, ⌘) , ⇡̂r0(x

0, ⌘)] = 0 . (112)

The fields can be decomposed on the basis of the solutions of the dynamical equations

derived from action Eq. (109). Since the background is spatially isotropic, we can write

v̂r(x, ⌘) =

Z
d3k

(2⇡)3/2

⇥
vk(⌘) e

ikx â
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kr are creation and annihilation operators satisfying the usual

commutation relations
⇥
â
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k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
(+)
k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
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kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv
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Z
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Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition
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from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes
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kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv
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Let’s quantize (         ):~ = 1
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kr and â
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The approximations in rhs of Eqs (104), (105) are consistent only as long as both slow-
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related to the former parameters by ✏� ' ✏V and ✏� ' ⌘V � ✏V . Demanding ✏V ⌧ 1 and

⌘V ⌧ 1 represents therefore a su�cient (though not necessary) condition, for obtaining

and sustaining an inflationary slow-roll regime. The ✏ slow-roll parameter control the

deviation of the equation of state from pure de Sitter, w ⌘ (1
2
�̇2 + V )/(1

2
�̇2 � V ) '

�1 + 2
3
✏�, hence determining as well the rate of change of the inflationary Hubble rate,

✏H ⌘ � Ḣ

H2
⌘ 3

2
(1 + w) ' ✏� . (108)

Note that even though we have shown that ✏� ' ✏V ' ✏H , this double equivalence does

not necessarily hold in scenarios beyond the SRSF paradigm.

If the inflaton potential is su�ciently flat (i.e. ⌘V ⌧ 1) over a su�cient range of

scalar field values, we ensure this way that the universe inflates (i.e. ✏V ⌧ 1) during a

su�cient amount of time, to solve the initial condition problems of the Hot Big Bang

model. In the slow-roll regime, the equation of state w is close to �1, leading to a

quasi-exponential expansion a(t) ⇠ eH t, with H approximately constant, though slowly

decreasing with time as �H/H ' ✏�N , according to Eq. (108).

The tensor anisotropic stress of a scalar field, i.e. the source term in the GW

equation of motion, vanishes at linear order in the field fluctuations⇤. However,

unavoidable quantum fluctuations of hij are parametrically amplified by the quasi-

exponential expansion of the universe during inflation. To describe this phenomenon,

we need to quantize the tensor modes of the metric, considered as perturbations over

the homogeneous and isotropic inflationary background. Throughout this sub-section,

we will work at lowest order in the small slow-roll parameters Eq. (107), but we will

provide at the end, for completeness, the expression for the higher-order corrections

from Ref. [145].

The first step to quantize the system is to identify the canonical degrees of freedom.

This can be done by expanding the pure gravitational part of action (103) with the

metric Eq. (??), at second order in hij [CITE]

S(2)
g = � m2

Pl

8

Z
d⌘ d3x a2(⌘) ⌘µ⌫ @µhij @⌫hij

⇤GWs produced by a non-zero anisotropic stress at second order in the scalar perturbations will be
discussed in sub-section 5.3.1. Other sources of a non-zero anisotropic stress during inflation will be
discussed in sub-sections 5.1 and ??.

Stochastic gravitational wave backgrounds and early universe cosmology. 46

=
m2

Pl

4

X

r=+,⇥

Z
d⌘ d3k a2(⌘)

⇥
|h0

r(k, ⌘)|2 � k2 |hr(k, ⌘)|2
⇤

(109)

=
1

2

X

r=+,⇥

Z
d⌘ d3k


|v0

r|2 � k2 |vr|2 +
a00

a
|vr|2

�
, (110)

where we have used the decomposition Eq. (9) and the orthonormal condition (11) in

the second equality, and for the third equality we have introduced the variables

vr(k, ⌘) =
mPlp
2
a(⌘)hr(k, ⌘) . (111)

Action Eq. (109) is equivalent to the action of two real scalar fields vr(x, ⌘) in Minkowski

spacetime, with canonically conjugate momenta ⇡r(x, ⌘) ⌘ v0
r(x, ⌘), and time-dependent

frequency !2
k(⌘) = k2 � a00

a
. The quantization proceeds by promoting vr and ⇡r to

operators v̂r and ⇡̂r that satisfy the standard commutation relations on hypersurfaces

of constant ⌘,

[v̂r(x, ⌘) , ⇡̂r0(x
0, ⌘)] = i �rr0 �

(3)(x � x0)

[v̂r(x, ⌘) , v̂r0(x
0, ⌘)] = [⇡̂r(x, ⌘) , ⇡̂r0(x

0, ⌘)] = 0 . (112)

The fields can be decomposed on the basis of the solutions of the dynamical equations

derived from action Eq. (109). Since the background is spatially isotropic, we can write

v̂r(x, ⌘) =

Z
d3k

(2⇡)3/2

⇥
vk(⌘) e

ikx â
kr + v⇤

k(⌘) e
�ikx â+

kr

⇤
(113)

with â+
kr and â

kr are creation and annihilation operators satisfying the usual

commutation relations
⇥
â
kr , â

+
k

0r0

⇤
= �rr0 �

(3)(k � k0) , [â
kr , âk0r0 ] =

⇥
â+
kr , â

+
k

0r0

⇤
= 0 , (114)

and the mode functions vk(⌘) satisfying the equation of motion

v00
k + !2

k(⌘) vk = 0 , with !k(⌘)
2 ⌘ k2 � a00

a
(115)

Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition

vk v
0⇤
k � v⇤

k v
0
k = i . (116)

Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
(+)
k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv

(+)
k = +kv

(+)
k .
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where we have defined the two slow-roll parameters

✏� ⌘ 3

2

�̇2

V
, ⌘� ⌘ � �̈

H�̇
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The approximations in rhs of Eqs (104), (105) are consistent only as long as both slow-

roll parameters are su�ciently small, ✏� ⌧ 1 and ⌘� ⌧ 1. It is then useful also to define

the potential slow-roll parameters
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V
, (107)

related to the former parameters by ✏� ' ✏V and ✏� ' ⌘V � ✏V . Demanding ✏V ⌧ 1 and

⌘V ⌧ 1 represents therefore a su�cient (though not necessary) condition, for obtaining

and sustaining an inflationary slow-roll regime. The ✏ slow-roll parameter control the

deviation of the equation of state from pure de Sitter, w ⌘ (1
2
�̇2 + V )/(1

2
�̇2 � V ) '

�1 + 2
3
✏�, hence determining as well the rate of change of the inflationary Hubble rate,

✏H ⌘ � Ḣ

H2
⌘ 3

2
(1 + w) ' ✏� . (108)

Note that even though we have shown that ✏� ' ✏V ' ✏H , this double equivalence does

not necessarily hold in scenarios beyond the SRSF paradigm.

If the inflaton potential is su�ciently flat (i.e. ⌘V ⌧ 1) over a su�cient range of

scalar field values, we ensure this way that the universe inflates (i.e. ✏V ⌧ 1) during a

su�cient amount of time, to solve the initial condition problems of the Hot Big Bang

model. In the slow-roll regime, the equation of state w is close to �1, leading to a

quasi-exponential expansion a(t) ⇠ eH t, with H approximately constant, though slowly

decreasing with time as �H/H ' ✏�N , according to Eq. (108).

The tensor anisotropic stress of a scalar field, i.e. the source term in the GW

equation of motion, vanishes at linear order in the field fluctuations⇤. However,

unavoidable quantum fluctuations of hij are parametrically amplified by the quasi-

exponential expansion of the universe during inflation. To describe this phenomenon,

we need to quantize the tensor modes of the metric, considered as perturbations over

the homogeneous and isotropic inflationary background. Throughout this sub-section,

we will work at lowest order in the small slow-roll parameters Eq. (107), but we will

provide at the end, for completeness, the expression for the higher-order corrections

from Ref. [145].

The first step to quantize the system is to identify the canonical degrees of freedom.

This can be done by expanding the pure gravitational part of action (103) with the

metric Eq. (??), at second order in hij [CITE]

S(2)
g = � m2

Pl

8

Z
d⌘ d3x a2(⌘) ⌘µ⌫ @µhij @⌫hij

⇤GWs produced by a non-zero anisotropic stress at second order in the scalar perturbations will be
discussed in sub-section 5.3.1. Other sources of a non-zero anisotropic stress during inflation will be
discussed in sub-sections 5.1 and ??.
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where we have used the decomposition Eq. (9) and the orthonormal condition (11) in

the second equality, and for the third equality we have introduced the variables

vr(k, ⌘) =
mPlp
2
a(⌘)hr(k, ⌘) . (111)

Action Eq. (109) is equivalent to the action of two real scalar fields vr(x, ⌘) in Minkowski

spacetime, with canonically conjugate momenta ⇡r(x, ⌘) ⌘ v0
r(x, ⌘), and time-dependent

frequency !2
k(⌘) = k2 � a00

a
. The quantization proceeds by promoting vr and ⇡r to

operators v̂r and ⇡̂r that satisfy the standard commutation relations on hypersurfaces

of constant ⌘,

[v̂r(x, ⌘) , ⇡̂r0(x
0, ⌘)] = i �rr0 �

(3)(x � x0)

[v̂r(x, ⌘) , v̂r0(x
0, ⌘)] = [⇡̂r(x, ⌘) , ⇡̂r0(x

0, ⌘)] = 0 . (112)

The fields can be decomposed on the basis of the solutions of the dynamical equations

derived from action Eq. (109). Since the background is spatially isotropic, we can write

v̂r(x, ⌘) =

Z
d3k

(2⇡)3/2

⇥
vk(⌘) e

ikx â
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with â+
kr and â

kr are creation and annihilation operators satisfying the usual

commutation relations
⇥
â
kr , â

+
k

0r0

⇤
= �rr0 �

(3)(k � k0) , [â
kr , âk0r0 ] =

⇥
â+
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+
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0r0
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= 0 , (114)

and the mode functions vk(⌘) satisfying the equation of motion

v00
k + !2

k(⌘) vk = 0 , with !k(⌘)
2 ⌘ k2 � a00

a
(115)

Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition

vk v
0⇤
k � v⇤

k v
0
k = i . (116)

Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
(+)
k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv

(+)
k = +kv

(+)
k .
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from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2
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standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion
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kr

⇤
(113)

with â+
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The approximations in rhs of Eqs (104), (105) are consistent only as long as both slow-
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related to the former parameters by ✏� ' ✏V and ✏� ' ⌘V � ✏V . Demanding ✏V ⌧ 1 and

⌘V ⌧ 1 represents therefore a su�cient (though not necessary) condition, for obtaining

and sustaining an inflationary slow-roll regime. The ✏ slow-roll parameter control the

deviation of the equation of state from pure de Sitter, w ⌘ (1
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✏�, hence determining as well the rate of change of the inflationary Hubble rate,
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H2
⌘ 3

2
(1 + w) ' ✏� . (108)

Note that even though we have shown that ✏� ' ✏V ' ✏H , this double equivalence does

not necessarily hold in scenarios beyond the SRSF paradigm.

If the inflaton potential is su�ciently flat (i.e. ⌘V ⌧ 1) over a su�cient range of

scalar field values, we ensure this way that the universe inflates (i.e. ✏V ⌧ 1) during a

su�cient amount of time, to solve the initial condition problems of the Hot Big Bang

model. In the slow-roll regime, the equation of state w is close to �1, leading to a

quasi-exponential expansion a(t) ⇠ eH t, with H approximately constant, though slowly

decreasing with time as �H/H ' ✏�N , according to Eq. (108).

The tensor anisotropic stress of a scalar field, i.e. the source term in the GW

equation of motion, vanishes at linear order in the field fluctuations⇤. However,

unavoidable quantum fluctuations of hij are parametrically amplified by the quasi-

exponential expansion of the universe during inflation. To describe this phenomenon,

we need to quantize the tensor modes of the metric, considered as perturbations over

the homogeneous and isotropic inflationary background. Throughout this sub-section,

we will work at lowest order in the small slow-roll parameters Eq. (107), but we will

provide at the end, for completeness, the expression for the higher-order corrections

from Ref. [145].

The first step to quantize the system is to identify the canonical degrees of freedom.

This can be done by expanding the pure gravitational part of action (103) with the

metric Eq. (??), at second order in hij [CITE]

S(2)
g = � m2

Pl

8

Z
d⌘ d3x a2(⌘) ⌘µ⌫ @µhij @⌫hij

⇤GWs produced by a non-zero anisotropic stress at second order in the scalar perturbations will be
discussed in sub-section 5.3.1. Other sources of a non-zero anisotropic stress during inflation will be
discussed in sub-sections 5.1 and ??.
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where we have used the decomposition Eq. (9) and the orthonormal condition (11) in

the second equality, and for the third equality we have introduced the variables

vr(k, ⌘) =
mPlp
2
a(⌘)hr(k, ⌘) . (111)

Action Eq. (109) is equivalent to the action of two real scalar fields vr(x, ⌘) in Minkowski

spacetime, with canonically conjugate momenta ⇡r(x, ⌘) ⌘ v0
r(x, ⌘), and time-dependent

frequency !2
k(⌘) = k2 � a00

a
. The quantization proceeds by promoting vr and ⇡r to

operators v̂r and ⇡̂r that satisfy the standard commutation relations on hypersurfaces

of constant ⌘,

[v̂r(x, ⌘) , ⇡̂r0(x
0, ⌘)] = i �rr0 �

(3)(x � x0)

[v̂r(x, ⌘) , v̂r0(x
0, ⌘)] = [⇡̂r(x, ⌘) , ⇡̂r0(x

0, ⌘)] = 0 . (112)

The fields can be decomposed on the basis of the solutions of the dynamical equations

derived from action Eq. (109). Since the background is spatially isotropic, we can write

v̂r(x, ⌘) =

Z
d3k

(2⇡)3/2

⇥
vk(⌘) e

ikx â
kr + v⇤

k(⌘) e
�ikx â+
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(113)

with â+
kr and â

kr are creation and annihilation operators satisfying the usual

commutation relations
⇥
â
kr , â

+
k

0r0

⇤
= �rr0 �

(3)(k � k0) , [â
kr , âk0r0 ] =

⇥
â+
kr , â

+
k

0r0

⇤
= 0 , (114)

and the mode functions vk(⌘) satisfying the equation of motion

v00
k + !2

k(⌘) vk = 0 , with !k(⌘)
2 ⌘ k2 � a00

a
(115)

Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition

vk v
0⇤
k � v⇤

k v
0
k = i . (116)

Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
(+)
k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv

(+)
k = +kv

(+)
k .
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kr , âk0r0 ] =

⇥
â+
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kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion
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⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
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where we have defined the two slow-roll parameters

✏� ⌘ 3

2

�̇2

V
, ⌘� ⌘ � �̈

H�̇
(106)

The approximations in rhs of Eqs (104), (105) are consistent only as long as both slow-

roll parameters are su�ciently small, ✏� ⌧ 1 and ⌘� ⌧ 1. It is then useful also to define

the potential slow-roll parameters

✏V ⌘ m2
Pl

2

✓
V 0

V

◆2

, ⌘V ⌘ m2
Pl

V 00

V
, (107)

related to the former parameters by ✏� ' ✏V and ✏� ' ⌘V � ✏V . Demanding ✏V ⌧ 1 and

⌘V ⌧ 1 represents therefore a su�cient (though not necessary) condition, for obtaining

and sustaining an inflationary slow-roll regime. The ✏ slow-roll parameter control the

deviation of the equation of state from pure de Sitter, w ⌘ (1
2
�̇2 + V )/(1

2
�̇2 � V ) '

�1 + 2
3
✏�, hence determining as well the rate of change of the inflationary Hubble rate,

✏H ⌘ � Ḣ

H2
⌘ 3

2
(1 + w) ' ✏� . (108)

Note that even though we have shown that ✏� ' ✏V ' ✏H , this double equivalence does

not necessarily hold in scenarios beyond the SRSF paradigm.

If the inflaton potential is su�ciently flat (i.e. ⌘V ⌧ 1) over a su�cient range of

scalar field values, we ensure this way that the universe inflates (i.e. ✏V ⌧ 1) during a

su�cient amount of time, to solve the initial condition problems of the Hot Big Bang

model. In the slow-roll regime, the equation of state w is close to �1, leading to a

quasi-exponential expansion a(t) ⇠ eH t, with H approximately constant, though slowly

decreasing with time as �H/H ' ✏�N , according to Eq. (108).

The tensor anisotropic stress of a scalar field, i.e. the source term in the GW

equation of motion, vanishes at linear order in the field fluctuations⇤. However,

unavoidable quantum fluctuations of hij are parametrically amplified by the quasi-

exponential expansion of the universe during inflation. To describe this phenomenon,

we need to quantize the tensor modes of the metric, considered as perturbations over

the homogeneous and isotropic inflationary background. Throughout this sub-section,

we will work at lowest order in the small slow-roll parameters Eq. (107), but we will

provide at the end, for completeness, the expression for the higher-order corrections

from Ref. [145].

The first step to quantize the system is to identify the canonical degrees of freedom.

This can be done by expanding the pure gravitational part of action (103) with the

metric Eq. (??), at second order in hij [CITE]

S(2)
g = � m2
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⇤GWs produced by a non-zero anisotropic stress at second order in the scalar perturbations will be
discussed in sub-section 5.3.1. Other sources of a non-zero anisotropic stress during inflation will be
discussed in sub-sections 5.1 and ??.
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Action Eq. (109) is equivalent to the action of two real scalar fields vr(x, ⌘) in Minkowski

spacetime, with canonically conjugate momenta ⇡r(x, ⌘) ⌘ v0
r(x, ⌘), and time-dependent

frequency !2
k(⌘) = k2 � a00

a
. The quantization proceeds by promoting vr and ⇡r to
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Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes
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annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv
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kr

⇤
(113)

with â+
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kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v
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k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be
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operator Ĥ = i@⌘ with positive eigenvalues, Ĥv
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â+
kr , â
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where we have defined the two slow-roll parameters
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H�̇
(106)

The approximations in rhs of Eqs (104), (105) are consistent only as long as both slow-

roll parameters are su�ciently small, ✏� ⌧ 1 and ⌘� ⌧ 1. It is then useful also to define

the potential slow-roll parameters

✏V ⌘ m2
Pl

2

✓
V 0
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◆2

, ⌘V ⌘ m2
Pl

V 00

V
, (107)

related to the former parameters by ✏� ' ✏V and ✏� ' ⌘V � ✏V . Demanding ✏V ⌧ 1 and

⌘V ⌧ 1 represents therefore a su�cient (though not necessary) condition, for obtaining

and sustaining an inflationary slow-roll regime. The ✏ slow-roll parameter control the

deviation of the equation of state from pure de Sitter, w ⌘ (1
2
�̇2 + V )/(1

2
�̇2 � V ) '

�1 + 2
3
✏�, hence determining as well the rate of change of the inflationary Hubble rate,

✏H ⌘ � Ḣ

H2
⌘ 3

2
(1 + w) ' ✏� . (108)

Note that even though we have shown that ✏� ' ✏V ' ✏H , this double equivalence does

not necessarily hold in scenarios beyond the SRSF paradigm.

If the inflaton potential is su�ciently flat (i.e. ⌘V ⌧ 1) over a su�cient range of

scalar field values, we ensure this way that the universe inflates (i.e. ✏V ⌧ 1) during a

su�cient amount of time, to solve the initial condition problems of the Hot Big Bang

model. In the slow-roll regime, the equation of state w is close to �1, leading to a

quasi-exponential expansion a(t) ⇠ eH t, with H approximately constant, though slowly

decreasing with time as �H/H ' ✏�N , according to Eq. (108).

The tensor anisotropic stress of a scalar field, i.e. the source term in the GW

equation of motion, vanishes at linear order in the field fluctuations⇤. However,

unavoidable quantum fluctuations of hij are parametrically amplified by the quasi-

exponential expansion of the universe during inflation. To describe this phenomenon,

we need to quantize the tensor modes of the metric, considered as perturbations over

the homogeneous and isotropic inflationary background. Throughout this sub-section,

we will work at lowest order in the small slow-roll parameters Eq. (107), but we will

provide at the end, for completeness, the expression for the higher-order corrections

from Ref. [145].

The first step to quantize the system is to identify the canonical degrees of freedom.

This can be done by expanding the pure gravitational part of action (103) with the

metric Eq. (??), at second order in hij [CITE]

S(2)
g = � m2

Pl

8

Z
d⌘ d3x a2(⌘) ⌘µ⌫ @µhij @⌫hij

⇤GWs produced by a non-zero anisotropic stress at second order in the scalar perturbations will be
discussed in sub-section 5.3.1. Other sources of a non-zero anisotropic stress during inflation will be
discussed in sub-sections 5.1 and ??.
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+
k

0r0

⇤
= �rr0 �

(3)(k � k0) , [â
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kr are creation and annihilation operators satisfying the usual

commutation relations
⇥
â
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and c
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k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v
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k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv
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+
k

0r0

⇤
= �rr0 �

(3)(k � k0) , [â
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+
k

0r0

⇤
= 0 , (114)

and the mode functions vk(⌘) satisfying the equation of motion

v00
k + !2

k(⌘) vk = 0 , with !k(⌘)
2 ⌘ k2 � a00

a
(115)

Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition

vk v
0⇤
k � v⇤

k v
0
k = i . (116)

Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
(+)
k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
k constants. Defining a vacuum state |0i as â
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kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
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kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
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where we have defined the two slow-roll parameters
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V
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H�̇
(106)

The approximations in rhs of Eqs (104), (105) are consistent only as long as both slow-

roll parameters are su�ciently small, ✏� ⌧ 1 and ⌘� ⌧ 1. It is then useful also to define

the potential slow-roll parameters

✏V ⌘ m2
Pl

2

✓
V 0

V

◆2

, ⌘V ⌘ m2
Pl

V 00

V
, (107)

related to the former parameters by ✏� ' ✏V and ✏� ' ⌘V � ✏V . Demanding ✏V ⌧ 1 and

⌘V ⌧ 1 represents therefore a su�cient (though not necessary) condition, for obtaining

and sustaining an inflationary slow-roll regime. The ✏ slow-roll parameter control the

deviation of the equation of state from pure de Sitter, w ⌘ (1
2
�̇2 + V )/(1

2
�̇2 � V ) '

�1 + 2
3
✏�, hence determining as well the rate of change of the inflationary Hubble rate,

✏H ⌘ � Ḣ

H2
⌘ 3

2
(1 + w) ' ✏� . (108)

Note that even though we have shown that ✏� ' ✏V ' ✏H , this double equivalence does

not necessarily hold in scenarios beyond the SRSF paradigm.

If the inflaton potential is su�ciently flat (i.e. ⌘V ⌧ 1) over a su�cient range of

scalar field values, we ensure this way that the universe inflates (i.e. ✏V ⌧ 1) during a

su�cient amount of time, to solve the initial condition problems of the Hot Big Bang

model. In the slow-roll regime, the equation of state w is close to �1, leading to a

quasi-exponential expansion a(t) ⇠ eH t, with H approximately constant, though slowly

decreasing with time as �H/H ' ✏�N , according to Eq. (108).

The tensor anisotropic stress of a scalar field, i.e. the source term in the GW

equation of motion, vanishes at linear order in the field fluctuations⇤. However,

unavoidable quantum fluctuations of hij are parametrically amplified by the quasi-

exponential expansion of the universe during inflation. To describe this phenomenon,

we need to quantize the tensor modes of the metric, considered as perturbations over

the homogeneous and isotropic inflationary background. Throughout this sub-section,

we will work at lowest order in the small slow-roll parameters Eq. (107), but we will

provide at the end, for completeness, the expression for the higher-order corrections

from Ref. [145].

The first step to quantize the system is to identify the canonical degrees of freedom.

This can be done by expanding the pure gravitational part of action (103) with the

metric Eq. (??), at second order in hij [CITE]

S(2)
g = � m2

Pl

8

Z
d⌘ d3x a2(⌘) ⌘µ⌫ @µhij @⌫hij

⇤GWs produced by a non-zero anisotropic stress at second order in the scalar perturbations will be
discussed in sub-section 5.3.1. Other sources of a non-zero anisotropic stress during inflation will be
discussed in sub-sections 5.1 and ??.
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kr + v⇤

k(⌘) e
�ikx â+
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kr are creation and annihilation operators satisfying the usual

commutation relations
⇥
â
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kr |0i = 0, we can associate the
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kr in Eq. (113) to the ”positive⇤ frequency modes” v
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k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv
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kr

⇤
(113)

with â+
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kr , âk0r0 ] =

⇥
â+
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k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v
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k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv
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kr are creation and annihilation operators satisfying the usual

commutation relations
⇥
â
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â+
kr , â
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kr + v⇤

k(⌘) e
�ikx â+

kr

⇤
(113)

with â+
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+
k

0r0

⇤
= 0 , (114)

and the mode functions vk(⌘) satisfying the equation of motion

v00
k + !2

k(⌘) vk = 0 , with !k(⌘)
2 ⌘ k2 � a00

a
(115)

Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition

vk v
0⇤
k � v⇤

k v
0
k = i . (116)

Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
(+)
k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
k constants. Defining a vacuum state |0i as â
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kr

⇤
(113)

with â+
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and c
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k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v
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k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv
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k = +kv
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kr

⇤
(113)

with â+
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kr

⇤
(113)

with â+
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â+
kr , â
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kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
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kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
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k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv

(+)
k = +kv

(+)
k .
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kr , âk0r0 ] =

⇥
â+
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kr + v⇤

k(⌘) e
�ikx â+
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+
k

0r0

⇤
= �rr0 �

(3)(k � k0) , [â
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+
k

0r0

⇤
= 0 , (114)

and the mode functions vk(⌘) satisfying the equation of motion

v00
k + !2

k(⌘) vk = 0 , with !k(⌘)
2 ⌘ k2 � a00

a
(115)

Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition

vk v
0⇤
k � v⇤

k v
0
k = i . (116)

Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
(+)
k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
k constants. Defining a vacuum state |0i as â
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k . This
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â+
kr , â
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kr

⇤
(113)

with â+
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
2k

for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
1p
2k

) |vk(⌘)| ' Hkp
2 k3

a(⌘) for k ⌧ aH (118)

where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘
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(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is

vk = (�⌘)1/2
�
c1(k)H

(1)
⌫ (�k⌘) + c2(k)H
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⌫ (�k⌘)
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, (120)

where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
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q
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where we have used the decomposition Eq. (9) and the orthonormal condition (11) in

the second equality, and for the third equality we have introduced the variables

vr(k, ⌘) =
mPlp
2
a(⌘)hr(k, ⌘) . (111)

Action Eq. (109) is equivalent to the action of two real scalar fields vr(x, ⌘) in Minkowski

spacetime, with canonically conjugate momenta ⇡r(x, ⌘) ⌘ v0
r(x, ⌘), and time-dependent

frequency !2
k(⌘) = k2 � a00

a
. The quantization proceeds by promoting vr and ⇡r to

operators v̂r and ⇡̂r that satisfy the standard commutation relations on hypersurfaces

of constant ⌘,

[v̂r(x, ⌘) , ⇡̂r0(x
0, ⌘)] = i �rr0 �

(3)(x � x0)

[v̂r(x, ⌘) , v̂r0(x
0, ⌘)] = [⇡̂r(x, ⌘) , ⇡̂r0(x

0, ⌘)] = 0 . (112)

The fields can be decomposed on the basis of the solutions of the dynamical equations

derived from action Eq. (109). Since the background is spatially isotropic, we can write

v̂r(x, ⌘) =

Z
d3k
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⇥
vk(⌘) e
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with â+
kr and â

kr are creation and annihilation operators satisfying the usual

commutation relations
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kr , â
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(3)(k � k0) , [â
kr , âk0r0 ] =
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and the mode functions vk(⌘) satisfying the equation of motion

v00
k + !2

k(⌘) vk = 0 , with !k(⌘)
2 ⌘ k2 � a00

a
(115)

Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition

vk v
0⇤
k � v⇤

k v
0
k = i . (116)

Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
(+)
k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv

(+)
k = +kv

(+)
k .
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+
k

0r0

⇤
= �rr0 �

(3)(k � k0) , [â
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
2k

for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
1p
2k

) |vk(⌘)| ' Hkp
2 k3

a(⌘) for k ⌧ aH (118)

where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘

R
dN
aH

' � 1
(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last

expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in

Eq. (115) is a00/a ⌘ H0 + H2 ' (2 � ✏)H2 ' (2�✏)
(1�✏)2⌘2

' 1
⌘2

(2 + 3✏), so that Eq. (115) can

be written as
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k +
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2
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is

vk = (�⌘)1/2
�
c1(k)H

(1)
⌫ (�k⌘) + c2(k)H

(2)
⌫ (�k⌘)

�
, (120)

where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
⌫ (x � 1) '

q
2

⇡x
ei(x�⌫�⇡/4), H(2)

⌫ (x � 1) '
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where we have used the decomposition Eq. (9) and the orthonormal condition (11) in

the second equality, and for the third equality we have introduced the variables
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spacetime, with canonically conjugate momenta ⇡r(x, ⌘) ⌘ v0
r(x, ⌘), and time-dependent

frequency !2
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. The quantization proceeds by promoting vr and ⇡r to
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+
k

0r0

⇤
= 0 , (114)

and the mode functions vk(⌘) satisfying the equation of motion
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Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition
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Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
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k +ck,�v
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k , with v
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and c
(±)
k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
2k

for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
1p
2k

) |vk(⌘)| ' Hkp
2 k3

a(⌘) for k ⌧ aH (118)

where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘

R
dN
aH

' � 1
(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last

expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in

Eq. (115) is a00/a ⌘ H0 + H2 ' (2 � ✏)H2 ' (2�✏)
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is

vk = (�⌘)1/2
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where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
⌫ (x � 1) '
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with â+
kr and â

kr are creation and annihilation operators satisfying the usual
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and the mode functions vk(⌘) satisfying the equation of motion
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k(⌘) vk = 0 , with !k(⌘)
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a
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Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition
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k v
0
k = i . (116)

Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
(+)
k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv

(+)
k = +kv

(+)
k .
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
2k

for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
1p
2k

) |vk(⌘)| ' Hkp
2 k3

a(⌘) for k ⌧ aH (118)

where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘

R
dN
aH

' � 1
(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last

expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in

Eq. (115) is a00/a ⌘ H0 + H2 ' (2 � ✏)H2 ' (2�✏)
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' 1
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(2 + 3✏), so that Eq. (115) can
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is
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c1(k)H
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⌫ (�k⌘) + c2(k)H

(2)
⌫ (�k⌘)

�
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where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
⌫ (x � 1) '

q
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⇡x
ei(x�⌫�⇡/4), H(2)

⌫ (x � 1) '
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where we have used the decomposition Eq. (9) and the orthonormal condition (11) in
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kr

⇤
(113)

with â+
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kr , âk0r0 ] =

⇥
â+
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Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition
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Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
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kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
2k

for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
1p
2k

) |vk(⌘)| ' Hkp
2 k3

a(⌘) for k ⌧ aH (118)

where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘

R
dN
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' � 1
(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last

expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is
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where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘
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for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
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where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
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, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is
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where H
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⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
2k

for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
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where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘
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expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
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, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is
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where we have used the decomposition Eq. (9) and the orthonormal condition (11) in

the second equality, and for the third equality we have introduced the variables
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Action Eq. (109) is equivalent to the action of two real scalar fields vr(x, ⌘) in Minkowski

spacetime, with canonically conjugate momenta ⇡r(x, ⌘) ⌘ v0
r(x, ⌘), and time-dependent

frequency !2
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. The quantization proceeds by promoting vr and ⇡r to
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â+
kr , â
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and the mode functions vk(⌘) satisfying the equation of motion
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Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition
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Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
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k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
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for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives
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where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN
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(2 + 3✏), so that Eq. (115) can
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is

vk = (�⌘)1/2
�
c1(k)H

(1)
⌫ (�k⌘) + c2(k)H

(2)
⌫ (�k⌘)

�
, (120)

where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
⌫ (x � 1) '

q
2

⇡x
ei(x�⌫�⇡/4), H(2)

⌫ (x � 1) '

Stochastic gravitational wave backgrounds and early universe cosmology. 46

=
m2

Pl

4

X

r=+,⇥

Z
d⌘ d3k a2(⌘)

⇥
|h0

r(k, ⌘)|2 � k2 |hr(k, ⌘)|2
⇤

(109)

=
1

2

X

r=+,⇥

Z
d⌘ d3k
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a00
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|vr|2
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where we have used the decomposition Eq. (9) and the orthonormal condition (11) in

the second equality, and for the third equality we have introduced the variables

vr(k, ⌘) =
mPlp
2
a(⌘)hr(k, ⌘) . (111)

Action Eq. (109) is equivalent to the action of two real scalar fields vr(x, ⌘) in Minkowski

spacetime, with canonically conjugate momenta ⇡r(x, ⌘) ⌘ v0
r(x, ⌘), and time-dependent

frequency !2
k(⌘) = k2 � a00

a
. The quantization proceeds by promoting vr and ⇡r to

operators v̂r and ⇡̂r that satisfy the standard commutation relations on hypersurfaces

of constant ⌘,

[v̂r(x, ⌘) , ⇡̂r0(x
0, ⌘)] = i �rr0 �

(3)(x � x0)

[v̂r(x, ⌘) , v̂r0(x
0, ⌘)] = [⇡̂r(x, ⌘) , ⇡̂r0(x

0, ⌘)] = 0 . (112)

The fields can be decomposed on the basis of the solutions of the dynamical equations

derived from action Eq. (109). Since the background is spatially isotropic, we can write

v̂r(x, ⌘) =

Z
d3k

(2⇡)3/2

⇥
vk(⌘) e

ikx â
kr + v⇤

k(⌘) e
�ikx â+
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⇤
(113)

with â+
kr and â

kr are creation and annihilation operators satisfying the usual

commutation relations
⇥
â
kr , â

+
k

0r0

⇤
= �rr0 �

(3)(k � k0) , [â
kr , âk0r0 ] =

⇥
â+
kr , â

+
k

0r0

⇤
= 0 , (114)

and the mode functions vk(⌘) satisfying the equation of motion

v00
k + !2

k(⌘) vk = 0 , with !k(⌘)
2 ⌘ k2 � a00

a
(115)

Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition

vk v
0⇤
k � v⇤

k v
0
k = i . (116)

Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
(+)
k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv

(+)
k = +kv

(+)
k .
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
2k

for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
1p
2k

) |vk(⌘)| ' Hkp
2 k3

a(⌘) for k ⌧ aH (118)

where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘

R
dN
aH

' � 1
(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last

expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in

Eq. (115) is a00/a ⌘ H0 + H2 ' (2 � ✏)H2 ' (2�✏)
(1�✏)2⌘2

' 1
⌘2

(2 + 3✏), so that Eq. (115) can

be written as
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2
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is

vk = (�⌘)1/2
�
c1(k)H

(1)
⌫ (�k⌘) + c2(k)H

(2)
⌫ (�k⌘)

�
, (120)

where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
⌫ (x � 1) '

q
2

⇡x
ei(x�⌫�⇡/4), H(2)

⌫ (x � 1) '

exercise:

Stochastic gravitational wave backgrounds and early universe cosmology. 47

found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially
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Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads
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The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives
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where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘
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H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last

expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is

vk = (�⌘)1/2
�
c1(k)H

(1)
⌫ (�k⌘) + c2(k)H

(2)
⌫ (�k⌘)
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where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
⌫ (x � 1) '

q
2

⇡x
ei(x�⌫�⇡/4), H(2)
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
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for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
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a(⌘) for k ⌧ aH (118)

where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘
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(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last

expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in

Eq. (115) is a00/a ⌘ H0 + H2 ' (2 � ✏)H2 ' (2�✏)
(1�✏)2⌘2

' 1
⌘2

(2 + 3✏), so that Eq. (115) can
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is

vk = (�⌘)1/2
�
c1(k)H

(1)
⌫ (�k⌘) + c2(k)H

(2)
⌫ (�k⌘)
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, (120)

where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
⌫ (x � 1) '
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2
⇡x
e�i(x�⌫�⇡/4), we conclude that c2(k) = 0 and c1(k) =

p
⇡

2
e

i

2

(⌫+ 1

2

). The exact solution

then becomes

vk =

p
⇡

2
e

i

2

(⌫+ 1

2

)p�⌘H(1)
⌫ (�k⌘) , 8 k⌘ (121)

Depending on the scale, this solution reduces to

vk ' e�ik⌘

p
2k

, for � k⌘ � 1 (122)

vk ' ei⇡
2

(⌫� 1

2

)2(⌫� 3

2

) �(⌫)

�(3/2)

1p
2k

(�k⌘)
1

2

�⌫ , for � k⌘ ⌧ 1 , (123)

where in the second expression we have used the small argument expansion H
(1)
⌫ (x ⌧ 1)

'
q

2
⇡
e�i⇡

2 2⌫� 3

2

�(⌫)
�(3/2)

1
x⌫

, see Ref. [Abrammowitz]. The exact solution Eq. (121) reduces

correctly, at sub-horizon scales, to Eq. (117), as it should. At super-horizon scales and

in the limit ✏ ! 0, the amplitude of Eq. (121) reduces to |vk| ' � 1

⌘
p

2k3

, which thanks

to aHk⌘ = �1, matches exactly Eq. (118) (which was derived for exact de Sitter).

In reality, as one typically expects ✏ 6= 0 (i.e. the inflationary space-time is typically

quasi-de Sitter), we see from the �k⌘ ⌧ 1 limit in Eq. (123), that |vk| has a tilt at

super-horizon scales, which we will discuss shortly.

Let us remark that Eq. (115) describes an harmonic oscillator with a time-dependent

frequency, which varies from !2
k ' k2 to !2

k ' a00/a (' �2a2H2), when the initially

sub-horizon modes aH ⌧ k eventually turn super-Hubble aH � k, due to the quasi-

exponential expansion. When !2
k(⌘) varies only adiabatically in time, i.e. !0

k ⌧ !2
k, as

long as !2
k(⌘) is positive we can associate an occupation number nk to each mode k, so

that |�k|3nk represents the number density of gravitons with momentum [k,k +�k].

This is given by the energy Ek ⌘ 1
2
(|v0

k|2 + !2
k|vk|2) per mode divided by the energy !k

per particle,

Ek =

✓
nk +

1

2

◆
!k ) nk +

1

2
⌘ 1

2!k

�
|v0

k|2 + !2
k |vk|2

�
(124)

where the 1
2
term corresponds to the usual quantum vacuum contribution. Inserting the

solution at deep sub-horizon scales Eq. (117) into Eq. (124), gives nk = 0, as it should

be for vacuum in flat space-time. The occupation number nk is an adiabatic invariant

when !2
k(⌘) is positive and varies adiabatically, i.e. |!0

k| ⌧ !2
k. However, the stretching

of modes during the inflationary expansion violates both conditions, resulting in an

abundant production of gravitons, changing nk = 0 into nk � 1, as the modes leave

the Hubble radius. We can check that the solution for super-Hubble modes Eq. (123)

[Eq. (118) for exact de Sitter], corresponds in fact to a very large number of gravitons.

Strictly speaking, the occupation number Eq. (124) is not well-defined during inflation,

as nk is not adiabatically conserved during the inflationary period. Let us therefore

evaluate it just after inflation, assuming an instantaneous transition into a power law

expansion era a(⌘) / ⌘p after inflation (p � 1/2), established at some time ⌘ = ⌘e.

Using for simplicity the result in exact de Sitter, we can plug Eq. (118) into Eq. (124),

and find that for super-Hubble modes ae He � k, nk ⇠ (Hk/He)2 (ae He/k)3 if p 6= 1
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘
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for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives
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where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is
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where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
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where we have used the decomposition Eq. (9) and the orthonormal condition (11) in

the second equality, and for the third equality we have introduced the variables

vr(k, ⌘) =
mPlp
2
a(⌘)hr(k, ⌘) . (111)

Action Eq. (109) is equivalent to the action of two real scalar fields vr(x, ⌘) in Minkowski

spacetime, with canonically conjugate momenta ⇡r(x, ⌘) ⌘ v0
r(x, ⌘), and time-dependent

frequency !2
k(⌘) = k2 � a00

a
. The quantization proceeds by promoting vr and ⇡r to

operators v̂r and ⇡̂r that satisfy the standard commutation relations on hypersurfaces

of constant ⌘,
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The fields can be decomposed on the basis of the solutions of the dynamical equations

derived from action Eq. (109). Since the background is spatially isotropic, we can write
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kr

⇤
(113)

with â+
kr and â

kr are creation and annihilation operators satisfying the usual
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and the mode functions vk(⌘) satisfying the equation of motion

v00
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Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition

vk v
0⇤
k � v⇤

k v
0
k = i . (116)

Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
(+)
k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv

(+)
k = +kv

(+)
k .
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
2k

for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
1p
2k

) |vk(⌘)| ' Hkp
2 k3

a(⌘) for k ⌧ aH (118)

where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘

R
dN
aH

' � 1
(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last

expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in

Eq. (115) is a00/a ⌘ H0 + H2 ' (2 � ✏)H2 ' (2�✏)
(1�✏)2⌘2

' 1
⌘2

(2 + 3✏), so that Eq. (115) can

be written as
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is

vk = (�⌘)1/2
�
c1(k)H

(1)
⌫ (�k⌘) + c2(k)H

(2)
⌫ (�k⌘)

�
, (120)

where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
⌫ (x � 1) '

q
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⇡x
ei(x�⌫�⇡/4), H(2)
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Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition
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Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
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and c
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k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
2k

for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
1p
2k

) |vk(⌘)| ' Hkp
2 k3

a(⌘) for k ⌧ aH (118)

where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘

R
dN
aH

' � 1
(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last

expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in

Eq. (115) is a00/a ⌘ H0 + H2 ' (2 � ✏)H2 ' (2�✏)
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(2 + 3✏), so that Eq. (115) can
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is

vk = (�⌘)1/2
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c1(k)H

(1)
⌫ (�k⌘) + c2(k)H

(2)
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where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
⌫ (x � 1) '
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘
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for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
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where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is

vk = (�⌘)1/2
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where H
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⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
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for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
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) |vk(⌘)| ' Hkp
2 k3

a(⌘) for k ⌧ aH (118)

where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘
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(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last

expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in

Eq. (115) is a00/a ⌘ H0 + H2 ' (2 � ✏)H2 ' (2�✏)
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is

vk = (�⌘)1/2
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c1(k)H
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⌫ (�k⌘) + c2(k)H
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where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
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Depending on the scale, this solution reduces to

vk ' e�ik⌘

p
2k

, for � k⌘ � 1 (122)
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where in the second expression we have used the small argument expansion H
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⌫ (x ⌧ 1)

'
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, see Ref. [Abrammowitz]. The exact solution Eq. (121) reduces

correctly, at sub-horizon scales, to Eq. (117), as it should. At super-horizon scales and

in the limit ✏ ! 0, the amplitude of Eq. (121) reduces to |vk| ' � 1

⌘
p

2k3

, which thanks

to aHk⌘ = �1, matches exactly Eq. (118) (which was derived for exact de Sitter).

In reality, as one typically expects ✏ 6= 0 (i.e. the inflationary space-time is typically

quasi-de Sitter), we see from the �k⌘ ⌧ 1 limit in Eq. (123), that |vk| has a tilt at

super-horizon scales, which we will discuss shortly.

Let us remark that Eq. (115) describes an harmonic oscillator with a time-dependent

frequency, which varies from !2
k ' k2 to !2

k ' a00/a (' �2a2H2), when the initially

sub-horizon modes aH ⌧ k eventually turn super-Hubble aH � k, due to the quasi-

exponential expansion. When !2
k(⌘) varies only adiabatically in time, i.e. !0

k ⌧ !2
k, as

long as !2
k(⌘) is positive we can associate an occupation number nk to each mode k, so

that |�k|3nk represents the number density of gravitons with momentum [k,k +�k].

This is given by the energy Ek ⌘ 1
2
(|v0

k|2 + !2
k|vk|2) per mode divided by the energy !k

per particle,
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k |vk|2
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(124)

where the 1
2
term corresponds to the usual quantum vacuum contribution. Inserting the

solution at deep sub-horizon scales Eq. (117) into Eq. (124), gives nk = 0, as it should

be for vacuum in flat space-time. The occupation number nk is an adiabatic invariant

when !2
k(⌘) is positive and varies adiabatically, i.e. |!0

k| ⌧ !2
k. However, the stretching

of modes during the inflationary expansion violates both conditions, resulting in an

abundant production of gravitons, changing nk = 0 into nk � 1, as the modes leave

the Hubble radius. We can check that the solution for super-Hubble modes Eq. (123)

[Eq. (118) for exact de Sitter], corresponds in fact to a very large number of gravitons.

Strictly speaking, the occupation number Eq. (124) is not well-defined during inflation,

as nk is not adiabatically conserved during the inflationary period. Let us therefore

evaluate it just after inflation, assuming an instantaneous transition into a power law

expansion era a(⌘) / ⌘p after inflation (p � 1/2), established at some time ⌘ = ⌘e.

Using for simplicity the result in exact de Sitter, we can plug Eq. (118) into Eq. (124),

and find that for super-Hubble modes ae He � k, nk ⇠ (Hk/He)2 (ae He/k)3 if p 6= 1

x = �k⌘
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘
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for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives
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where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘

R
dN
aH

' � 1
(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last

expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is
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where H
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⌫ (�k⌘) are Hankel functions of the first and second kind. In
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wave solution Eq. (117). Hence, using the large argument expansion of the Hankel
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
2k

for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
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where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘
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(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last

expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in
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where we have used the decomposition Eq. (9) and the orthonormal condition (11) in

the second equality, and for the third equality we have introduced the variables
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Action Eq. (109) is equivalent to the action of two real scalar fields vr(x, ⌘) in Minkowski

spacetime, with canonically conjugate momenta ⇡r(x, ⌘) ⌘ v0
r(x, ⌘), and time-dependent

frequency !2
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. The quantization proceeds by promoting vr and ⇡r to
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The fields can be decomposed on the basis of the solutions of the dynamical equations
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kr and â
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and the mode functions vk(⌘) satisfying the equation of motion
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Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition
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Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
(+)
k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv

(+)
k = +kv

(+)
k .
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads
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The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads
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k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-
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where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact
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, corresponding to ✏ = 0. The general solution to Eq. (119), for
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where H
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⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
2k

for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
1p
2k

) |vk(⌘)| ' Hkp
2 k3

a(⌘) for k ⌧ aH (118)

where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘

R
dN
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' � 1
(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last

expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in

Eq. (115) is a00/a ⌘ H0 + H2 ' (2 � ✏)H2 ' (2�✏)
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is
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where H
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⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
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The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads
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mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads
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The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads
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functions (see Ref. [CITE Abramowitz]), H(1)
⌫ (x � 1) '

q
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⇡x
ei(x�⌫�⇡/4), H(2)
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Depending on the scale, this solution reduces to
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, see Ref. [Abrammowitz]. The exact solution Eq. (121) reduces
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, which thanks

to aHk⌘ = �1, matches exactly Eq. (118) (which was derived for exact de Sitter).
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where the 1
2
term corresponds to the usual quantum vacuum contribution. Inserting the

solution at deep sub-horizon scales Eq. (117) into Eq. (124), gives nk = 0, as it should

be for vacuum in flat space-time. The occupation number nk is an adiabatic invariant

when !2
k(⌘) is positive and varies adiabatically, i.e. |!0

k| ⌧ !2
k. However, the stretching

of modes during the inflationary expansion violates both conditions, resulting in an

abundant production of gravitons, changing nk = 0 into nk � 1, as the modes leave

the Hubble radius. We can check that the solution for super-Hubble modes Eq. (123)

[Eq. (118) for exact de Sitter], corresponds in fact to a very large number of gravitons.

Strictly speaking, the occupation number Eq. (124) is not well-defined during inflation,

as nk is not adiabatically conserved during the inflationary period. Let us therefore

evaluate it just after inflation, assuming an instantaneous transition into a power law
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x = �k⌘
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
2k

for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
1p
2k

) |vk(⌘)| ' Hkp
2 k3

a(⌘) for k ⌧ aH (118)

where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘
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' � 1
(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last
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' 1
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is
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⌫ (�k⌘) + c2(k)H
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⌫ (�k⌘)

�
, (120)

where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
⌫ (x � 1) '

q
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⇡x
ei(x�⌫�⇡/4), H(2)
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads
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for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
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where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is
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where H
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⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
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where we have used the decomposition Eq. (9) and the orthonormal condition (11) in

the second equality, and for the third equality we have introduced the variables

vr(k, ⌘) =
mPlp
2
a(⌘)hr(k, ⌘) . (111)

Action Eq. (109) is equivalent to the action of two real scalar fields vr(x, ⌘) in Minkowski

spacetime, with canonically conjugate momenta ⇡r(x, ⌘) ⌘ v0
r(x, ⌘), and time-dependent

frequency !2
k(⌘) = k2 � a00

a
. The quantization proceeds by promoting vr and ⇡r to

operators v̂r and ⇡̂r that satisfy the standard commutation relations on hypersurfaces

of constant ⌘,

[v̂r(x, ⌘) , ⇡̂r0(x
0, ⌘)] = i �rr0 �

(3)(x � x0)

[v̂r(x, ⌘) , v̂r0(x
0, ⌘)] = [⇡̂r(x, ⌘) , ⇡̂r0(x

0, ⌘)] = 0 . (112)

The fields can be decomposed on the basis of the solutions of the dynamical equations

derived from action Eq. (109). Since the background is spatially isotropic, we can write

v̂r(x, ⌘) =

Z
d3k

(2⇡)3/2

⇥
vk(⌘) e

ikx â
kr + v⇤

k(⌘) e
�ikx â+
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⇤
(113)

with â+
kr and â

kr are creation and annihilation operators satisfying the usual

commutation relations
⇥
â
kr , â

+
k

0r0

⇤
= �rr0 �

(3)(k � k0) , [â
kr , âk0r0 ] =

⇥
â+
kr , â

+
k

0r0

⇤
= 0 , (114)

and the mode functions vk(⌘) satisfying the equation of motion

v00
k + !2

k(⌘) vk = 0 , with !k(⌘)
2 ⌘ k2 � a00

a
(115)

Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition

vk v
0⇤
k � v⇤

k v
0
k = i . (116)

Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
(+)
k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv

(+)
k = +kv

(+)
k .
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
2k

for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
1p
2k

) |vk(⌘)| ' Hkp
2 k3

a(⌘) for k ⌧ aH (118)

where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘

R
dN
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' � 1
(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last

expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in

Eq. (115) is a00/a ⌘ H0 + H2 ' (2 � ✏)H2 ' (2�✏)
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is

vk = (�⌘)1/2
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c1(k)H
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⌫ (�k⌘) + c2(k)H
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where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
⌫ (x � 1) '
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where we have used the decomposition Eq. (9) and the orthonormal condition (11) in
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vr(k, ⌘) =
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and the mode functions vk(⌘) satisfying the equation of motion
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Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition
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from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
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for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
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) |vk(⌘)| ' Hkp
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a(⌘) for k ⌧ aH (118)

where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
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, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
2k

for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
1p
2k

) |vk(⌘)| ' Hkp
2 k3

a(⌘) for k ⌧ aH (118)

where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘

R
dN
aH

' � 1
(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last

expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in

Eq. (115) is a00/a ⌘ H0 + H2 ' (2 � ✏)H2 ' (2�✏)
(1�✏)2⌘2

' 1
⌘2

(2 + 3✏), so that Eq. (115) can

be written as
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2
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is

vk = (�⌘)1/2
�
c1(k)H

(1)
⌫ (�k⌘) + c2(k)H

(2)
⌫ (�k⌘)

�
, (120)

where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
⌫ (x � 1) '
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ei(x�⌫�⇡/4), H(2)
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Depending on the scale, this solution reduces to
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where in the second expression we have used the small argument expansion H
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, see Ref. [Abrammowitz]. The exact solution Eq. (121) reduces

correctly, at sub-horizon scales, to Eq. (117), as it should. At super-horizon scales and

in the limit ✏ ! 0, the amplitude of Eq. (121) reduces to |vk| ' � 1

⌘
p

2k3

, which thanks

to aHk⌘ = �1, matches exactly Eq. (118) (which was derived for exact de Sitter).

In reality, as one typically expects ✏ 6= 0 (i.e. the inflationary space-time is typically

quasi-de Sitter), we see from the �k⌘ ⌧ 1 limit in Eq. (123), that |vk| has a tilt at

super-horizon scales, which we will discuss shortly.

Let us remark that Eq. (115) describes an harmonic oscillator with a time-dependent
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where the 1
2
term corresponds to the usual quantum vacuum contribution. Inserting the

solution at deep sub-horizon scales Eq. (117) into Eq. (124), gives nk = 0, as it should

be for vacuum in flat space-time. The occupation number nk is an adiabatic invariant

when !2
k(⌘) is positive and varies adiabatically, i.e. |!0

k| ⌧ !2
k. However, the stretching

of modes during the inflationary expansion violates both conditions, resulting in an

abundant production of gravitons, changing nk = 0 into nk � 1, as the modes leave

the Hubble radius. We can check that the solution for super-Hubble modes Eq. (123)

[Eq. (118) for exact de Sitter], corresponds in fact to a very large number of gravitons.

Strictly speaking, the occupation number Eq. (124) is not well-defined during inflation,

as nk is not adiabatically conserved during the inflationary period. Let us therefore

evaluate it just after inflation, assuming an instantaneous transition into a power law

expansion era a(⌘) / ⌘p after inflation (p � 1/2), established at some time ⌘ = ⌘e.

Using for simplicity the result in exact de Sitter, we can plug Eq. (118) into Eq. (124),

and find that for super-Hubble modes ae He � k, nk ⇠ (Hk/He)2 (ae He/k)3 if p 6= 1
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
2k

for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
1p
2k

) |vk(⌘)| ' Hkp
2 k3

a(⌘) for k ⌧ aH (118)

where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘

R
dN
aH

' � 1
(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last

expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in

Eq. (115) is a00/a ⌘ H0 + H2 ' (2 � ✏)H2 ' (2�✏)
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(2 + 3✏), so that Eq. (115) can

be written as

v00
k +


k2 � 1

⌘2

✓
⌫2 � 1

4

◆�
vk = 0 , ⌫ ⌘ 3

2
+ ✏ (119)

An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is

vk = (�⌘)1/2
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c1(k)H

(1)
⌫ (�k⌘) + c2(k)H

(2)
⌫ (�k⌘)

�
, (120)

where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
⌫ (x � 1) '
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
2k

for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
1p
2k

) |vk(⌘)| ' Hkp
2 k3

a(⌘) for k ⌧ aH (118)

where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘

R
dN
aH

' � 1
(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last

expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in

Eq. (115) is a00/a ⌘ H0 + H2 ' (2 � ✏)H2 ' (2�✏)
(1�✏)2⌘2
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(2 + 3✏), so that Eq. (115) can

be written as
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is

vk = (�⌘)1/2
�
c1(k)H

(1)
⌫ (�k⌘) + c2(k)H

(2)
⌫ (�k⌘)
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, (120)

where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
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where we have used the decomposition Eq. (9) and the orthonormal condition (11) in

the second equality, and for the third equality we have introduced the variables

vr(k, ⌘) =
mPlp
2
a(⌘)hr(k, ⌘) . (111)

Action Eq. (109) is equivalent to the action of two real scalar fields vr(x, ⌘) in Minkowski

spacetime, with canonically conjugate momenta ⇡r(x, ⌘) ⌘ v0
r(x, ⌘), and time-dependent

frequency !2
k(⌘) = k2 � a00

a
. The quantization proceeds by promoting vr and ⇡r to

operators v̂r and ⇡̂r that satisfy the standard commutation relations on hypersurfaces

of constant ⌘,

[v̂r(x, ⌘) , ⇡̂r0(x
0, ⌘)] = i �rr0 �

(3)(x � x0)

[v̂r(x, ⌘) , v̂r0(x
0, ⌘)] = [⇡̂r(x, ⌘) , ⇡̂r0(x

0, ⌘)] = 0 . (112)

The fields can be decomposed on the basis of the solutions of the dynamical equations

derived from action Eq. (109). Since the background is spatially isotropic, we can write

v̂r(x, ⌘) =

Z
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vk(⌘) e

ikx â
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⇤
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with â+
kr and â

kr are creation and annihilation operators satisfying the usual

commutation relations
⇥
â
kr , â

+
k

0r0

⇤
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(3)(k � k0) , [â
kr , âk0r0 ] =

⇥
â+
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+
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0r0

⇤
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and the mode functions vk(⌘) satisfying the equation of motion

v00
k + !2

k(⌘) vk = 0 , with !k(⌘)
2 ⌘ k2 � a00

a
(115)

Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition

vk v
0⇤
k � v⇤

k v
0
k = i . (116)

Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
(+)
k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv

(+)
k = +kv

(+)
k .
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
2k

for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
1p
2k

) |vk(⌘)| ' Hkp
2 k3

a(⌘) for k ⌧ aH (118)

where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘
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(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last

expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in

Eq. (115) is a00/a ⌘ H0 + H2 ' (2 � ✏)H2 ' (2�✏)
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is

vk = (�⌘)1/2
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where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
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where we have used the decomposition Eq. (9) and the orthonormal condition (11) in

the second equality, and for the third equality we have introduced the variables

vr(k, ⌘) =
mPlp
2
a(⌘)hr(k, ⌘) . (111)

Action Eq. (109) is equivalent to the action of two real scalar fields vr(x, ⌘) in Minkowski

spacetime, with canonically conjugate momenta ⇡r(x, ⌘) ⌘ v0
r(x, ⌘), and time-dependent

frequency !2
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. The quantization proceeds by promoting vr and ⇡r to
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kr

⇤
(113)

with â+
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and the mode functions vk(⌘) satisfying the equation of motion
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Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition
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Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
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annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v
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k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv

(+)
k = +kv

(+)
k .

Stochastic gravitational wave backgrounds and early universe cosmology. 47

found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
2k

for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
1p
2k

) |vk(⌘)| ' Hkp
2 k3

a(⌘) for k ⌧ aH (118)

where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘

R
dN
aH

' � 1
(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last

expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in

Eq. (115) is a00/a ⌘ H0 + H2 ' (2 � ✏)H2 ' (2�✏)
(1�✏)2⌘2

' 1
⌘2

(2 + 3✏), so that Eq. (115) can

be written as

v00
k +


k2 � 1

⌘2

✓
⌫2 � 1

4

◆�
vk = 0 , ⌫ ⌘ 3

2
+ ✏ (119)

An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is

vk = (�⌘)1/2
�
c1(k)H

(1)
⌫ (�k⌘) + c2(k)H

(2)
⌫ (�k⌘)

�
, (120)

where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
⌫ (x � 1) '

q
2

⇡x
ei(x�⌫�⇡/4), H(2)

⌫ (x � 1) '

exercise:
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2
⇡x
e�i(x�⌫�⇡/4), we conclude that c2(k) = 0 and c1(k) =

p
⇡

2
e

i

2

(⌫+ 1

2

). The exact solution

then becomes

vk =

p
⇡

2
e

i

2

(⌫+ 1

2

)p�⌘H(1)
⌫ (�k⌘) , 8 k⌘ (121)

Depending on the scale, this solution reduces to

vk ' e�ik⌘

p
2k

, for � k⌘ � 1 (122)

vk ' ei⇡
2

(⌫� 1

2

)2(⌫� 3

2

) �(⌫)

�(3/2)

1p
2k

(�k⌘)
1

2

�⌫ , for � k⌘ ⌧ 1 , (123)

where in the second expression we have used the small argument expansion H
(1)
⌫ (x ⌧ 1)

'
q

2
⇡
e�i⇡

2 2⌫� 3

2

�(⌫)
�(3/2)

1
x⌫

, see Ref. [Abrammowitz]. The exact solution Eq. (121) reduces

correctly, at sub-horizon scales, to Eq. (117), as it should. At super-horizon scales and

in the limit ✏ ! 0, the amplitude of Eq. (121) reduces to |vk| ' � 1

⌘
p

2k3

, which thanks

to aHk⌘ = �1, matches exactly Eq. (118) (which was derived for exact de Sitter).

In reality, as one typically expects ✏ 6= 0 (i.e. the inflationary space-time is typically

quasi-de Sitter), we see from the �k⌘ ⌧ 1 limit in Eq. (123), that |vk| has a tilt at

super-horizon scales, which we will discuss shortly.

Let us remark that Eq. (115) describes an harmonic oscillator with a time-dependent

frequency, which varies from !2
k ' k2 to !2

k ' a00/a (' �2a2H2), when the initially

sub-horizon modes aH ⌧ k eventually turn super-Hubble aH � k, due to the quasi-

exponential expansion. When !2
k(⌘) varies only adiabatically in time, i.e. !0

k ⌧ !2
k, as

long as !2
k(⌘) is positive we can associate an occupation number nk to each mode k, so

that |�k|3nk represents the number density of gravitons with momentum [k,k +�k].

This is given by the energy Ek ⌘ 1
2
(|v0

k|2 + !2
k|vk|2) per mode divided by the energy !k

per particle,

Ek =

✓
nk +

1

2

◆
!k ) nk +

1

2
⌘ 1

2!k

�
|v0

k|2 + !2
k |vk|2

�
(124)

where the 1
2
term corresponds to the usual quantum vacuum contribution. Inserting the

solution at deep sub-horizon scales Eq. (117) into Eq. (124), gives nk = 0, as it should

be for vacuum in flat space-time. The occupation number nk is an adiabatic invariant

when !2
k(⌘) is positive and varies adiabatically, i.e. |!0

k| ⌧ !2
k. However, the stretching

of modes during the inflationary expansion violates both conditions, resulting in an

abundant production of gravitons, changing nk = 0 into nk � 1, as the modes leave

the Hubble radius. We can check that the solution for super-Hubble modes Eq. (123)

[Eq. (118) for exact de Sitter], corresponds in fact to a very large number of gravitons.

Strictly speaking, the occupation number Eq. (124) is not well-defined during inflation,

as nk is not adiabatically conserved during the inflationary period. Let us therefore

evaluate it just after inflation, assuming an instantaneous transition into a power law

expansion era a(⌘) / ⌘p after inflation (p � 1/2), established at some time ⌘ = ⌘e.

Using for simplicity the result in exact de Sitter, we can plug Eq. (118) into Eq. (124),

and find that for super-Hubble modes ae He � k, nk ⇠ (Hk/He)2 (ae He/k)3 if p 6= 1
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
2k

for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
1p
2k

) |vk(⌘)| ' Hkp
2 k3

a(⌘) for k ⌧ aH (118)

where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘

R
dN
aH

' � 1
(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last

expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in

Eq. (115) is a00/a ⌘ H0 + H2 ' (2 � ✏)H2 ' (2�✏)
(1�✏)2⌘2
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(2 + 3✏), so that Eq. (115) can

be written as
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is

vk = (�⌘)1/2
�
c1(k)H

(1)
⌫ (�k⌘) + c2(k)H

(2)
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�
, (120)

where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
⌫ (x � 1) '

q
2

⇡x
ei(x�⌫�⇡/4), H(2)

⌫ (x � 1) '
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=
m2

Pl

4

X

r=+,⇥

Z
d⌘ d3k a2(⌘)

⇥
|h0

r(k, ⌘)|2 � k2 |hr(k, ⌘)|2
⇤

(109)

=
1

2

X

r=+,⇥

Z
d⌘ d3k


|v0

r|2 � k2 |vr|2 +
a00

a
|vr|2

�
, (110)

where we have used the decomposition Eq. (9) and the orthonormal condition (11) in

the second equality, and for the third equality we have introduced the variables

vr(k, ⌘) =
mPlp
2
a(⌘)hr(k, ⌘) . (111)

Action Eq. (109) is equivalent to the action of two real scalar fields vr(x, ⌘) in Minkowski

spacetime, with canonically conjugate momenta ⇡r(x, ⌘) ⌘ v0
r(x, ⌘), and time-dependent

frequency !2
k(⌘) = k2 � a00

a
. The quantization proceeds by promoting vr and ⇡r to

operators v̂r and ⇡̂r that satisfy the standard commutation relations on hypersurfaces

of constant ⌘,

[v̂r(x, ⌘) , ⇡̂r0(x
0, ⌘)] = i �rr0 �

(3)(x � x0)

[v̂r(x, ⌘) , v̂r0(x
0, ⌘)] = [⇡̂r(x, ⌘) , ⇡̂r0(x

0, ⌘)] = 0 . (112)

The fields can be decomposed on the basis of the solutions of the dynamical equations

derived from action Eq. (109). Since the background is spatially isotropic, we can write

v̂r(x, ⌘) =

Z
d3k

(2⇡)3/2

⇥
vk(⌘) e

ikx â
kr + v⇤

k(⌘) e
�ikx â+

kr

⇤
(113)

with â+
kr and â

kr are creation and annihilation operators satisfying the usual

commutation relations
⇥
â
kr , â

+
k

0r0

⇤
= �rr0 �

(3)(k � k0) , [â
kr , âk0r0 ] =

⇥
â+
kr , â

+
k

0r0

⇤
= 0 , (114)

and the mode functions vk(⌘) satisfying the equation of motion

v00
k + !2

k(⌘) vk = 0 , with !k(⌘)
2 ⌘ k2 � a00

a
(115)

Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition

vk v
0⇤
k � v⇤

k v
0
k = i . (116)

Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
(+)
k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv

(+)
k = +kv

(+)
k .
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Depending on the scale, this solution reduces to
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, see Ref. [Abrammowitz]. The exact solution Eq. (121) reduces

correctly, at sub-horizon scales, to Eq. (117), as it should. At super-horizon scales and

in the limit ✏ ! 0, the amplitude of Eq. (121) reduces to |vk| ' � 1

⌘
p

2k3

, which thanks

to aHk⌘ = �1, matches exactly Eq. (118) (which was derived for exact de Sitter).

In reality, as one typically expects ✏ 6= 0 (i.e. the inflationary space-time is typically

quasi-de Sitter), we see from the �k⌘ ⌧ 1 limit in Eq. (123), that |vk| has a tilt at

super-horizon scales, which we will discuss shortly.

Let us remark that Eq. (115) describes an harmonic oscillator with a time-dependent

frequency, which varies from !2
k ' k2 to !2

k ' a00/a (' �2a2H2), when the initially

sub-horizon modes aH ⌧ k eventually turn super-Hubble aH � k, due to the quasi-

exponential expansion. When !2
k(⌘) varies only adiabatically in time, i.e. !0

k ⌧ !2
k, as

long as !2
k(⌘) is positive we can associate an occupation number nk to each mode k, so

that |�k|3nk represents the number density of gravitons with momentum [k,k +�k].

This is given by the energy Ek ⌘ 1
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k|2 + !2
k|vk|2) per mode divided by the energy !k

per particle,
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where the 1
2
term corresponds to the usual quantum vacuum contribution. Inserting the

solution at deep sub-horizon scales Eq. (117) into Eq. (124), gives nk = 0, as it should

be for vacuum in flat space-time. The occupation number nk is an adiabatic invariant

when !2
k(⌘) is positive and varies adiabatically, i.e. |!0

k| ⌧ !2
k. However, the stretching

of modes during the inflationary expansion violates both conditions, resulting in an

abundant production of gravitons, changing nk = 0 into nk � 1, as the modes leave

the Hubble radius. We can check that the solution for super-Hubble modes Eq. (123)

[Eq. (118) for exact de Sitter], corresponds in fact to a very large number of gravitons.

Strictly speaking, the occupation number Eq. (124) is not well-defined during inflation,

as nk is not adiabatically conserved during the inflationary period. Let us therefore

evaluate it just after inflation, assuming an instantaneous transition into a power law

expansion era a(⌘) / ⌘p after inflation (p � 1/2), established at some time ⌘ = ⌘e.

Using for simplicity the result in exact de Sitter, we can plug Eq. (118) into Eq. (124),

and find that for super-Hubble modes ae He � k, nk ⇠ (Hk/He)2 (ae He/k)3 if p 6= 1
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
2k

for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
1p
2k

) |vk(⌘)| ' Hkp
2 k3

a(⌘) for k ⌧ aH (118)

where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘

R
dN
aH

' � 1
(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last

expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in

Eq. (115) is a00/a ⌘ H0 + H2 ' (2 � ✏)H2 ' (2�✏)
(1�✏)2⌘2

' 1
⌘2

(2 + 3✏), so that Eq. (115) can

be written as

v00
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2
+ ✏ (119)

An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is

vk = (�⌘)1/2
�
c1(k)H

(1)
⌫ (�k⌘) + c2(k)H

(2)
⌫ (�k⌘)

�
, (120)

where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
⌫ (x � 1) '

q
2

⇡x
ei(x�⌫�⇡/4), H(2)

⌫ (x � 1) '
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r|2 � k2 |vr|2 +
a00

a
|vr|2

�
, (110)

where we have used the decomposition Eq. (9) and the orthonormal condition (11) in

the second equality, and for the third equality we have introduced the variables

vr(k, ⌘) =
mPlp
2
a(⌘)hr(k, ⌘) . (111)

Action Eq. (109) is equivalent to the action of two real scalar fields vr(x, ⌘) in Minkowski

spacetime, with canonically conjugate momenta ⇡r(x, ⌘) ⌘ v0
r(x, ⌘), and time-dependent

frequency !2
k(⌘) = k2 � a00

a
. The quantization proceeds by promoting vr and ⇡r to

operators v̂r and ⇡̂r that satisfy the standard commutation relations on hypersurfaces

of constant ⌘,

[v̂r(x, ⌘) , ⇡̂r0(x
0, ⌘)] = i �rr0 �

(3)(x � x0)

[v̂r(x, ⌘) , v̂r0(x
0, ⌘)] = [⇡̂r(x, ⌘) , ⇡̂r0(x

0, ⌘)] = 0 . (112)

The fields can be decomposed on the basis of the solutions of the dynamical equations

derived from action Eq. (109). Since the background is spatially isotropic, we can write

v̂r(x, ⌘) =

Z
d3k

(2⇡)3/2

⇥
vk(⌘) e

ikx â
kr + v⇤

k(⌘) e
�ikx â+

kr

⇤
(113)

with â+
kr and â

kr are creation and annihilation operators satisfying the usual

commutation relations
⇥
â
kr , â

+
k

0r0

⇤
= �rr0 �

(3)(k � k0) , [â
kr , âk0r0 ] =

⇥
â+
kr , â

+
k

0r0

⇤
= 0 , (114)

and the mode functions vk(⌘) satisfying the equation of motion

v00
k + !2

k(⌘) vk = 0 , with !k(⌘)
2 ⌘ k2 � a00

a
(115)

Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition

vk v
0⇤
k � v⇤

k v
0
k = i . (116)

Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
(+)
k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv

(+)
k = +kv

(+)
k .
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Depending on the scale, this solution reduces to
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, see Ref. [Abrammowitz]. The exact solution Eq. (121) reduces

correctly, at sub-horizon scales, to Eq. (117), as it should. At super-horizon scales and

in the limit ✏ ! 0, the amplitude of Eq. (121) reduces to |vk| ' � 1

⌘
p

2k3

, which thanks

to aHk⌘ = �1, matches exactly Eq. (118) (which was derived for exact de Sitter).

In reality, as one typically expects ✏ 6= 0 (i.e. the inflationary space-time is typically

quasi-de Sitter), we see from the �k⌘ ⌧ 1 limit in Eq. (123), that |vk| has a tilt at

super-horizon scales, which we will discuss shortly.

Let us remark that Eq. (115) describes an harmonic oscillator with a time-dependent

frequency, which varies from !2
k ' k2 to !2

k ' a00/a (' �2a2H2), when the initially

sub-horizon modes aH ⌧ k eventually turn super-Hubble aH � k, due to the quasi-

exponential expansion. When !2
k(⌘) varies only adiabatically in time, i.e. !0

k ⌧ !2
k, as

long as !2
k(⌘) is positive we can associate an occupation number nk to each mode k, so

that |�k|3nk represents the number density of gravitons with momentum [k,k +�k].

This is given by the energy Ek ⌘ 1
2
(|v0

k|2 + !2
k|vk|2) per mode divided by the energy !k

per particle,

Ek =
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where the 1
2
term corresponds to the usual quantum vacuum contribution. Inserting the

solution at deep sub-horizon scales Eq. (117) into Eq. (124), gives nk = 0, as it should

be for vacuum in flat space-time. The occupation number nk is an adiabatic invariant

when !2
k(⌘) is positive and varies adiabatically, i.e. |!0

k| ⌧ !2
k. However, the stretching

of modes during the inflationary expansion violates both conditions, resulting in an

abundant production of gravitons, changing nk = 0 into nk � 1, as the modes leave

the Hubble radius. We can check that the solution for super-Hubble modes Eq. (123)

[Eq. (118) for exact de Sitter], corresponds in fact to a very large number of gravitons.

Strictly speaking, the occupation number Eq. (124) is not well-defined during inflation,

as nk is not adiabatically conserved during the inflationary period. Let us therefore

evaluate it just after inflation, assuming an instantaneous transition into a power law

expansion era a(⌘) / ⌘p after inflation (p � 1/2), established at some time ⌘ = ⌘e.

Using for simplicity the result in exact de Sitter, we can plug Eq. (118) into Eq. (124),

and find that for super-Hubble modes ae He � k, nk ⇠ (Hk/He)2 (ae He/k)3 if p 6= 1

Stochastic gravitational wave backgrounds and early universe cosmology. 48
q

2
⇡x
e�i(x�⌫�⇡/4), we conclude that c2(k) = 0 and c1(k) =

p
⇡

2
e

i

2

(⌫+ 1

2

). The exact solution

then becomes

vk =

p
⇡

2
e

i

2

(⌫+ 1

2

)p�⌘H(1)
⌫ (�k⌘) , 8 k⌘ (121)

Depending on the scale, this solution reduces to

vk ' e�ik⌘

p
2k

, for � k⌘ � 1 (122)

vk ' ei⇡
2

(⌫� 1

2

)2(⌫� 3

2

) �(⌫)

�(3/2)

1p
2k

(�k⌘)
1

2

�⌫ , for � k⌘ ⌧ 1 , (123)

where in the second expression we have used the small argument expansion H
(1)
⌫ (x ⌧ 1)

'
q

2
⇡
e�i⇡

2 2⌫� 3

2

�(⌫)
�(3/2)

1
x⌫

, see Ref. [Abrammowitz]. The exact solution Eq. (121) reduces

correctly, at sub-horizon scales, to Eq. (117), as it should. At super-horizon scales and
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where the 1
2
term corresponds to the usual quantum vacuum contribution. Inserting the

solution at deep sub-horizon scales Eq. (117) into Eq. (124), gives nk = 0, as it should

be for vacuum in flat space-time. The occupation number nk is an adiabatic invariant

when !2
k(⌘) is positive and varies adiabatically, i.e. |!0

k| ⌧ !2
k. However, the stretching

of modes during the inflationary expansion violates both conditions, resulting in an

abundant production of gravitons, changing nk = 0 into nk � 1, as the modes leave

the Hubble radius. We can check that the solution for super-Hubble modes Eq. (123)

[Eq. (118) for exact de Sitter], corresponds in fact to a very large number of gravitons.

Strictly speaking, the occupation number Eq. (124) is not well-defined during inflation,

as nk is not adiabatically conserved during the inflationary period. Let us therefore

evaluate it just after inflation, assuming an instantaneous transition into a power law

expansion era a(⌘) / ⌘p after inflation (p � 1/2), established at some time ⌘ = ⌘e.

Using for simplicity the result in exact de Sitter, we can plug Eq. (118) into Eq. (124),

and find that for super-Hubble modes ae He � k, nk ⇠ (Hk/He)2 (ae He/k)3 if p 6= 1

check
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where the 1
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term corresponds to the usual quantum vacuum contribution. Inserting the

solution at deep sub-horizon scales Eq. (117) into Eq. (124), gives nk = 0, as it should

be for vacuum in flat space-time. The occupation number nk is an adiabatic invariant

when !2
k(⌘) is positive and varies adiabatically, i.e. |!0

k| ⌧ !2
k. However, the stretching

of modes during the inflationary expansion violates both conditions, resulting in an

abundant production of gravitons, changing nk = 0 into nk � 1, as the modes leave

the Hubble radius. We can check that the solution for super-Hubble modes Eq. (123)

[Eq. (118) for exact de Sitter], corresponds in fact to a very large number of gravitons.

Strictly speaking, the occupation number Eq. (124) is not well-defined during inflation,

as nk is not adiabatically conserved during the inflationary period. Let us therefore

evaluate it just after inflation, assuming an instantaneous transition into a power law

expansion era a(⌘) / ⌘p after inflation (p � 1/2), established at some time ⌘ = ⌘e.

Using for simplicity the result in exact de Sitter, we can plug Eq. (118) into Eq. (124),
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In reality, as one typically expects ✏ 6= 0 (i.e. the inflationary space-time is typically

quasi-de Sitter), we see from the �k⌘ ⌧ 1 limit in Eq. (123), that |vk| has a tilt at

super-horizon scales, which we will discuss shortly.

Let us remark that Eq. (115) describes an harmonic oscillator with a time-dependent

frequency, which varies from !2
k ' k2 to !2

k ' a00/a (' �2a2H2), when the initially

sub-horizon modes aH ⌧ k eventually turn super-Hubble aH � k, due to the quasi-

exponential expansion. When !2
k(⌘) varies only adiabatically in time, i.e. !0

k ⌧ !2
k, as

long as !2
k(⌘) is positive we can associate an occupation number nk to each mode k, so

that |�k|3nk represents the number density of gravitons with momentum [k,k +�k].

This is given by the energy Ek ⌘ 1
2
(|v0

k|2 + !2
k|vk|2) per mode divided by the energy !k

per particle,

Ek =

✓
nk +

1

2

◆
!k ) nk +

1

2
⌘ 1

2!k

�
|v0

k|2 + !2
k |vk|2

�
(124)

where the 1
2
term corresponds to the usual quantum vacuum contribution. Inserting the

solution at deep sub-horizon scales Eq. (117) into Eq. (124), gives nk = 0, as it should

be for vacuum in flat space-time. The occupation number nk is an adiabatic invariant

when !2
k(⌘) is positive and varies adiabatically, i.e. |!0

k| ⌧ !2
k. However, the stretching

of modes during the inflationary expansion violates both conditions, resulting in an

abundant production of gravitons, changing nk = 0 into nk � 1, as the modes leave

the Hubble radius. We can check that the solution for super-Hubble modes Eq. (123)

[Eq. (118) for exact de Sitter], corresponds in fact to a very large number of gravitons.

Strictly speaking, the occupation number Eq. (124) is not well-defined during inflation,

as nk is not adiabatically conserved during the inflationary period. Let us therefore

evaluate it just after inflation, assuming an instantaneous transition into a power law

expansion era a(⌘) / ⌘p after inflation (p � 1/2), established at some time ⌘ = ⌘e.

Using for simplicity the result in exact de Sitter, we can plug Eq. (118) into Eq. (124),

and find that for super-Hubble modes ae He � k, nk ⇠ (Hk/He)2 (ae He/k)3 if p 6= 1

( (
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
2k

for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
1p
2k

) |vk(⌘)| ' Hkp
2 k3

a(⌘) for k ⌧ aH (118)

where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘

R
dN
aH

' � 1
(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last

expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in

Eq. (115) is a00/a ⌘ H0 + H2 ' (2 � ✏)H2 ' (2�✏)
(1�✏)2⌘2

' 1
⌘2

(2 + 3✏), so that Eq. (115) can

be written as

v00
k +


k2 � 1

⌘2

✓
⌫2 � 1

4

◆�
vk = 0 , ⌫ ⌘ 3

2
+ ✏ (119)

An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is

vk = (�⌘)1/2
�
c1(k)H

(1)
⌫ (�k⌘) + c2(k)H

(2)
⌫ (�k⌘)

�
, (120)

where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
⌫ (x � 1) '

q
2

⇡x
ei(x�⌫�⇡/4), H(2)

⌫ (x � 1) '
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=
m2

Pl

4

X

r=+,⇥

Z
d⌘ d3k a2(⌘)

⇥
|h0

r(k, ⌘)|2 � k2 |hr(k, ⌘)|2
⇤

(109)

=
1

2

X

r=+,⇥

Z
d⌘ d3k


|v0

r|2 � k2 |vr|2 +
a00

a
|vr|2

�
, (110)

where we have used the decomposition Eq. (9) and the orthonormal condition (11) in

the second equality, and for the third equality we have introduced the variables

vr(k, ⌘) =
mPlp
2
a(⌘)hr(k, ⌘) . (111)

Action Eq. (109) is equivalent to the action of two real scalar fields vr(x, ⌘) in Minkowski

spacetime, with canonically conjugate momenta ⇡r(x, ⌘) ⌘ v0
r(x, ⌘), and time-dependent

frequency !2
k(⌘) = k2 � a00

a
. The quantization proceeds by promoting vr and ⇡r to

operators v̂r and ⇡̂r that satisfy the standard commutation relations on hypersurfaces

of constant ⌘,

[v̂r(x, ⌘) , ⇡̂r0(x
0, ⌘)] = i �rr0 �

(3)(x � x0)

[v̂r(x, ⌘) , v̂r0(x
0, ⌘)] = [⇡̂r(x, ⌘) , ⇡̂r0(x

0, ⌘)] = 0 . (112)

The fields can be decomposed on the basis of the solutions of the dynamical equations

derived from action Eq. (109). Since the background is spatially isotropic, we can write

v̂r(x, ⌘) =

Z
d3k

(2⇡)3/2

⇥
vk(⌘) e

ikx â
kr + v⇤

k(⌘) e
�ikx â+

kr

⇤
(113)

with â+
kr and â

kr are creation and annihilation operators satisfying the usual

commutation relations
⇥
â
kr , â

+
k

0r0

⇤
= �rr0 �

(3)(k � k0) , [â
kr , âk0r0 ] =

⇥
â+
kr , â

+
k

0r0

⇤
= 0 , (114)

and the mode functions vk(⌘) satisfying the equation of motion

v00
k + !2

k(⌘) vk = 0 , with !k(⌘)
2 ⌘ k2 � a00

a
(115)

Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition

vk v
0⇤
k � v⇤

k v
0
k = i . (116)

Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
(+)
k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv

(+)
k = +kv

(+)
k .
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2
⇡x
e�i(x�⌫�⇡/4), we conclude that c2(k) = 0 and c1(k) =

p
⇡

2
e

i

2

(⌫+ 1

2

). The exact solution

then becomes

vk =

p
⇡

2
e

i

2

(⌫+ 1

2

)p�⌘H(1)
⌫ (�k⌘) , 8 k⌘ (121)

Depending on the scale, this solution reduces to

vk ' e�ik⌘

p
2k

, for � k⌘ � 1 (122)

vk ' ei⇡
2

(⌫� 1

2

)2(⌫� 3

2

) �(⌫)

�(3/2)

1p
2k

(�k⌘)
1

2

�⌫ , for � k⌘ ⌧ 1 , (123)

where in the second expression we have used the small argument expansion H
(1)
⌫ (x ⌧ 1)

'
q

2
⇡
e�i⇡

2 2⌫� 3

2

�(⌫)
�(3/2)

1
x⌫

, see Ref. [Abrammowitz]. The exact solution Eq. (121) reduces

correctly, at sub-horizon scales, to Eq. (117), as it should. At super-horizon scales and

in the limit ✏ ! 0, the amplitude of Eq. (121) reduces to |vk| ' � 1

⌘
p

2k3

, which thanks

to aHk⌘ = �1, matches exactly Eq. (118) (which was derived for exact de Sitter).

In reality, as one typically expects ✏ 6= 0 (i.e. the inflationary space-time is typically

quasi-de Sitter), we see from the �k⌘ ⌧ 1 limit in Eq. (123), that |vk| has a tilt at

super-horizon scales, which we will discuss shortly.

Let us remark that Eq. (115) describes an harmonic oscillator with a time-dependent

frequency, which varies from !2
k ' k2 to !2

k ' a00/a (' �2a2H2), when the initially

sub-horizon modes aH ⌧ k eventually turn super-Hubble aH � k, due to the quasi-

exponential expansion. When !2
k(⌘) varies only adiabatically in time, i.e. !0

k ⌧ !2
k, as

long as !2
k(⌘) is positive we can associate an occupation number nk to each mode k, so

that |�k|3nk represents the number density of gravitons with momentum [k,k +�k].

This is given by the energy Ek ⌘ 1
2
(|v0

k|2 + !2
k|vk|2) per mode divided by the energy !k

per particle,

Ek =

✓
nk +

1

2

◆
!k ) nk +

1

2
⌘ 1

2!k

�
|v0

k|2 + !2
k |vk|2

�
(124)

where the 1
2
term corresponds to the usual quantum vacuum contribution. Inserting the

solution at deep sub-horizon scales Eq. (117) into Eq. (124), gives nk = 0, as it should

be for vacuum in flat space-time. The occupation number nk is an adiabatic invariant

when !2
k(⌘) is positive and varies adiabatically, i.e. |!0

k| ⌧ !2
k. However, the stretching

of modes during the inflationary expansion violates both conditions, resulting in an

abundant production of gravitons, changing nk = 0 into nk � 1, as the modes leave

the Hubble radius. We can check that the solution for super-Hubble modes Eq. (123)

[Eq. (118) for exact de Sitter], corresponds in fact to a very large number of gravitons.

Strictly speaking, the occupation number Eq. (124) is not well-defined during inflation,

as nk is not adiabatically conserved during the inflationary period. Let us therefore

evaluate it just after inflation, assuming an instantaneous transition into a power law

expansion era a(⌘) / ⌘p after inflation (p � 1/2), established at some time ⌘ = ⌘e.

Using for simplicity the result in exact de Sitter, we can plug Eq. (118) into Eq. (124),

and find that for super-Hubble modes ae He � k, nk ⇠ (Hk/He)2 (ae He/k)3 if p 6= 1
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, see Ref. [Abrammowitz]. The exact solution Eq. (121) reduces

correctly, at sub-horizon scales, to Eq. (117), as it should. At super-horizon scales and

in the limit ✏ ! 0, the amplitude of Eq. (121) reduces to |vk| ' � 1

⌘
p

2k3

, which thanks

to aHk⌘ = �1, matches exactly Eq. (118) (which was derived for exact de Sitter).

In reality, as one typically expects ✏ 6= 0 (i.e. the inflationary space-time is typically

quasi-de Sitter), we see from the �k⌘ ⌧ 1 limit in Eq. (123), that |vk| has a tilt at

super-horizon scales, which we will discuss shortly.

Let us remark that Eq. (115) describes an harmonic oscillator with a time-dependent

frequency, which varies from !2
k ' k2 to !2

k ' a00/a (' �2a2H2), when the initially

sub-horizon modes aH ⌧ k eventually turn super-Hubble aH � k, due to the quasi-

exponential expansion. When !2
k(⌘) varies only adiabatically in time, i.e. !0

k ⌧ !2
k, as

long as !2
k(⌘) is positive we can associate an occupation number nk to each mode k, so

that |�k|3nk represents the number density of gravitons with momentum [k,k +�k].

This is given by the energy Ek ⌘ 1
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k|vk|2) per mode divided by the energy !k
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where the 1
2
term corresponds to the usual quantum vacuum contribution. Inserting the

solution at deep sub-horizon scales Eq. (117) into Eq. (124), gives nk = 0, as it should

be for vacuum in flat space-time. The occupation number nk is an adiabatic invariant

when !2
k(⌘) is positive and varies adiabatically, i.e. |!0

k| ⌧ !2
k. However, the stretching

of modes during the inflationary expansion violates both conditions, resulting in an

abundant production of gravitons, changing nk = 0 into nk � 1, as the modes leave

the Hubble radius. We can check that the solution for super-Hubble modes Eq. (123)

[Eq. (118) for exact de Sitter], corresponds in fact to a very large number of gravitons.

Strictly speaking, the occupation number Eq. (124) is not well-defined during inflation,

as nk is not adiabatically conserved during the inflationary period. Let us therefore

evaluate it just after inflation, assuming an instantaneous transition into a power law

expansion era a(⌘) / ⌘p after inflation (p � 1/2), established at some time ⌘ = ⌘e.

Using for simplicity the result in exact de Sitter, we can plug Eq. (118) into Eq. (124),

and find that for super-Hubble modes ae He � k, nk ⇠ (Hk/He)2 (ae He/k)3 if p 6= 1

check
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[nk ⇠ (Hk/He)2 (ae He/k)4 for a RD background with p = 1]. Thus, super-horizon modes

exhibit a very large occupancy nk � 1, which correspondingly can be interpreted as a

large ensemble of gravitons. The originally quantum nature of the tensor perturbations

(e.g. non-commutation of variables) is therefore lost somehow, though reflected in the

stochastic nature of the emerging classical field distribution. The quantum-to-classical

transition, which occurs basically when the modes leave the Hubble radius, is studied

in detail in Ref. [147], [OTHERS!].

In terms of the original GW field hij, Eqs. (??),(111) and (113), give

ĥij(x, ⌘) =
X

r=+,⇥

Z
d3k

(2⇡)3/2

�
hk(⌘) e

ikx â
kr + k⇤

k(⌘) e
�ikx â+

kr

�
er

ij(k̂) (125)

The amplitude of the physical tensor modes hk at super-horizon scales is determined by

Eqs. (111) and Eq. (123), as

|hk(⌘)| ' H

mPl k3/2
f(✏)

✓
k

aH

◆�✏

, for k ⌧ aH (126)

with f(✏) ⌘ 2✏(1 � ✏)1+✏ �( 3

2

+✏)
�( 3

2

)
' 1 �

�
1 � ln(2) �  0

�
3
2

��
✏ ' 1 � 0.27✏, and  0(x) the

Digamma function. In the limit of exact de Sitter ✏ ! 0, Ḣ ! 0, f(✏ ! 0) ! 1 and�
k

aH

��✏ ! 1. Hence the amplitude reduces to⇤

|hk(⌘)| ! H

mPl k3/2
, for ✏ ! 0 , k ⌧ aH (127)

As discussed below Eq. (21), hk(⌘) remains constant in time after the modes leave the

Hubble radius during inflation, until they re-enter the Hubble radius during the post-

inflationary evolution. Eq. (126) evaluated at Hubble radius crossing k = akHk (which

is exactly equivalent to Eq. (127) if we approximate f(✏k) ' 1), will thus provide the

initial condition for the evolution of the modes once they re-enter the Hubble radius, to

be discussed in the next sub-section.

It is convenient to define a tensor power spectrum Ph(k) as

h0|ĥij(x, ⌘) ĥij(x, ⌘)|0i =
Z

dk

k
Ph(k) . (128)

Using Eq. (125) evaluated at the super-Hubble solution Eq. (126), the orthonormal

relation (11) for the polarization tensor, and the commutation relations Eq. (114) for

the creation and annihilation operators, we obtain

Ph(k) ' 2

⇡2

H2

m2
Pl

f 2(✏)

✓
k

aH

◆�2✏

for k ⌧ aH . (129)

At horizon-crossing k = akHk, this expression reduces simply (taking f(✏) ' 1) to

Ph(k) ' 2

⇡2

H2
k

m2
Pl

for k = akHk , (130)

⇤Alternatively we could have simply deduced Eq. (127) by simply using Eq. (118) valid for exact
de Sitter, instead of Eq. (123).
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X
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Z
d⌘ d3k


|v0

r|2 � k2 |vr|2 +
a00

a
|vr|2

�
, (110)

where we have used the decomposition Eq. (9) and the orthonormal condition (11) in

the second equality, and for the third equality we have introduced the variables

vr(k, ⌘) =
mPlp
2
a(⌘)hr(k, ⌘) . (111)

Action Eq. (109) is equivalent to the action of two real scalar fields vr(x, ⌘) in Minkowski

spacetime, with canonically conjugate momenta ⇡r(x, ⌘) ⌘ v0
r(x, ⌘), and time-dependent

frequency !2
k(⌘) = k2 � a00

a
. The quantization proceeds by promoting vr and ⇡r to

operators v̂r and ⇡̂r that satisfy the standard commutation relations on hypersurfaces

of constant ⌘,

[v̂r(x, ⌘) , ⇡̂r0(x
0, ⌘)] = i �rr0 �

(3)(x � x0)

[v̂r(x, ⌘) , v̂r0(x
0, ⌘)] = [⇡̂r(x, ⌘) , ⇡̂r0(x

0, ⌘)] = 0 . (112)

The fields can be decomposed on the basis of the solutions of the dynamical equations

derived from action Eq. (109). Since the background is spatially isotropic, we can write

v̂r(x, ⌘) =

Z
d3k

(2⇡)3/2
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vk(⌘) e

ikx â
kr + v⇤

k(⌘) e
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with â+
kr and â

kr are creation and annihilation operators satisfying the usual

commutation relations
⇥
â
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(3)(k � k0) , [â
kr , âk0r0 ] =
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0r0
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= 0 , (114)

and the mode functions vk(⌘) satisfying the equation of motion

v00
k + !2

k(⌘) vk = 0 , with !k(⌘)
2 ⌘ k2 � a00

a
(115)

Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition

vk v
0⇤
k � v⇤

k v
0
k = i . (116)

Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
(+)
k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv

(+)
k = +kv

(+)
k .
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[nk ⇠ (Hk/He)2 (ae He/k)4 for a RD background with p = 1]. Thus, super-horizon modes

exhibit a very large occupancy nk � 1, which correspondingly can be interpreted as a

large ensemble of gravitons. The originally quantum nature of the tensor perturbations

(e.g. non-commutation of variables) is therefore lost somehow, though reflected in the

stochastic nature of the emerging classical field distribution. The quantum-to-classical

transition, which occurs basically when the modes leave the Hubble radius, is studied

in detail in Ref. [147], [OTHERS!].

In terms of the original GW field hij, Eqs. (??),(111) and (113), give

ĥij(x, ⌘) =
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�
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The amplitude of the physical tensor modes hk at super-horizon scales is determined by

Eqs. (111) and Eq. (123), as

|hk(⌘)| ' H

mPl k3/2
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, for k ⌧ aH (126)
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✏ ' 1 � 0.27✏, and  0(x) the

Digamma function. In the limit of exact de Sitter ✏ ! 0, Ḣ ! 0, f(✏ ! 0) ! 1 and�
k

aH

��✏ ! 1. Hence the amplitude reduces to⇤

|hk(⌘)| ! H

mPl k3/2
, for ✏ ! 0 , k ⌧ aH (127)

As discussed below Eq. (21), hk(⌘) remains constant in time after the modes leave the

Hubble radius during inflation, until they re-enter the Hubble radius during the post-

inflationary evolution. Eq. (126) evaluated at Hubble radius crossing k = akHk (which

is exactly equivalent to Eq. (127) if we approximate f(✏k) ' 1), will thus provide the

initial condition for the evolution of the modes once they re-enter the Hubble radius, to

be discussed in the next sub-section.

It is convenient to define a tensor power spectrum Ph(k) as

h0|ĥij(x, ⌘) ĥij(x, ⌘)|0i =
Z

dk

k
Ph(k) . (128)

Using Eq. (125) evaluated at the super-Hubble solution Eq. (126), the orthonormal

relation (11) for the polarization tensor, and the commutation relations Eq. (114) for

the creation and annihilation operators, we obtain

Ph(k) ' 2

⇡2

H2

m2
Pl

f 2(✏)

✓
k

aH

◆�2✏

for k ⌧ aH . (129)

At horizon-crossing k = akHk, this expression reduces simply (taking f(✏) ' 1) to

Ph(k) ' 2

⇡2

H2
k

m2
Pl

for k = akHk , (130)

⇤Alternatively we could have simply deduced Eq. (127) by simply using Eq. (118) valid for exact
de Sitter, instead of Eq. (123).
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[nk ⇠ (Hk/He)2 (ae He/k)4 for a RD background with p = 1]. Thus, super-horizon modes

exhibit a very large occupancy nk � 1, which correspondingly can be interpreted as a

large ensemble of gravitons. The originally quantum nature of the tensor perturbations

(e.g. non-commutation of variables) is therefore lost somehow, though reflected in the

stochastic nature of the emerging classical field distribution. The quantum-to-classical

transition, which occurs basically when the modes leave the Hubble radius, is studied

in detail in Ref. [147], [OTHERS!].

In terms of the original GW field hij, Eqs. (??),(111) and (113), give
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kr

�
er

ij(k̂) (125)

The amplitude of the physical tensor modes hk at super-horizon scales is determined by

Eqs. (111) and Eq. (123), as
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|hk(⌘)| ! H
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, for ✏ ! 0 , k ⌧ aH (127)

As discussed below Eq. (21), hk(⌘) remains constant in time after the modes leave the

Hubble radius during inflation, until they re-enter the Hubble radius during the post-

inflationary evolution. Eq. (126) evaluated at Hubble radius crossing k = akHk (which

is exactly equivalent to Eq. (127) if we approximate f(✏k) ' 1), will thus provide the

initial condition for the evolution of the modes once they re-enter the Hubble radius, to

be discussed in the next sub-section.

It is convenient to define a tensor power spectrum Ph(k) as

h0|ĥij(x, ⌘) ĥij(x, ⌘)|0i =
Z

dk

k
Ph(k) . (128)

Using Eq. (125) evaluated at the super-Hubble solution Eq. (126), the orthonormal

relation (11) for the polarization tensor, and the commutation relations Eq. (114) for

the creation and annihilation operators, we obtain

Ph(k) ' 2

⇡2

H2
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Pl

f 2(✏)
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At horizon-crossing k = akHk, this expression reduces simply (taking f(✏) ' 1) to

Ph(k) ' 2

⇡2

H2
k

m2
Pl

for k = akHk , (130)

⇤Alternatively we could have simply deduced Eq. (127) by simply using Eq. (118) valid for exact
de Sitter, instead of Eq. (123).

Stochastic gravitational wave backgrounds and early universe cosmology. 47

found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
2k

for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
1p
2k

) |vk(⌘)| ' Hkp
2 k3

a(⌘) for k ⌧ aH (118)

where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘

R
dN
aH

' � 1
(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last

expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in

Eq. (115) is a00/a ⌘ H0 + H2 ' (2 � ✏)H2 ' (2�✏)
(1�✏)2⌘2

' 1
⌘2

(2 + 3✏), so that Eq. (115) can

be written as

v00
k +


k2 � 1

⌘2

✓
⌫2 � 1

4

◆�
vk = 0 , ⌫ ⌘ 3

2
+ ✏ (119)

An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is

vk = (�⌘)1/2
�
c1(k)H

(1)
⌫ (�k⌘) + c2(k)H

(2)
⌫ (�k⌘)

�
, (120)

where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
⌫ (x � 1) '

q
2

⇡x
ei(x�⌫�⇡/4), H(2)

⌫ (x � 1) '

h
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r(k, ⌘)|2 � k2 |hr(k, ⌘)|2
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=
1
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X

r=+,⇥

Z
d⌘ d3k


|v0

r|2 � k2 |vr|2 +
a00

a
|vr|2

�
, (110)

where we have used the decomposition Eq. (9) and the orthonormal condition (11) in

the second equality, and for the third equality we have introduced the variables

vr(k, ⌘) =
mPlp
2
a(⌘)hr(k, ⌘) . (111)

Action Eq. (109) is equivalent to the action of two real scalar fields vr(x, ⌘) in Minkowski

spacetime, with canonically conjugate momenta ⇡r(x, ⌘) ⌘ v0
r(x, ⌘), and time-dependent

frequency !2
k(⌘) = k2 � a00

a
. The quantization proceeds by promoting vr and ⇡r to

operators v̂r and ⇡̂r that satisfy the standard commutation relations on hypersurfaces

of constant ⌘,

[v̂r(x, ⌘) , ⇡̂r0(x
0, ⌘)] = i �rr0 �

(3)(x � x0)

[v̂r(x, ⌘) , v̂r0(x
0, ⌘)] = [⇡̂r(x, ⌘) , ⇡̂r0(x

0, ⌘)] = 0 . (112)

The fields can be decomposed on the basis of the solutions of the dynamical equations

derived from action Eq. (109). Since the background is spatially isotropic, we can write

v̂r(x, ⌘) =

Z
d3k

(2⇡)3/2

⇥
vk(⌘) e

ikx â
kr + v⇤

k(⌘) e
�ikx â+

kr

⇤
(113)

with â+
kr and â

kr are creation and annihilation operators satisfying the usual

commutation relations
⇥
â
kr , â

+
k

0r0

⇤
= �rr0 �

(3)(k � k0) , [â
kr , âk0r0 ] =

⇥
â+
kr , â

+
k

0r0

⇤
= 0 , (114)

and the mode functions vk(⌘) satisfying the equation of motion

v00
k + !2

k(⌘) vk = 0 , with !k(⌘)
2 ⌘ k2 � a00

a
(115)

Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition

vk v
0⇤
k � v⇤

k v
0
k = i . (116)

Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
(+)
k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv

(+)
k = +kv

(+)
k .

Stochastic gravitational wave backgrounds and early universe cosmology. 48
q

2
⇡x
e�i(x�⌫�⇡/4), we conclude that c2(k) = 0 and c1(k) =

p
⇡

2
e

i

2

(⌫+ 1

2

). The exact solution

then becomes

vk =

p
⇡

2
e

i

2

(⌫+ 1

2

)p�⌘H(1)
⌫ (�k⌘) , 8 k⌘ (121)

Depending on the scale, this solution reduces to

vk ' e�ik⌘

p
2k

, for � k⌘ � 1 (122)

vk ' ei⇡
2

(⌫� 1

2

)2(⌫� 3

2

) �(⌫)

�(3/2)

1p
2k

(�k⌘)
1

2

�⌫ , for � k⌘ ⌧ 1 , (123)

where in the second expression we have used the small argument expansion H
(1)
⌫ (x ⌧ 1)

'
q

2
⇡
e�i⇡

2 2⌫� 3

2

�(⌫)
�(3/2)

1
x⌫

, see Ref. [Abrammowitz]. The exact solution Eq. (121) reduces

correctly, at sub-horizon scales, to Eq. (117), as it should. At super-horizon scales and

in the limit ✏ ! 0, the amplitude of Eq. (121) reduces to |vk| ' � 1

⌘
p

2k3

, which thanks

to aHk⌘ = �1, matches exactly Eq. (118) (which was derived for exact de Sitter).

In reality, as one typically expects ✏ 6= 0 (i.e. the inflationary space-time is typically

quasi-de Sitter), we see from the �k⌘ ⌧ 1 limit in Eq. (123), that |vk| has a tilt at

super-horizon scales, which we will discuss shortly.

Let us remark that Eq. (115) describes an harmonic oscillator with a time-dependent

frequency, which varies from !2
k ' k2 to !2

k ' a00/a (' �2a2H2), when the initially

sub-horizon modes aH ⌧ k eventually turn super-Hubble aH � k, due to the quasi-

exponential expansion. When !2
k(⌘) varies only adiabatically in time, i.e. !0

k ⌧ !2
k, as

long as !2
k(⌘) is positive we can associate an occupation number nk to each mode k, so

that |�k|3nk represents the number density of gravitons with momentum [k,k +�k].

This is given by the energy Ek ⌘ 1
2
(|v0

k|2 + !2
k|vk|2) per mode divided by the energy !k

per particle,

Ek =

✓
nk +

1

2

◆
!k ) nk +

1

2
⌘ 1

2!k

�
|v0

k|2 + !2
k |vk|2

�
(124)

where the 1
2
term corresponds to the usual quantum vacuum contribution. Inserting the

solution at deep sub-horizon scales Eq. (117) into Eq. (124), gives nk = 0, as it should

be for vacuum in flat space-time. The occupation number nk is an adiabatic invariant

when !2
k(⌘) is positive and varies adiabatically, i.e. |!0

k| ⌧ !2
k. However, the stretching

of modes during the inflationary expansion violates both conditions, resulting in an

abundant production of gravitons, changing nk = 0 into nk � 1, as the modes leave

the Hubble radius. We can check that the solution for super-Hubble modes Eq. (123)

[Eq. (118) for exact de Sitter], corresponds in fact to a very large number of gravitons.

Strictly speaking, the occupation number Eq. (124) is not well-defined during inflation,

as nk is not adiabatically conserved during the inflationary period. Let us therefore

evaluate it just after inflation, assuming an instantaneous transition into a power law

expansion era a(⌘) / ⌘p after inflation (p � 1/2), established at some time ⌘ = ⌘e.

Using for simplicity the result in exact de Sitter, we can plug Eq. (118) into Eq. (124),

and find that for super-Hubble modes ae He � k, nk ⇠ (Hk/He)2 (ae He/k)3 if p 6= 1
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where we have used the decomposition Eq. (9) and the orthonormal condition (11) in

the second equality, and for the third equality we have introduced the variables

vr(k, ⌘) =
mPlp
2
a(⌘)hr(k, ⌘) . (111)

Action Eq. (109) is equivalent to the action of two real scalar fields vr(x, ⌘) in Minkowski

spacetime, with canonically conjugate momenta ⇡r(x, ⌘) ⌘ v0
r(x, ⌘), and time-dependent

frequency !2
k(⌘) = k2 � a00

a
. The quantization proceeds by promoting vr and ⇡r to

operators v̂r and ⇡̂r that satisfy the standard commutation relations on hypersurfaces

of constant ⌘,

[v̂r(x, ⌘) , ⇡̂r0(x
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0, ⌘)] = 0 . (112)

The fields can be decomposed on the basis of the solutions of the dynamical equations

derived from action Eq. (109). Since the background is spatially isotropic, we can write

v̂r(x, ⌘) =
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with â+
kr and â

kr are creation and annihilation operators satisfying the usual

commutation relations
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and the mode functions vk(⌘) satisfying the equation of motion

v00
k + !2

k(⌘) vk = 0 , with !k(⌘)
2 ⌘ k2 � a00

a
(115)

Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition

vk v
0⇤
k � v⇤

k v
0
k = i . (116)

Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
(+)
k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv

(+)
k = +kv

(+)
k .
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[nk ⇠ (Hk/He)2 (ae He/k)4 for a RD background with p = 1]. Thus, super-horizon modes

exhibit a very large occupancy nk � 1, which correspondingly can be interpreted as a

large ensemble of gravitons. The originally quantum nature of the tensor perturbations

(e.g. non-commutation of variables) is therefore lost somehow, though reflected in the

stochastic nature of the emerging classical field distribution. The quantum-to-classical

transition, which occurs basically when the modes leave the Hubble radius, is studied

in detail in Ref. [147], [OTHERS!].

In terms of the original GW field hij, Eqs. (??),(111) and (113), give

ĥij(x, ⌘) =
X

r=+,⇥

Z
d3k

(2⇡)3/2

�
hk(⌘) e

ikx â
kr + k⇤

k(⌘) e
�ikx â+
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�
er

ij(k̂) (125)

The amplitude of the physical tensor modes hk at super-horizon scales is determined by

Eqs. (111) and Eq. (123), as

|hk(⌘)| ' H

mPl k3/2
f(✏)

✓
k

aH

◆�✏

, for k ⌧ aH (126)

with f(✏) ⌘ 2✏(1 � ✏)1+✏ �( 3

2
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' 1 �

�
1 � ln(2) �  0
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3
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✏ ' 1 � 0.27✏, and  0(x) the

Digamma function. In the limit of exact de Sitter ✏ ! 0, Ḣ ! 0, f(✏ ! 0) ! 1 and�
k

aH

��✏ ! 1. Hence the amplitude reduces to⇤

|hk(⌘)| ! H

mPl k3/2
, for ✏ ! 0 , k ⌧ aH (127)

As discussed below Eq. (21), hk(⌘) remains constant in time after the modes leave the

Hubble radius during inflation, until they re-enter the Hubble radius during the post-

inflationary evolution. Eq. (126) evaluated at Hubble radius crossing k = akHk (which

is exactly equivalent to Eq. (127) if we approximate f(✏k) ' 1), will thus provide the

initial condition for the evolution of the modes once they re-enter the Hubble radius, to

be discussed in the next sub-section.

It is convenient to define a tensor power spectrum Ph(k) as

h0|ĥij(x, ⌘) ĥij(x, ⌘)|0i =
Z

dk

k
Ph(k) . (128)

Using Eq. (125) evaluated at the super-Hubble solution Eq. (126), the orthonormal

relation (11) for the polarization tensor, and the commutation relations Eq. (114) for

the creation and annihilation operators, we obtain

Ph(k) ' 2

⇡2

H2

m2
Pl

f 2(✏)

✓
k
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◆�2✏

for k ⌧ aH . (129)

At horizon-crossing k = akHk, this expression reduces simply (taking f(✏) ' 1) to

Ph(k) ' 2

⇡2

H2
k

m2
Pl

for k = akHk , (130)

⇤Alternatively we could have simply deduced Eq. (127) by simply using Eq. (118) valid for exact
de Sitter, instead of Eq. (123).

super-Hubble mode
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
2k

for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
1p
2k

) |vk(⌘)| ' Hkp
2 k3

a(⌘) for k ⌧ aH (118)

where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘

R
dN
aH

' � 1
(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last

expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in

Eq. (115) is a00/a ⌘ H0 + H2 ' (2 � ✏)H2 ' (2�✏)
(1�✏)2⌘2

' 1
⌘2

(2 + 3✏), so that Eq. (115) can

be written as

v00
k +


k2 � 1

⌘2

✓
⌫2 � 1

4

◆�
vk = 0 , ⌫ ⌘ 3

2
+ ✏ (119)

An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is

vk = (�⌘)1/2
�
c1(k)H

(1)
⌫ (�k⌘) + c2(k)H

(2)
⌫ (�k⌘)

�
, (120)

where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
⌫ (x � 1) '

q
2

⇡x
ei(x�⌫�⇡/4), H(2)

⌫ (x � 1) '
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[nk ⇠ (Hk/He)2 (ae He/k)4 for a RD background with p = 1]. Thus, super-horizon modes

exhibit a very large occupancy nk � 1, which correspondingly can be interpreted as a

large ensemble of gravitons. The originally quantum nature of the tensor perturbations

(e.g. non-commutation of variables) is therefore lost somehow, though reflected in the

stochastic nature of the emerging classical field distribution. The quantum-to-classical

transition, which occurs basically when the modes leave the Hubble radius, is studied

in detail in Ref. [147], [OTHERS!].

In terms of the original GW field hij, Eqs. (??),(111) and (113), give
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�
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The amplitude of the physical tensor modes hk at super-horizon scales is determined by

Eqs. (111) and Eq. (123), as

|hk(⌘)| ' H

mPl k3/2
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◆�✏

, for k ⌧ aH (126)
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�
1 � ln(2) �  0
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✏ ' 1 � 0.27✏, and  0(x) the

Digamma function. In the limit of exact de Sitter ✏ ! 0, Ḣ ! 0, f(✏ ! 0) ! 1 and�
k

aH

��✏ ! 1. Hence the amplitude reduces to⇤

|hk(⌘)| ! H

mPl k3/2
, for ✏ ! 0 , k ⌧ aH (127)

As discussed below Eq. (21), hk(⌘) remains constant in time after the modes leave the

Hubble radius during inflation, until they re-enter the Hubble radius during the post-

inflationary evolution. Eq. (126) evaluated at Hubble radius crossing k = akHk (which

is exactly equivalent to Eq. (127) if we approximate f(✏k) ' 1), will thus provide the

initial condition for the evolution of the modes once they re-enter the Hubble radius, to

be discussed in the next sub-section.

It is convenient to define a tensor power spectrum Ph(k) as

h0|ĥij(x, ⌘) ĥij(x, ⌘)|0i =
Z

dk

k
Ph(k) . (128)

Using Eq. (125) evaluated at the super-Hubble solution Eq. (126), the orthonormal

relation (11) for the polarization tensor, and the commutation relations Eq. (114) for

the creation and annihilation operators, we obtain

Ph(k) ' 2

⇡2

H2

m2
Pl

f 2(✏)

✓
k

aH

◆�2✏

for k ⌧ aH . (129)

At horizon-crossing k = akHk, this expression reduces simply (taking f(✏) ' 1) to

Ph(k) ' 2

⇡2

H2
k

m2
Pl

for k = akHk , (130)

⇤Alternatively we could have simply deduced Eq. (127) by simply using Eq. (118) valid for exact
de Sitter, instead of Eq. (123).
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Pl

4
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Z
d⌘ d3k a2(⌘)
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|h0

r(k, ⌘)|2 � k2 |hr(k, ⌘)|2
⇤

(109)

=
1

2

X

r=+,⇥

Z
d⌘ d3k


|v0

r|2 � k2 |vr|2 +
a00

a
|vr|2

�
, (110)

where we have used the decomposition Eq. (9) and the orthonormal condition (11) in

the second equality, and for the third equality we have introduced the variables

vr(k, ⌘) =
mPlp
2
a(⌘)hr(k, ⌘) . (111)

Action Eq. (109) is equivalent to the action of two real scalar fields vr(x, ⌘) in Minkowski

spacetime, with canonically conjugate momenta ⇡r(x, ⌘) ⌘ v0
r(x, ⌘), and time-dependent

frequency !2
k(⌘) = k2 � a00

a
. The quantization proceeds by promoting vr and ⇡r to

operators v̂r and ⇡̂r that satisfy the standard commutation relations on hypersurfaces

of constant ⌘,

[v̂r(x, ⌘) , ⇡̂r0(x
0, ⌘)] = i �rr0 �

(3)(x � x0)

[v̂r(x, ⌘) , v̂r0(x
0, ⌘)] = [⇡̂r(x, ⌘) , ⇡̂r0(x

0, ⌘)] = 0 . (112)

The fields can be decomposed on the basis of the solutions of the dynamical equations

derived from action Eq. (109). Since the background is spatially isotropic, we can write

v̂r(x, ⌘) =

Z
d3k

(2⇡)3/2

⇥
vk(⌘) e

ikx â
kr + v⇤

k(⌘) e
�ikx â+

kr

⇤
(113)

with â+
kr and â

kr are creation and annihilation operators satisfying the usual

commutation relations
⇥
â
kr , â

+
k

0r0

⇤
= �rr0 �

(3)(k � k0) , [â
kr , âk0r0 ] =

⇥
â+
kr , â

+
k

0r0

⇤
= 0 , (114)

and the mode functions vk(⌘) satisfying the equation of motion

v00
k + !2

k(⌘) vk = 0 , with !k(⌘)
2 ⌘ k2 � a00

a
(115)

Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition

vk v
0⇤
k � v⇤

k v
0
k = i . (116)

Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
(+)
k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv

(+)
k = +kv

(+)
k .
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2
⇡x
e�i(x�⌫�⇡/4), we conclude that c2(k) = 0 and c1(k) =

p
⇡

2
e

i

2

(⌫+ 1

2

). The exact solution

then becomes

vk =

p
⇡

2
e

i

2

(⌫+ 1

2

)p�⌘H(1)
⌫ (�k⌘) , 8 k⌘ (121)

Depending on the scale, this solution reduces to

vk ' e�ik⌘

p
2k

, for � k⌘ � 1 (122)

vk ' ei⇡
2

(⌫� 1

2

)2(⌫� 3

2

) �(⌫)

�(3/2)

1p
2k

(�k⌘)
1

2

�⌫ , for � k⌘ ⌧ 1 , (123)

where in the second expression we have used the small argument expansion H
(1)
⌫ (x ⌧ 1)

'
q

2
⇡
e�i⇡

2 2⌫� 3

2

�(⌫)
�(3/2)

1
x⌫

, see Ref. [Abrammowitz]. The exact solution Eq. (121) reduces

correctly, at sub-horizon scales, to Eq. (117), as it should. At super-horizon scales and

in the limit ✏ ! 0, the amplitude of Eq. (121) reduces to |vk| ' � 1

⌘
p

2k3

, which thanks

to aHk⌘ = �1, matches exactly Eq. (118) (which was derived for exact de Sitter).

In reality, as one typically expects ✏ 6= 0 (i.e. the inflationary space-time is typically

quasi-de Sitter), we see from the �k⌘ ⌧ 1 limit in Eq. (123), that |vk| has a tilt at

super-horizon scales, which we will discuss shortly.

Let us remark that Eq. (115) describes an harmonic oscillator with a time-dependent

frequency, which varies from !2
k ' k2 to !2

k ' a00/a (' �2a2H2), when the initially

sub-horizon modes aH ⌧ k eventually turn super-Hubble aH � k, due to the quasi-

exponential expansion. When !2
k(⌘) varies only adiabatically in time, i.e. !0

k ⌧ !2
k, as

long as !2
k(⌘) is positive we can associate an occupation number nk to each mode k, so

that |�k|3nk represents the number density of gravitons with momentum [k,k +�k].

This is given by the energy Ek ⌘ 1
2
(|v0

k|2 + !2
k|vk|2) per mode divided by the energy !k

per particle,

Ek =

✓
nk +

1

2

◆
!k ) nk +

1

2
⌘ 1

2!k

�
|v0

k|2 + !2
k |vk|2

�
(124)

where the 1
2
term corresponds to the usual quantum vacuum contribution. Inserting the

solution at deep sub-horizon scales Eq. (117) into Eq. (124), gives nk = 0, as it should

be for vacuum in flat space-time. The occupation number nk is an adiabatic invariant

when !2
k(⌘) is positive and varies adiabatically, i.e. |!0

k| ⌧ !2
k. However, the stretching

of modes during the inflationary expansion violates both conditions, resulting in an

abundant production of gravitons, changing nk = 0 into nk � 1, as the modes leave

the Hubble radius. We can check that the solution for super-Hubble modes Eq. (123)

[Eq. (118) for exact de Sitter], corresponds in fact to a very large number of gravitons.

Strictly speaking, the occupation number Eq. (124) is not well-defined during inflation,

as nk is not adiabatically conserved during the inflationary period. Let us therefore

evaluate it just after inflation, assuming an instantaneous transition into a power law

expansion era a(⌘) / ⌘p after inflation (p � 1/2), established at some time ⌘ = ⌘e.

Using for simplicity the result in exact de Sitter, we can plug Eq. (118) into Eq. (124),

and find that for super-Hubble modes ae He � k, nk ⇠ (Hk/He)2 (ae He/k)3 if p 6= 1
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where we have used the decomposition Eq. (9) and the orthonormal condition (11) in

the second equality, and for the third equality we have introduced the variables

vr(k, ⌘) =
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Action Eq. (109) is equivalent to the action of two real scalar fields vr(x, ⌘) in Minkowski

spacetime, with canonically conjugate momenta ⇡r(x, ⌘) ⌘ v0
r(x, ⌘), and time-dependent

frequency !2
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. The quantization proceeds by promoting vr and ⇡r to
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of constant ⌘,

[v̂r(x, ⌘) , ⇡̂r0(x
0, ⌘)] = i �rr0 �

(3)(x � x0)

[v̂r(x, ⌘) , v̂r0(x
0, ⌘)] = [⇡̂r(x, ⌘) , ⇡̂r0(x
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The fields can be decomposed on the basis of the solutions of the dynamical equations

derived from action Eq. (109). Since the background is spatially isotropic, we can write

v̂r(x, ⌘) =
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with â+
kr and â

kr are creation and annihilation operators satisfying the usual

commutation relations
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and the mode functions vk(⌘) satisfying the equation of motion

v00
k + !2

k(⌘) vk = 0 , with !k(⌘)
2 ⌘ k2 � a00

a
(115)

Consistency between the commutation relations Eq. (112) and Eq. (114) requires the

normalization condition

vk v
0⇤
k � v⇤

k v
0
k = i . (116)

Eq. (115) describes an harmonic oscillator with a time-dependent frequency varying

from !2
k ' k2 when the modes are sub-horizon aH ⌧ k, to !2

k ' a00/a when the modes

become super-Hubble aH � k. For sub-Hubble modes, Eq. (115) reads v00
k + k2 ' 0,

which has two linearly independent solutions, vk = ck,+v
(+)
k +ck,�v

(�)
k , with v

(±)
k ⌘ e⌥ik⌘,

and c
(±)
k constants. Defining a vacuum state |0i as â

kr |0i = 0, we can associate the

annihilation operators â
kr in Eq. (113) to the ”positive⇤ frequency modes” v

(+)
k . This

standard prescription corresponds to the so-called Bunch-Davies vacuum. A discussion

of the consequences of other vacuum prescriptions for the GW background can be

⇤They are referred to as ’positive’ because they correspond to the eigenfunctions of the energy
operator Ĥ = i@⌘ with positive eigenvalues, Ĥv

(+)
k = +kv

(+)
k .
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[nk ⇠ (Hk/He)2 (ae He/k)4 for a RD background with p = 1]. Thus, super-horizon modes

exhibit a very large occupancy nk � 1, which correspondingly can be interpreted as a

large ensemble of gravitons. The originally quantum nature of the tensor perturbations

(e.g. non-commutation of variables) is therefore lost somehow, though reflected in the

stochastic nature of the emerging classical field distribution. The quantum-to-classical

transition, which occurs basically when the modes leave the Hubble radius, is studied

in detail in Ref. [147], [OTHERS!].

In terms of the original GW field hij, Eqs. (??),(111) and (113), give

ĥij(x, ⌘) =
X

r=+,⇥

Z
d3k

(2⇡)3/2

�
hk(⌘) e

ikx â
kr + k⇤

k(⌘) e
�ikx â+

kr

�
er

ij(k̂) (125)

The amplitude of the physical tensor modes hk at super-horizon scales is determined by

Eqs. (111) and Eq. (123), as

|hk(⌘)| ' H

mPl k3/2
f(✏)

✓
k

aH

◆�✏

, for k ⌧ aH (126)

with f(✏) ⌘ 2✏(1 � ✏)1+✏ �( 3

2

+✏)
�( 3

2

)
' 1 �

�
1 � ln(2) �  0

�
3
2

��
✏ ' 1 � 0.27✏, and  0(x) the

Digamma function. In the limit of exact de Sitter ✏ ! 0, Ḣ ! 0, f(✏ ! 0) ! 1 and�
k

aH

��✏ ! 1. Hence the amplitude reduces to⇤

|hk(⌘)| ! H

mPl k3/2
, for ✏ ! 0 , k ⌧ aH (127)

As discussed below Eq. (21), hk(⌘) remains constant in time after the modes leave the

Hubble radius during inflation, until they re-enter the Hubble radius during the post-

inflationary evolution. Eq. (126) evaluated at Hubble radius crossing k = akHk (which

is exactly equivalent to Eq. (127) if we approximate f(✏k) ' 1), will thus provide the

initial condition for the evolution of the modes once they re-enter the Hubble radius, to

be discussed in the next sub-section.

It is convenient to define a tensor power spectrum Ph(k) as

h0|ĥij(x, ⌘) ĥij(x, ⌘)|0i =
Z

dk

k
Ph(k) . (128)

Using Eq. (125) evaluated at the super-Hubble solution Eq. (126), the orthonormal

relation (11) for the polarization tensor, and the commutation relations Eq. (114) for

the creation and annihilation operators, we obtain

Ph(k) ' 2

⇡2

H2

m2
Pl

f 2(✏)

✓
k

aH

◆�2✏

for k ⌧ aH . (129)

At horizon-crossing k = akHk, this expression reduces simply (taking f(✏) ' 1) to

Ph(k) ' 2

⇡2

H2
k

m2
Pl

for k = akHk , (130)

⇤Alternatively we could have simply deduced Eq. (127) by simply using Eq. (118) valid for exact
de Sitter, instead of Eq. (123).

super-Hubble mode

super-Hubble spectrum
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stochastic nature of the emerging classical field distribution. The quantum-to-classical

transition, which occurs basically when the modes leave the Hubble radius, is studied

in detail in Ref. [147], [OTHERS!].

In terms of the original GW field hij, Eqs. (??),(111) and (113), give
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The amplitude of the physical tensor modes hk at super-horizon scales is determined by

Eqs. (111) and Eq. (123), as
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As discussed below Eq. (21), hk(⌘) remains constant in time after the modes leave the

Hubble radius during inflation, until they re-enter the Hubble radius during the post-

inflationary evolution. Eq. (126) evaluated at Hubble radius crossing k = akHk (which

is exactly equivalent to Eq. (127) if we approximate f(✏k) ' 1), will thus provide the

initial condition for the evolution of the modes once they re-enter the Hubble radius, to

be discussed in the next sub-section.

It is convenient to define a tensor power spectrum Ph(k) as
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Using Eq. (125) evaluated at the super-Hubble solution Eq. (126), the orthonormal

relation (11) for the polarization tensor, and the commutation relations Eq. (114) for

the creation and annihilation operators, we obtain
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At horizon-crossing k = akHk, this expression reduces simply (taking f(✏) ' 1) to

Ph(k) ' 2

⇡2

H2
k
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Pl

for k = akHk , (130)

⇤Alternatively we could have simply deduced Eq. (127) by simply using Eq. (118) valid for exact
de Sitter, instead of Eq. (123).
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It is convenient to define a tensor power spectrum Ph(k) as

h0|ĥij(x, ⌘) ĥij(x, ⌘)|0i =
Z

dk

k
Ph(k) . (128)

Using Eq. (125) evaluated at the super-Hubble solution Eq. (126), the orthonormal

relation (11) for the polarization tensor, and the commutation relations Eq. (114) for

the creation and annihilation operators, we obtain

Ph(k) ' 2

⇡2

H2

m2
Pl

f 2(✏)

✓
k

aH

◆�2✏

for k ⌧ aH . (129)

At horizon-crossing k = akHk, this expression reduces simply (taking f(✏) ' 1) to

Ph(k) ' 2

⇡2

H2
k

m2
Pl

for k = akHk , (130)

⇤Alternatively we could have simply deduced Eq. (127) by simply using Eq. (118) valid for exact
de Sitter, instead of Eq. (123).
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[nk ⇠ (Hk/He)2 (ae He/k)4 for a RD background with p = 1]. Thus, super-horizon modes

exhibit a very large occupancy nk � 1, which correspondingly can be interpreted as a

large ensemble of gravitons. The originally quantum nature of the tensor perturbations

(e.g. non-commutation of variables) is therefore lost somehow, though reflected in the

stochastic nature of the emerging classical field distribution. The quantum-to-classical

transition, which occurs basically when the modes leave the Hubble radius, is studied

in detail in Ref. [147], [OTHERS!].

In terms of the original GW field hij, Eqs. (??),(111) and (113), give

ĥij(x, ⌘) =
X

r=+,⇥

Z
d3k

(2⇡)3/2

�
hk(⌘) e

ikx â
kr + k⇤

k(⌘) e
�ikx â+

kr

�
er

ij(k̂) (125)

The amplitude of the physical tensor modes hk at super-horizon scales is determined by

Eqs. (111) and Eq. (123), as

|hk(⌘)| ' H
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, for k ⌧ aH (126)

with f(✏) ⌘ 2✏(1 � ✏)1+✏ �( 3
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✏ ' 1 � 0.27✏, and  0(x) the

Digamma function. In the limit of exact de Sitter ✏ ! 0, Ḣ ! 0, f(✏ ! 0) ! 1 and�
k

aH

��✏ ! 1. Hence the amplitude reduces to⇤

|hk(⌘)| ! H

mPl k3/2
, for ✏ ! 0 , k ⌧ aH (127)

As discussed below Eq. (21), hk(⌘) remains constant in time after the modes leave the

Hubble radius during inflation, until they re-enter the Hubble radius during the post-

inflationary evolution. Eq. (126) evaluated at Hubble radius crossing k = akHk (which

is exactly equivalent to Eq. (127) if we approximate f(✏k) ' 1), will thus provide the

initial condition for the evolution of the modes once they re-enter the Hubble radius, to

be discussed in the next sub-section.

It is convenient to define a tensor power spectrum Ph(k) as

h0|ĥij(x, ⌘) ĥij(x, ⌘)|0i =
Z

dk

k
Ph(k) . (128)

Using Eq. (125) evaluated at the super-Hubble solution Eq. (126), the orthonormal

relation (11) for the polarization tensor, and the commutation relations Eq. (114) for

the creation and annihilation operators, we obtain

Ph(k) ' 2

⇡2

H2

m2
Pl

f 2(✏)

✓
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for k ⌧ aH . (129)

At horizon-crossing k = akHk, this expression reduces simply (taking f(✏) ' 1) to

Ph(k) ' 2

⇡2

H2
k

m2
Pl

for k = akHk , (130)

⇤Alternatively we could have simply deduced Eq. (127) by simply using Eq. (118) valid for exact
de Sitter, instead of Eq. (123).
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found in Ref. [146]. The initial condition is then set with ck,� = 0, so that initially

vk(⌘) / v+ / e�ik⌘. The value of ck,+ 6= 0 is determined by the normalization condition

Eq. (116), so that the physical solution of Eq. (115) for sub-Hubble modes, finally reads

vk ' e�ik⌘

p
2k

for k � aH . (117)

The fluctuations with deep sub-horizon wavelengths have therefore an amplitude exactly

like in flat spacetime. This should not come as a surprise, as in the ultraviolet regime

k � aH, the oscillations of any field fluctuations are dominated by the momenta, so

one expects a flat spacetime to be a good approximation.

After a mode leaves the Hubble radius during inflation (aH � k), Eq. (115) reads

v00
k/vk ' a00/a, which is satisfied by vk ' Ck a(⌘) (with Ck a constant), up to a sub-

leading term that becomes quickly negligible [see Eq. (21)]. In the slow-roll regime, we

can determine the constant Ck by simply matching the super-Hubble solution with the

sub-Hubble solution (117) at aH = k. This gives

Ckak =
1p
2k

) |vk(⌘)| ' Hkp
2 k3

a(⌘) for k ⌧ aH (118)

where a subscript ⇤ indicates, from now on, that the quantity is evaluated when the

mode leaves the Hubble radius during inflation, ak Hk = k. Although Eq. (118) has

been derived following a rather imprecise method, it provides nonetheless a very good

approximation to the solution in the slow-roll regime.

We can actually do much better, as Eq. (115) admits analytic solutions, for constant

slow-roll parameters. In particular, let us notice that if we consider ✏ ⌘ �d logH/d logN

constant, then we can write the Hubble rate during inflation as H(N + �N) '
H(N)e�✏�N . This implies that the conformal time is ⌘ ⌘

R
dN
aH

' � 1
(1�✏)H , with

H ⌘ aH. Taking derivatives (with respect conformal time) at both sides of the last

expression, we obtain H0 ' (1 � ✏)H2. Hence, the term involving the scale factor in

Eq. (115) is a00/a ⌘ H0 + H2 ' (2 � ✏)H2 ' (2�✏)
(1�✏)2⌘2

' 1
⌘2

(2 + 3✏), so that Eq. (115) can

be written as
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An ✏ 6= 0 slow-roll parameter represents, therefore, a linear deviation from the exact

de Sitter value ⌫ ⌘ 3
2
, corresponding to ✏ = 0. The general solution to Eq. (119), for

constant ✏, is

vk = (�⌘)1/2
�
c1(k)H

(1)
⌫ (�k⌘) + c2(k)H

(2)
⌫ (�k⌘)

�
, (120)

where H
(1)
⌫ (�k⌘), H

(2)
⌫ (�k⌘) are Hankel functions of the first and second kind. In

the deep ultraviolet regime (�k⌘) ! 1, this general solution must match the plane-

wave solution Eq. (117). Hence, using the large argument expansion of the Hankel

functions (see Ref. [CITE Abramowitz]), H(1)
⌫ (x � 1) '

q
2

⇡x
ei(x�⌫�⇡/4), H(2)

⌫ (x � 1) '
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[nk ⇠ (Hk/He)2 (ae He/k)4 for a RD background with p = 1]. Thus, super-horizon modes

exhibit a very large occupancy nk � 1, which correspondingly can be interpreted as a

large ensemble of gravitons. The originally quantum nature of the tensor perturbations

(e.g. non-commutation of variables) is therefore lost somehow, though reflected in the

stochastic nature of the emerging classical field distribution. The quantum-to-classical

transition, which occurs basically when the modes leave the Hubble radius, is studied

in detail in Ref. [147], [OTHERS!].

In terms of the original GW field hij, Eqs. (??),(111) and (113), give

ĥij(x, ⌘) =
X
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The amplitude of the physical tensor modes hk at super-horizon scales is determined by

Eqs. (111) and Eq. (123), as

|hk(⌘)| ' H
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Digamma function. In the limit of exact de Sitter ✏ ! 0, Ḣ ! 0, f(✏ ! 0) ! 1 and�
k

aH

��✏ ! 1. Hence the amplitude reduces to⇤

|hk(⌘)| ! H

mPl k3/2
, for ✏ ! 0 , k ⌧ aH (127)

As discussed below Eq. (21), hk(⌘) remains constant in time after the modes leave the

Hubble radius during inflation, until they re-enter the Hubble radius during the post-

inflationary evolution. Eq. (126) evaluated at Hubble radius crossing k = akHk (which

is exactly equivalent to Eq. (127) if we approximate f(✏k) ' 1), will thus provide the

initial condition for the evolution of the modes once they re-enter the Hubble radius, to

be discussed in the next sub-section.

It is convenient to define a tensor power spectrum Ph(k) as

h0|ĥij(x, ⌘) ĥij(x, ⌘)|0i =
Z

dk

k
Ph(k) . (128)

Using Eq. (125) evaluated at the super-Hubble solution Eq. (126), the orthonormal

relation (11) for the polarization tensor, and the commutation relations Eq. (114) for

the creation and annihilation operators, we obtain

Ph(k) ' 2

⇡2

H2

m2
Pl

f 2(✏)

✓
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for k ⌧ aH . (129)

At horizon-crossing k = akHk, this expression reduces simply (taking f(✏) ' 1) to

Ph(k) ' 2

⇡2

H2
k

m2
Pl

for k = akHk , (130)

⇤Alternatively we could have simply deduced Eq. (127) by simply using Eq. (118) valid for exact
de Sitter, instead of Eq. (123).


