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Abstract. The possible domain structures which can arise in the universe in a spontaneously 
broken gauge theory are studied. It is shown that the formation of domain walls, strings or 
monopoles depends on the homotopy groups of the manifold of degenerate vacua. The 
subsequent evolution of these structures is investigated. It is argued that while theories 
generating domain walls can probably be eliminated (because of their unacceptable 
gravitational effects), a cosmic network of strings may well have been formed and may have 
had important cosmological effects. 

1. Introduction 

Gauge theories with spontaneous symmetry breaking have come to play a central role in 
elementary particle theory. Kirzhnits (1972), and Kirzhnits and Linde (1972, 1974) 
suggested that as in ferromagnets and superconductors the full symmetry may be 
restored above some critical temperature. That this actually happens in a class of 
theories where the symmetry breaking occurs through the acquisition of a vacuum 
expectation value by an elementary scalar field has been demonstrated by Weinberg 
(1974) while Jacobs (1974) and Harrington and Yildiz (1975) have examined models of 
dynamical symmetry breaking in which the role of the order parameter is played by a 
composite field operator. (See also Bernard 1974, Dolan and Jackiw 1974, Dashen eta1 
1975, and Linde 1975.) 

In the hot big-bang model, the universe must at one time have exceeded the critical 
temperature so that initially the symmetry was unbroken. It is then natural to enquire 
whether as it expands and cools it might acquire a domain structure, as in a ferromagnet 
cooled through its Curie point. Zel’dovich et a1 (1974; see also Kobzarev et a1 1974) 
have discussed this question, and in particular pointed out the important gravitational 
effects to be expected of domain walls. Everett (1974) has studied the propagation of 
waves across a domain boundary. 

The aim of this paper is to discuss the topology and scale of the possible cosmic 
structures that might arise. After reviewing the results of Weinberg and others on phase 
transitions in a simple class of models in 0 2, we discuss in 0 3 the initial formation of 
‘protodomains’ as the universe cools. The possible topological configurations are 
examined in 0 4. These include domain walls, strings and monopoles. We show that 
their occurrence is largely determined by the topology of the manifold M of degenerate 
vacuum states (specifically by its homotopy groups). (Coleman (1976) has stated the 
same result in a different context. In the case of monopoles it has been proved by Krive 
and Chudnovskii 1975.) In 0 5 we examine the later evolution of these structures. We 
show that domain walls can be of two main types with very different transmissivity, and 
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that highly reflecting walls may behave very differently from the essentially transparent 
ones considered by Zel’dovich et al(1974). In all cases however the typical scale of the 
domain structure will grow with time until it is comparable with the radius of the 
universe. Hence the argument of Zel’dovich etal, to the effect that domain walls cannot 
have persisted beyond the recombination era because their gravitational effect would 
have destroyed the isotropy of the 3 K background radiation, applies. If domain walls 
existed they must have disappeared by then. This in turn is possible only if the universe 
has a small built-in asymmetry. The exclusion of theories generating domain walls is an 
interesting example of a restriction on elementary particle theories derived from 
cosmology. 

The general conclusion is that there is a rich variety of possible topological 
structures which might have appeared in the early history of the universe. Few of these 
(monopoles excepted) are likely to be stable enough to have survived to the present, but 
they may nevertheless be of importance in understanding the history of the universe, for 
example the evolution of galaxies. The conclusions are summarized in more detail in 
§ 6. 

2. The phase transition 

Although our discussion will be quite general, for illustrative purposes it is convenient 
to have a specific example in mind. Let us consider an N-component real scalar field 4 
with a Lagrangian invariant under the orthogonal group O(N),  and coupled in the usual 
way to$N(N- 1) vector fields represented by an antisymmetricmatrix B,. We can take 

The coupling constants g and e are not necessarily related, but we shall assume that they 
are of a similar order of magnitude (and both small). 

At zero temperature the O(N)  symmetry here is spontaneously broken to O(N-  l), 
with 4 acquiring a vacuum expectation of order q. In the tree approximation, 

(4>* = q2 (2) 

so that the manifold of degenerate vacua is an ( N -  1) sphere S N - ’ .  
Let us recall the more general situation. In a model with symmetry group G, the 

vacuum expectation value (4) will be restricted to lie on some orbit of G. If H is the 
isotropy subgroup of G at one point (+), i.e. the subgroup of transformations leaving 
(4) unaltered, then the orbit may be identified with the coset space M =  G/H. 
Physically H is the subgroup of unbroken symmetries, and M is the manifold of 
degenerate vacua. As we shall see, the topological properties of M (specifically its 
homotopy groups) largely determine the geometry of possible domain structures. 

At a finite temperature T the expectation value of + in a thermal equilibrium state 
must be found by minimizing the free energy, or equivalently the temperature- 
dependent effective potential. The leading temperature dependence at high T and 
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small coupling constant comes from the one-loop diagrams (Weinberg 1974, Dolan and 
Jackiw 1974, Bernard 1974). Including these terms, we have 

V ( 4 )  = i g 2 ( + 2  - q2)2 +&[(N+2)g2+6(N-  1)e2]T2~2,  (3) 

as in the Landau-Ginsberg theory of superconductivity. (See for example Schrieff er 
1964.) The minimum occurs at 4 = 0 and so the symmetry is unbroken for T larger than 
the transition temperature 

This is the normal phase. Below T,, we have an ordered phase: 4 acquires a vacuum 
expectation value, which plays the role of the order parameter, and whose magnitude is 
determined by 

Thus the manifold of degenerate equilibrium states for all T < T, is an ( N -  1) sphere, 

In more complicated models there may be several transition temperatures, and as 
Weinberg (1974) has shown the symmetry may even increase as the temperature drops. 
However we shall not consider such cases, but assume a single transition temperature 
above which the symmetry is unbroken. 

M = O ( N ) / O ( N -  l)=SN-'.  

3. Formation of protodomains 

Let us consider a 'hot big-bang' universe and examine what happens as it expands and 
cools through the transition temperature T,. In unified models of weak and elec- 
tromagnetic interactions T, is of the order of the square root of the Fermi coupling 
constant, Gk'2, i.e. a few hundred GeV. Thus the transition occurs when the universe is 
aged between lo-'' and seconds and far above nuclear densities. In other 
models, however, T, might be considerably smaller and the transition would occur 
correspondingly later. 

For T near T, there will be large fluctuations in 4. Once T has fallen well below T,, 
we may expect 4 to have settled down with a non-zero expectation value corresponding 
to some point on M. No point is preferred over any other. As in an isotropic 
ferromagnet cooled below its Curie point the choice will be determined by whatever 
small fields happen to be present, arising from random fluctuations. Moreover this 
choice will be made independently in different regions of space, provided they are far 
enough apart. (What is far enough we shall discuss shortly.) Thus we can anticipate the 
formation of an initial domain structure with the expectation value of 4, the order 
parameter, varying from region to region in a more or less random way. Of course for 
energetic reasons a constant or slowly varying ( 4 )  is preferred and so much of this 
initially chaotic variation will quickly die away. The interesting question is whether any 
residue remains-in particular whether normal regions can be 'trapped' like flux tubes 
in a superconductor. 

Because domains are most familar in the context of ferromagnetism it may be well to 
point out at the outset a crucial difference between that case and ours. The long-range 
dipole-dipole interaction between spins ensures that it is energetically favourable for a 
large ferromagnet to break up into domains with different magnetization directions. 
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small coupling constant comes from the one-loop diagrams (Weinberg 1974, Dolan and 
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6. Condusions and discussion 

It may be well to begin by recalling our basic assumptions. We have assumed that the 
universe is correctly described by a spontaneously broken gauge theory exhibiting a 
phase transition at a critical temperature T,, above which the symmetry is restored. We 
have taken for granted the hot big-bang model of the universe, with no maximum 
temperature, whence it follows that in its very early history the universe was above T,, in 
the ‘normal’ phase. Finally we have generally assumed the overall neutrality of the 
universe with respect not only to electric charge but also to all the other charges 
associated with gauge fields. 

On this basis we showed that a domain structure can be expected to arise. The 
topological character of this structure depends on the homotopy groups r k  ( M )  of the 
manifold Mof degenerate vacua. Domain walls can form if ?ro(M) is nontrivial, i.e. if M 
is non-connected. If it has n connected components we find an n-phase emulsion. The 
formation of cosmic strings requires that r l ( M )  be nontrivial, i.e. that M is not formed 
of simply connected components. Finally, ‘monopoles’ can form if r 2 ( M )  is nontrivial. 

The later evolution of domain walls is governed by their surface tension and their 
interaction with matter. Different types of domain walls can occur with very different 
transparency, but in all cases the overall scale of the structure will grow with time. In 
general we may expect it now to be comparable with the radius of the universe. Domain 
walls on anything like this scale can be ruled out (Zel’dovich et af 1974) because their 
gravitational effect would lead to unacceptable anisotropy in the black-body back- 
ground radiation. The only way of accommodating theories with spontaneously broken 
discrete symmetries (and hence domain walls) is to relax the requirement of complete 
neutrality of the universe, so that one of the ordered phases is slightly preferred and 
eventually comes to occupy all of space. However this is not a very attractive solution, 
and it may be better to regard this as an argument against such theories. 

Networks of strings will evolve in a similar way under the combined effects of 
tension and interaction with matter. Once again, the scale of the structure will grow 
with time, probably at a similar rate. One cannot expect to find significant numbers of 
cosmic strings in the visible universe now, but their presence may have had an important 
effect on the earlier evolution of the universe. 
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U(1) Breaking (after Hybrid Inflation)
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FIG. 19: Time evolution of the spatial distribution of the magnetic energy density B

2 (in units of m4) along the process of
the Higgs symmetry breaking. The images have been obtained with a N = 256 lattice simulation with an IR cut-o↵ kIR = 0.1
m, and parameters g

2 = 2� = 0.25, Vc = 0.024 and e = 6
p
�. From left to right, top to bottom, the snapshots correspond to

mt = 5.5, 11.0, 17.3, 19.0, 21.0 and 23.0. At early times, before the Higgs bubbles percolate, the magnetic field is still very
small and has not acquired yet the distinctive shape of topological string configurations. At times mt ⇠ 17� 19, the string-like
spatial distributions of the magnetic energy density have finally developed, following the locus of points which corresponds to
the intermediate regions between Higgs bubbles. The string-like distributions are most clearly seen at time mt = 19. Later,
due to the time evolution of the gauge field’s mass, the string segments fatten and start shedding away the magnetic field, see
the main text.

Magnetic Field  
energy density
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) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
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. It is clear then that ⇧
ij

= T def
ij

,
which implies that what will act as a source of GW is the
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where d⌦
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represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
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which implies that what will act as a source of GW is the
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distribution of the GW therefore, will be also assumed to
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ḣ

(k, t) is simple. With the help of Eq. (??),
first we write

ḣ
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In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
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ḣ

(k, t) , (16)

and from here, the GW energy density spectrum reads

d⇢GW

d log k
(k, t) =

1

(4⇡)3Ga2(t)
k3 P

ḣ
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ij

(x, t)ḣ
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cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
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ḣ

(k, t)�(3)(k� k

0) . (15)

Thus

⇢GW(t) =
1

(4⇡)3Ga2(t)

Z
dk

k
k3 P

ḣ
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ḣ
ij

(x, t)ḣ
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ij

(k0, t)
E
. (14)

The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
tives,
D
ḣ
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ij

(k0, t)
E
⌘ (2⇡)3 P

ḣ
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ḣ

(k, t) , (16)

and from here, the GW energy density spectrum reads

d⇢GW

d log k
(k, t) =

1

(4⇡)3Ga2(t)
k3 P

ḣ
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ḣ

(k, t) , (16)

and from here, the GW energy density spectrum reads

d⇢GW

d log k
(k, t) =

1

(4⇡)3Ga2(t)
k3 P

ḣ

(k, t) . (17)

Obtaining P
ḣ
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ij

(x, t)

=
1

32⇡Ga2(t)

Z
dk

(2⇡)3
dk0

(2⇡)3
ḣ
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ij

(x, t)ḣ
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ḣ
ij

(x, t)ḣ
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ḣ
ij

(k, t) ḣ⇤
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The GW energy density spectrum per logarithmic inter-
val, is then defined as
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with
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where d⌦
k

represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...i

V

by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
tives,
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Thus

⇢GW(t) =
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and from here, the GW energy density spectrum reads
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Obtaining P
ḣ

(k, t) is simple. With the help of Eq. (??),
first we write

ḣ
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where G(k(t� t0)) ⌘ (k cos[k(t� t0)]�H sin[k(t� t0)]).
From here we obtain
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where we have introduced the unequal time correlator
(UTC), ⇧2(k, t, t0), of the TT-part of the anisotropic-
stress ⇧TT
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absence of it), do present a scaling behavior, su�ciently
long after the completion of the phase transition that cre-
ated them [? ? ? ? ]. In all cases, topological or not,
local or global, we will refer to them as cosmic defects.

In a recent letter [? ], we generalized previous results
from the literature, clarifying the origin of the scale-
invariance of the GW background emitted by the self-
ordering process of non-topological textures arising af-
ter a global phase transition [? ? ? ]. We demon-
strated analytically that any scaling source at the radia-
tion dominated (RD) era produces a background of GW
with a scale-invariant energy density power spectrum. In
the case of cosmic defects, we emphasized that this is
not related to their particular topology, nor to the or-
der of phase transition or the global or local nature of
the symmetry-breaking process that generated them. It
is just a consequence of scaling and being in RD. Us-
ing lattice simulations as an input, we also calculated
numerically the GW amplitude from a system of global
O(N) defects, providing evidence that the numerical re-
sults converges to the large-N analytical result calculated
in the large-N limit in [? ? ? ].

In the present paper, we generalize further our results
from [? ]. First of all, we extend our calculation to the
whole range of frequencies of interest, studying the GWs
emitted by a scaling source during all cosmic history,
including both radiation-dominated (RD) and matter-
dominated (MD) eras. This introduces a new feature
in the spectrum, which does not remain scale-invariant
during the entire frequency range, but rather develops
a maximum at feq = ... Hz, which represents the fre-
quency today corresponding to the horizon scale at time
of matter-radiation equality at redshift zeq ' 3400. We
find that the energy density power spectrum scales as
h2⌦GW / f2 for f ⌧ feq, reaches a maximum at the
frequency f = feq, and settles down to a scale-invariant
amplitude h2⌦GW / f0 for f � feq. We also discuss in
full detail the numerical input used in [? ], based on the
extraction of the unequal-time energy-momentum tensor
correlators from large scale field theory lattice simula-
tions. We contrast our previous numerical results versus
other methods, based on the real time evolution of the
tensor metric perturbations, alongside the evolution of
the defect network itself. Finally we discuss the impli-
cations of the discussed background for the cosmic mi-
crowave background and for direct and indirect detection
of GWs.

From now on we will work in units ~ = c = 1,
with ⇢

c

the critical energy density today, and M
p

⇡
1.22 ⇥ 1019 GeV the Planck mass, related to Newton’s
gravitational constant as G = 1/M2

p

. Summation will be
assumed over repeated indices.

II. GRAVITATIONAL WAVES

Gravitational Waves (GW) are tensor perturbations
of the space-time metric, representing the transverse-

traceless (TT) degrees of freedom (DoF) of metric per-
turbations. After inflation the Universe is well described
by a spatially flat Friedman-Robertson-Walker (FRW)
background. The perturbed FRW line element with GW
as the only perturbation, can then be written as

ds2 = a2(t)
⇥
�dt2 + (�

ij

+ h
ij

) dxidxj

⇤
, (1)

with a(t) the scale factor and t the conformal time.
The perturbations h

ij

verify the conditions @
i

h
ij

= 0
(transversality) and hi

i

= 0 (tracelessness), necessary
to identify them as GWs. Splitting the Einstein equa-
tions into background and linearized equations, and af-
ter a conformal redefinition of the tensor perturbations
h̄
ij

(x, t) = a(t)h
ij

(x, t), the GW equation of motion
(EoM) in a FRW background are [? ] Why do we need
the hbar eqs? Maybe eq 4 and 5 are enough

¨̄h
ij

(x, t)�
✓
r2 +

ä(t)

a(t)

◆
h̄
ij

(x, t) = 16⇡Ga(t)⇧TT
ij

(x, t) ,

(2)
with dots denoting derivatives with respect to conformal
time. The source ⇧TT

ij

is the TT-part of the anisotropic
stress tensor ⇧

ij

, which we define below. The conditions
@
i

⇧TT
ij

= ⇧TT
ii

= 0 hold for 8x, 8 t. Either in RD or
MD, and in general for a scale factor with any power
law behavior in time, ä/a ⇠ H2, where H ⌘ ȧ/a is the
(comoving) Hubble rate. Thus the term ä/a is negligible
at sub-horizon scales k � H, and therefore we will drop
it from now on. The GW EoM in Fourier space can then
be written simply as

¨̄h
ij

(k, t) + k2h̄
ij

(k, t) = 16⇡Ga(t)⇧TT
ij

(k, t) . (3)

The solution of Eq. (??) is given by a convolution with
the Green function associated to a free wave-operator
in Minkowski spacetime, G(k, t � t0) = 1

k

sin(k(t � t0)).
That is, at times t > t

I

, with t
I

the initial time with no
gravitational waves, i. e. h

ij

(k, t
i

) = ḣ
ij

(k, t
i

) = 0, we
obtain

h
ij

(k, t) =
h̄
ij

(k, t)

a(t)
(4)

=
16⇡G

k a(t)

Z
t

ti

dt0a(t0) sin(k(t� t0))⇧TT
ij

(k, t0) .

Obtaining the TT-part of a tensor in configuration
space amounts to a non-local operation. It is more conve-
nient to do it in Fourier space, where a projector filtering
out only the TT DoF’s of a tensor can be easily written
down. The GW EoM in fourier space read

ḧ
ij

(k, t) + 2Hḣ
ij

(k, t) + k2h
ij

(k, t) = 16⇡G⇧TT
ij

(k, t),

(5)

where k is the comoving wave-number and k = |k| is the
modulus. The GW source can then be written as

⇧TT
ij

(k, t) = ⇤
ij,lm

(k̂)⇧
lm

(k, t). (6)
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where ⇤
ij,lm

(k̂) is a TT-projection operator defined as

⇤
ij,lm

(ˆk) ⌘ P
il

(k̂)P
jm

(k̂)� 1

2
P
ij

(k̂)P
lm

(k̂), (7)

P
ij

= �
ij

� k̂
i

k̂
j

, k̂
i

= k
i

/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, k

i

⇧TT
ij

(k̂, t) = ⇧TT
ii

(k̂, t) = 0, are

fulfilled at any time, thanks to the fact that P
ij

k̂
j

= 0
and P

ij

P
jm

= P
im

.
The anisotropic stress tensor ⇧

µ⌫

describes the devi-
ation of the energy momentum tensor T

µ⌫

with respect
that of a perfect fluid. The spatial-spatial components
read

⇧
ij

⌘ T
ij

� p g
ij

, (9)

with p the homogeneous background pressure and g
ij

=
a2(t)(�

ij

+ h
ij

) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij

= p g
ij

. On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij

. Hence, in these scenarios, the (spatial-spatial com-
ponents of the) total energy-momentum tensor are given
by T

ij

= T pf
ij

+ T def
ij

. It is clear then that ⇧
ij

= T def
ij

,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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with h...i
V

a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the h

ij

perturbations. In the limit V 1/3 � �⇤,R
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ḣ
ij

(k, t)ḣ⇤
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The GW energy density spectrum per logarithmic inter-
val, is then defined as

⇢GW(t) =
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d log k
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with
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where d⌦
k

represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...i

V

by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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ḣ
ij

(k, t) ḣ⇤
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The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
tives,
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Thus
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and from here, the GW energy density spectrum reads
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Obtaining P
ḣ

(k, t) is simple. With the help of Eq. (??),
first we write
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where G(k(t� t0)) ⌘ (k cos[k(t� t0)]�H sin[k(t� t0)]).
From here we obtain
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where we have introduced the unequal time correlator
(UTC), ⇧2(k, t, t0), of the TT-part of the anisotropic-
stress ⇧TT
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The anisotropic stress tensor ⇧
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ation of the energy momentum tensor T
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with respect
that of a perfect fluid. The spatial-spatial components
read
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with p the homogeneous background pressure and g
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a2(t)(�
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+ h
ij

) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf
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= p g
ij

. On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
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. Hence, in these scenarios, the (spatial-spatial com-
ponents of the) total energy-momentum tensor are given
by T
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= T pf
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+ T def
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. It is clear then that ⇧
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= T def
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,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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val, is then defined as
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ḣ
ij

(k, t)ḣ⇤
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where d⌦
k

represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...i
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by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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absence of it), do present a scaling behavior, su�ciently
long after the completion of the phase transition that cre-
ated them [? ? ? ? ]. In all cases, topological or not,
local or global, we will refer to them as cosmic defects.

In a recent letter [? ], we generalized previous results
from the literature, clarifying the origin of the scale-
invariance of the GW background emitted by the self-
ordering process of non-topological textures arising af-
ter a global phase transition [? ? ? ]. We demon-
strated analytically that any scaling source at the radia-
tion dominated (RD) era produces a background of GW
with a scale-invariant energy density power spectrum. In
the case of cosmic defects, we emphasized that this is
not related to their particular topology, nor to the or-
der of phase transition or the global or local nature of
the symmetry-breaking process that generated them. It
is just a consequence of scaling and being in RD. Us-
ing lattice simulations as an input, we also calculated
numerically the GW amplitude from a system of global
O(N) defects, providing evidence that the numerical re-
sults converges to the large-N analytical result calculated
in the large-N limit in [? ? ? ].

In the present paper, we generalize further our results
from [? ]. First of all, we extend our calculation to the
whole range of frequencies of interest, studying the GWs
emitted by a scaling source during all cosmic history,
including both radiation-dominated (RD) and matter-
dominated (MD) eras. This introduces a new feature
in the spectrum, which does not remain scale-invariant
during the entire frequency range, but rather develops
a maximum at feq = ... Hz, which represents the fre-
quency today corresponding to the horizon scale at time
of matter-radiation equality at redshift zeq ' 3400. We
find that the energy density power spectrum scales as
h2⌦GW / f2 for f ⌧ feq, reaches a maximum at the
frequency f = feq, and settles down to a scale-invariant
amplitude h2⌦GW / f0 for f � feq. We also discuss in
full detail the numerical input used in [? ], based on the
extraction of the unequal-time energy-momentum tensor
correlators from large scale field theory lattice simula-
tions. We contrast our previous numerical results versus
other methods, based on the real time evolution of the
tensor metric perturbations, alongside the evolution of
the defect network itself. Finally we discuss the impli-
cations of the discussed background for the cosmic mi-
crowave background and for direct and indirect detection
of GWs.

From now on we will work in units ~ = c = 1,
with ⇢

c

the critical energy density today, and M
p

⇡
1.22 ⇥ 1019 GeV the Planck mass, related to Newton’s
gravitational constant as G = 1/M2

p

. Summation will be
assumed over repeated indices.

II. GRAVITATIONAL WAVES

Gravitational Waves (GW) are tensor perturbations
of the space-time metric, representing the transverse-

traceless (TT) degrees of freedom (DoF) of metric per-
turbations. After inflation the Universe is well described
by a spatially flat Friedman-Robertson-Walker (FRW)
background. The perturbed FRW line element with GW
as the only perturbation, can then be written as
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with a(t) the scale factor and t the conformal time.
The perturbations h
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= 0 (tracelessness), necessary
to identify them as GWs. Splitting the Einstein equa-
tions into background and linearized equations, and af-
ter a conformal redefinition of the tensor perturbations
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(x, t) = a(t)h
ij

(x, t), the GW equation of motion
(EoM) in a FRW background are [? ] Why do we need
the hbar eqs? Maybe eq 4 and 5 are enough
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with dots denoting derivatives with respect to conformal
time. The source ⇧TT
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is the TT-part of the anisotropic
stress tensor ⇧
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, which we define below. The conditions
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⇧TT
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= ⇧TT
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= 0 hold for 8x, 8 t. Either in RD or
MD, and in general for a scale factor with any power
law behavior in time, ä/a ⇠ H2, where H ⌘ ȧ/a is the
(comoving) Hubble rate. Thus the term ä/a is negligible
at sub-horizon scales k � H, and therefore we will drop
it from now on. The GW EoM in Fourier space can then
be written simply as
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the Green function associated to a free wave-operator
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Obtaining the TT-part of a tensor in configuration
space amounts to a non-local operation. It is more conve-
nient to do it in Fourier space, where a projector filtering
out only the TT DoF’s of a tensor can be easily written
down. The GW EoM in fourier space read
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where k is the comoving wave-number and k = |k| is the
modulus. The GW source can then be written as

⇧TT
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(k, t) = ⇤
ij,lm

(k̂)⇧
lm

(k, t). (6)
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absence of it), do present a scaling behavior, su�ciently
long after the completion of the phase transition that cre-
ated them [? ? ? ? ]. In all cases, topological or not,
local or global, we will refer to them as cosmic defects.

In a recent letter [? ], we generalized previous results
from the literature, clarifying the origin of the scale-
invariance of the GW background emitted by the self-
ordering process of non-topological textures arising af-
ter a global phase transition [? ? ? ]. We demon-
strated analytically that any scaling source at the radia-
tion dominated (RD) era produces a background of GW
with a scale-invariant energy density power spectrum. In
the case of cosmic defects, we emphasized that this is
not related to their particular topology, nor to the or-
der of phase transition or the global or local nature of
the symmetry-breaking process that generated them. It
is just a consequence of scaling and being in RD. Us-
ing lattice simulations as an input, we also calculated
numerically the GW amplitude from a system of global
O(N) defects, providing evidence that the numerical re-
sults converges to the large-N analytical result calculated
in the large-N limit in [? ? ? ].

In the present paper, we generalize further our results
from [? ]. First of all, we extend our calculation to the
whole range of frequencies of interest, studying the GWs
emitted by a scaling source during all cosmic history,
including both radiation-dominated (RD) and matter-
dominated (MD) eras. This introduces a new feature
in the spectrum, which does not remain scale-invariant
during the entire frequency range, but rather develops
a maximum at feq = ... Hz, which represents the fre-
quency today corresponding to the horizon scale at time
of matter-radiation equality at redshift zeq ' 3400. We
find that the energy density power spectrum scales as
h2⌦GW / f2 for f ⌧ feq, reaches a maximum at the
frequency f = feq, and settles down to a scale-invariant
amplitude h2⌦GW / f0 for f � feq. We also discuss in
full detail the numerical input used in [? ], based on the
extraction of the unequal-time energy-momentum tensor
correlators from large scale field theory lattice simula-
tions. We contrast our previous numerical results versus
other methods, based on the real time evolution of the
tensor metric perturbations, alongside the evolution of
the defect network itself. Finally we discuss the impli-
cations of the discussed background for the cosmic mi-
crowave background and for direct and indirect detection
of GWs.
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the critical energy density today, and M
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1.22 ⇥ 1019 GeV the Planck mass, related to Newton’s
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where ⇤
ij,lm

(k̂) is a TT-projection operator defined as

⇤
ij,lm

(ˆk) ⌘ P
il

(k̂)P
jm

(k̂)� 1

2
P
ij

(k̂)P
lm

(k̂), (7)

P
ij

= �
ij

� k̂
i

k̂
j

, k̂
i

= k
i

/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, k
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⇧TT
ij

(k̂, t) = ⇧TT
ii

(k̂, t) = 0, are

fulfilled at any time, thanks to the fact that P
ij
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and P

ij

P
jm

= P
im

.
The anisotropic stress tensor ⇧

µ⌫

describes the devi-
ation of the energy momentum tensor T

µ⌫

with respect
that of a perfect fluid. The spatial-spatial components
read

⇧
ij

⌘ T
ij

� p g
ij

, (9)

with p the homogeneous background pressure and g
ij

=
a2(t)(�

ij

+ h
ij

) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij

= p g
ij

. On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij

. Hence, in these scenarios, the (spatial-spatial com-
ponents of the) total energy-momentum tensor are given
by T

ij

= T pf
ij

+ T def
ij

. It is clear then that ⇧
ij

= T def
ij

,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]
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with h...i
V

a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the h
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perturbations. In the limit V 1/3 � �⇤,R
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The GW energy density spectrum per logarithmic inter-
val, is then defined as
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where d⌦
k

represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...i

V

by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
tives,
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and from here, the GW energy density spectrum reads
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where we have introduced the unequal time correlator
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ḣ
ij

(k, t)ḣ⇤
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ated them [? ? ? ? ]. In all cases, topological or not,
local or global, we will refer to them as cosmic defects.

In a recent letter [? ], we generalized previous results
from the literature, clarifying the origin of the scale-
invariance of the GW background emitted by the self-
ordering process of non-topological textures arising af-
ter a global phase transition [? ? ? ]. We demon-
strated analytically that any scaling source at the radia-
tion dominated (RD) era produces a background of GW
with a scale-invariant energy density power spectrum. In
the case of cosmic defects, we emphasized that this is
not related to their particular topology, nor to the or-
der of phase transition or the global or local nature of
the symmetry-breaking process that generated them. It
is just a consequence of scaling and being in RD. Us-
ing lattice simulations as an input, we also calculated
numerically the GW amplitude from a system of global
O(N) defects, providing evidence that the numerical re-
sults converges to the large-N analytical result calculated
in the large-N limit in [? ? ? ].

In the present paper, we generalize further our results
from [? ]. First of all, we extend our calculation to the
whole range of frequencies of interest, studying the GWs
emitted by a scaling source during all cosmic history,
including both radiation-dominated (RD) and matter-
dominated (MD) eras. This introduces a new feature
in the spectrum, which does not remain scale-invariant
during the entire frequency range, but rather develops
a maximum at feq = ... Hz, which represents the fre-
quency today corresponding to the horizon scale at time
of matter-radiation equality at redshift zeq ' 3400. We
find that the energy density power spectrum scales as
h2⌦GW / f2 for f ⌧ feq, reaches a maximum at the
frequency f = feq, and settles down to a scale-invariant
amplitude h2⌦GW / f0 for f � feq. We also discuss in
full detail the numerical input used in [? ], based on the
extraction of the unequal-time energy-momentum tensor
correlators from large scale field theory lattice simula-
tions. We contrast our previous numerical results versus
other methods, based on the real time evolution of the
tensor metric perturbations, alongside the evolution of
the defect network itself. Finally we discuss the impli-
cations of the discussed background for the cosmic mi-
crowave background and for direct and indirect detection
of GWs.

From now on we will work in units ~ = c = 1,
with ⇢

c

the critical energy density today, and M
p

⇡
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ij

(k, t
i

) = 0, we
obtain

h
ij

(k, t) =
h̄
ij

(k, t)

a(t)
(4)

=
16⇡G

k a(t)

Z
t

ti

dt0a(t0) sin(k(t� t0))⇧TT
ij

(k, t0) .

Obtaining the TT-part of a tensor in configuration
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) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
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. On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
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. Hence, in these scenarios, the (spatial-spatial com-
ponents of the) total energy-momentum tensor are given
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. It is clear then that ⇧
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which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
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density of a GW background is given by [? ]
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ij

(x, t)
E

V

(10)

⌘ 1

32⇡Ga2(t)

1

V

Z

V

dx ḣ
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where d⌦
k

represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...i

V

by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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The expectation value in the second line of Eq. (??), as-
suming statistical homogeneity and isotropy, defines the
power spectrum of the tensor perturbation first deriva-
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and from here, the GW energy density spectrum reads

d⇢GW

d log k
(k, t) =

1

(4⇡)3Ga2(t)
k3 P

ḣ
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ḣ
ij

(k, t)ḣ⇤
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ḣ

(k, t) . (17)

Obtaining P
ḣ
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ḣ
ij

(k, t) ḣ⇤
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ij

(k, t) , (13)

where d⌦
k

represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...i

V

by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by

⇢GW =
1

32⇡Ga2(t)

D
ḣ
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ḣ
ij

(k, t) ḣ⇤
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ij

(k, t) , (13)

where d⌦
k

represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...i

V

by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by

⇢GW =
1

32⇡Ga2(t)

D
ḣ
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ḣ

(k, t) is simple. With the help of Eq. (??),
first we write

ḣ
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ḣ

(k, t)�(3)(k� k

0) . (15)

Thus

⇢GW(t) =
1

(4⇡)3Ga2(t)

Z
dk

k
k3 P

ḣ
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ḣ

(k, t) , (16)

and from here, the GW energy density spectrum reads

d⇢GW

d log k
(k, t) =

1

(4⇡)3Ga2(t)
k3 P

ḣ
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ḣ
ij

(x, t)ḣ
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ij

(k, t) . (11)

The GW energy density spectrum per logarithmic inter-
val, is then defined as

⇢GW(t) =

Z
d⇢GW

d log k
d log k , (12)

with

d⇢GW

d log k
=

k3

(4⇡)3Ga2(t)V

Z
d⌦

k

4⇡
ḣ
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ij

(k0, t)
E
⌘ (2⇡)3 P

ḣ
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ḣ
ij

(k, t)ḣ⇤
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ij

(x, t)
E

V

(10)

⌘ 1

32⇡Ga2(t)

1

V

Z

V

dx ḣ
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ḣ
ij

(k, t)ḣ⇤
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ḣ

(k, t) is simple. With the help of Eq. (??),
first we write

ḣ
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ḣ

(k, t) =
(16⇡G)2

k2a2(t)

Z
t

tI

dt0
Z

t

tI

dt00a(t0)a(t00) (19)

⇥G(k(t� t0))G(k(t� t00))⇧2(k, t0, t00) ,

where we have introduced the unequal time correlator
(UTC), ⇧2(k, t, t0), of the TT-part of the anisotropic-
stress ⇧TT

ij

,

⌦
⇧TT

ij

(k, t)⇧TT
ij

(k0, t0)
↵
⌘ (2⇡)3 ⇧2(k, t, t0) �(3)(k� k

0),

.(20)

3

where ⇤
ij,lm

(k̂) is a TT-projection operator defined as

⇤
ij,lm

(ˆk) ⌘ P
il

(k̂)P
jm

(k̂)� 1

2
P
ij

(k̂)P
lm

(k̂), (7)

P
ij

= �
ij

� k̂
i

k̂
j

, k̂
i

= k
i

/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, k

i

⇧TT
ij

(k̂, t) = ⇧TT
ii

(k̂, t) = 0, are

fulfilled at any time, thanks to the fact that P
ij

k̂
j

= 0
and P

ij

P
jm

= P
im

.
The anisotropic stress tensor ⇧

µ⌫

describes the devi-
ation of the energy momentum tensor T

µ⌫

with respect
that of a perfect fluid. The spatial-spatial components
read

⇧
ij

⌘ T
ij

� p g
ij

, (9)

with p the homogeneous background pressure and g
ij

=
a2(t)(�

ij

+ h
ij

) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij

= p g
ij

. On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij

. Hence, in these scenarios, the (spatial-spatial com-
ponents of the) total energy-momentum tensor are given
by T

ij

= T pf
ij

+ T def
ij

. It is clear then that ⇧
ij

= T def
ij

,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]

⇢GW(t) =
1

32⇡Ga2(t)

D
ḣ
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ḣ

(k, t) . (17)

Obtaining P
ḣ
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ij

(k0, t)

⇥ 1

V

Z

V

dx e�ix(k�k

0) ,

with h...i
V

a spatial average over a su�ciently large vol-
ume V encompassing all the relevant wavelengths �⇤
of the h

ij

perturbations. In the limit V 1/3 � �⇤,R
V
dx e�ix(k�k

0) ! (2⇡)3�(3)(k� k

0), and then

⇢GW(t) =
1

32⇡Ga2(t)V

Z
dk

(2⇡)3
ḣ
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ij

(k, t) , (13)

where d⌦
k

represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...i

V

by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by

⇢GW =
1

32⇡Ga2(t)

D
ḣ
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ḣ
ij

(x, t)ḣ
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Once GW production ends, GWs propagate as free
waves, each mode oscillating with period T

k

= 2⇡
k

. In
order to define correctly the energy density spectrum of
GWs we need to perform a time average over those os-
cillations. Strictly speaking, at the moment when GW
production ends, we should match the solution (??) with
the freely propagating wave solution1. From there we
should build the GW energy density spectrum with the
free waves, and only then perform the time average over
oscillations. It is however mathematically equivalent to
take the time average over the product of G(k, t, t0) func-
tions. We obtain
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T
k
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(21)

Replacing G(k, t, t0)G(k, t, t00) by hG(k, t, t0)G(k, t, t00)i
Tk

in Eq. (??), and taking into account that at subhorizon
scales (k2 +H2(t)) ⇡ k2, we arrive at
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Plugging Eq. (??) into Eq. (??), we finally find the energy
density spectrum of a stochastic background of GW (at
subhorizon scales) as
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III. GRAVITATIONAL WAVES FROM
SCALING SOURCES

Based on dimensional grounds and causality, it was
argued in [? ] that the aftermath dynamics of a global
phase transition should generate an approximately scale-
invariant background of GWs. The amplitude was esti-
mated with the GW quadrupole approximation, without
any reference to the number of components N of the cor-
responding symmetry breaking field. In the context of
a phase transition driven by the breaking a global O(N)
symmetry into a O(N � 1) group [? ], even though the
field equations are non-linear, analytic calculations can
be carried out in the largeN limit [? ], describing the evo-
lution of non-topological global defects arising after the
phase transition. Within that context, and using a full

1
The freely propagating waves are described by a superposition

of the linearly independent homogeneous solutions to the source-

free GW EoM.

treatment of the tensor metric perturbation representing
GWs, i.e. not resorting to the quadrupole approximation,
[? ? ] demonstrated that in the large N limit, an exact
scale-invariant background of GWs is generated by the
self-ordering dynamics of the non-topological global de-
fects arising after the phase transition. On the numerical
side, Ref. [? ], presented later, studied lattice simula-
tions and concluded that global defects with arbitrary
N , created after a second-order phase transition, gener-
ate a scale-invariant GW background. Such a conclusion,
however correct, was not fully supported by their numer-
ical spectra of GWs. The latter, even if consistent with
scale invariance, showed some tilt and a wiggly pattern
of large fluctuations.

Important questions were raised in that moment. How
does the scale-invariant GW spectrum come about? How
does the GW spectrum really look in the case of topolog-
ical defects? In particular, string-inspired models such
as [? ? ] can have (approximate) global symmetries
with low N and is it important to know what the GW
prediction is in those cases. How does the true GW sig-
nal from non-topological textures approach the analyti-
cal large N approximate result? What happens when the
defects arise from a broken gauge symmetry? Does this
GW contribute appreciably to the relativistic energy den-
sity and have implications in the cosmic microwave back-
ground [? ]? In [? ], the origin of the scale-invariance
of the GW background emitted by the self-ordering pro-
cess of non-topological defect, was finally clarified. The
prediction was, in fact, extended to any type of defect,
demonstrating that any scaling source at the RD era, pro-
duces always a background of GWs with a scale-invariant
energy density power spectrum. As it was emphasized
in [? ], in the case of cosmic defects the result is in fact
not related to their particular topology, nor to the order
of phase transition or the nature (global or local) of the
symmetry-breaking process that generated them. It is
just a consequence of the defects’ scaling behavior and
of being in RD. Using lattice simulations as an input, [?
] also computed the GW amplitude from numerical sim-
ulations of a system of global O(N) defects, providing
evidence that the numerical results converge to the an-
alytical result calculated in the large-N limit by [? ? ]
.

In the remaining of this section, we will discuss in ??

general aspects about the spectral shape of the GWs
emitted by any network of cosmic defects in scaling
regime. We will summarize the findings from [? ], and ex-
tend our results to the evolution of scaling seeds during
the MD era. In ??, we will review the analytical esti-
mation of the GW signal emitted by self-ordering scalar
fields during RD, computed the large N limit of global
defects. We will also extend the analytical estimation to
the MD era. In the next Section, Sect. ??, we will discuss
our results from lattice simulations, based on two di↵er-
ent methods for obtaining numerically the spectrum of
GWs emitted by the network of cosmic defects. In ??

we will discuss our results from the first method, based

Tk

=
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ḣ
ij

(x, t)ḣ
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ij

(k, t) . (11)

The GW energy density spectrum per logarithmic inter-
val, is then defined as

⇢GW(t) =

Z
d⇢GW

d log k
d log k , (12)

with

d⇢GW

d log k
=

k3

(4⇡)3Ga2(t)V

Z
d⌦

k

4⇡
ḣ
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Once GW production ends, GWs propagate as free
waves, each mode oscillating with period T

k

= 2⇡
k

. In
order to define correctly the energy density spectrum of
GWs we need to perform a time average over those os-
cillations. Strictly speaking, at the moment when GW
production ends, we should match the solution (??) with
the freely propagating wave solution1. From there we
should build the GW energy density spectrum with the
free waves, and only then perform the time average over
oscillations. It is however mathematically equivalent to
take the time average over the product of G(k, t, t0) func-
tions. We obtain

hG(k, t, t0)G(k, t, t00)i
Tk

⌘ 1

T
k

Z
t+Tk

t

dt̃ G(k, t̃, t0)G(k, t̃, t00)
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2
(k2 +H2(t)) cos[k(t0 � t00)] .

(21)

Replacing G(k, t, t0)G(k, t, t00) by hG(k, t, t0)G(k, t, t00)i
Tk

in Eq. (??), and taking into account that at subhorizon
scales (k2 +H2(t)) ⇡ k2, we arrive at
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Plugging Eq. (??) into Eq. (??), we finally find the energy
density spectrum of a stochastic background of GW (at
subhorizon scales) as
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III. GRAVITATIONAL WAVES FROM
SCALING SOURCES

Based on dimensional grounds and causality, it was
argued in [? ] that the aftermath dynamics of a global
phase transition should generate an approximately scale-
invariant background of GWs. The amplitude was esti-
mated with the GW quadrupole approximation, without
any reference to the number of components N of the cor-
responding symmetry breaking field. In the context of
a phase transition driven by the breaking a global O(N)
symmetry into a O(N � 1) group [? ], even though the
field equations are non-linear, analytic calculations can
be carried out in the largeN limit [? ], describing the evo-
lution of non-topological global defects arising after the
phase transition. Within that context, and using a full

1
The freely propagating waves are described by a superposition

of the linearly independent homogeneous solutions to the source-

free GW EoM.

treatment of the tensor metric perturbation representing
GWs, i.e. not resorting to the quadrupole approximation,
[? ? ] demonstrated that in the large N limit, an exact
scale-invariant background of GWs is generated by the
self-ordering dynamics of the non-topological global de-
fects arising after the phase transition. On the numerical
side, Ref. [? ], presented later, studied lattice simula-
tions and concluded that global defects with arbitrary
N , created after a second-order phase transition, gener-
ate a scale-invariant GW background. Such a conclusion,
however correct, was not fully supported by their numer-
ical spectra of GWs. The latter, even if consistent with
scale invariance, showed some tilt and a wiggly pattern
of large fluctuations.

Important questions were raised in that moment. How
does the scale-invariant GW spectrum come about? How
does the GW spectrum really look in the case of topolog-
ical defects? In particular, string-inspired models such
as [? ? ] can have (approximate) global symmetries
with low N and is it important to know what the GW
prediction is in those cases. How does the true GW sig-
nal from non-topological textures approach the analyti-
cal large N approximate result? What happens when the
defects arise from a broken gauge symmetry? Does this
GW contribute appreciably to the relativistic energy den-
sity and have implications in the cosmic microwave back-
ground [? ]? In [? ], the origin of the scale-invariance
of the GW background emitted by the self-ordering pro-
cess of non-topological defect, was finally clarified. The
prediction was, in fact, extended to any type of defect,
demonstrating that any scaling source at the RD era, pro-
duces always a background of GWs with a scale-invariant
energy density power spectrum. As it was emphasized
in [? ], in the case of cosmic defects the result is in fact
not related to their particular topology, nor to the order
of phase transition or the nature (global or local) of the
symmetry-breaking process that generated them. It is
just a consequence of the defects’ scaling behavior and
of being in RD. Using lattice simulations as an input, [?
] also computed the GW amplitude from numerical sim-
ulations of a system of global O(N) defects, providing
evidence that the numerical results converge to the an-
alytical result calculated in the large-N limit by [? ? ]
.

In the remaining of this section, we will discuss in ??

general aspects about the spectral shape of the GWs
emitted by any network of cosmic defects in scaling
regime. We will summarize the findings from [? ], and ex-
tend our results to the evolution of scaling seeds during
the MD era. In ??, we will review the analytical esti-
mation of the GW signal emitted by self-ordering scalar
fields during RD, computed the large N limit of global
defects. We will also extend the analytical estimation to
the MD era. In the next Section, Sect. ??, we will discuss
our results from lattice simulations, based on two di↵er-
ent methods for obtaining numerically the spectrum of
GWs emitted by the network of cosmic defects. In ??

we will discuss our results from the first method, based
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take the time average over the product of G(k, t, t0) func-
tions. We obtain
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Replacing G(k, t, t0)G(k, t, t00) by hG(k, t, t0)G(k, t, t00)i
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Plugging Eq. (??) into Eq. (??), we finally find the energy
density spectrum of a stochastic background of GW (at
subhorizon scales) as
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III. GRAVITATIONAL WAVES FROM
SCALING SOURCES

Based on dimensional grounds and causality, it was
argued in [? ] that the aftermath dynamics of a global
phase transition should generate an approximately scale-
invariant background of GWs. The amplitude was esti-
mated with the GW quadrupole approximation, without
any reference to the number of components N of the cor-
responding symmetry breaking field. In the context of
a phase transition driven by the breaking a global O(N)
symmetry into a O(N � 1) group [? ], even though the
field equations are non-linear, analytic calculations can
be carried out in the largeN limit [? ], describing the evo-
lution of non-topological global defects arising after the
phase transition. Within that context, and using a full

1
The freely propagating waves are described by a superposition

of the linearly independent homogeneous solutions to the source-

free GW EoM.

treatment of the tensor metric perturbation representing
GWs, i.e. not resorting to the quadrupole approximation,
[? ? ] demonstrated that in the large N limit, an exact
scale-invariant background of GWs is generated by the
self-ordering dynamics of the non-topological global de-
fects arising after the phase transition. On the numerical
side, Ref. [? ], presented later, studied lattice simula-
tions and concluded that global defects with arbitrary
N , created after a second-order phase transition, gener-
ate a scale-invariant GW background. Such a conclusion,
however correct, was not fully supported by their numer-
ical spectra of GWs. The latter, even if consistent with
scale invariance, showed some tilt and a wiggly pattern
of large fluctuations.

Important questions were raised in that moment. How
does the scale-invariant GW spectrum come about? How
does the GW spectrum really look in the case of topolog-
ical defects? In particular, string-inspired models such
as [? ? ] can have (approximate) global symmetries
with low N and is it important to know what the GW
prediction is in those cases. How does the true GW sig-
nal from non-topological textures approach the analyti-
cal large N approximate result? What happens when the
defects arise from a broken gauge symmetry? Does this
GW contribute appreciably to the relativistic energy den-
sity and have implications in the cosmic microwave back-
ground [? ]? In [? ], the origin of the scale-invariance
of the GW background emitted by the self-ordering pro-
cess of non-topological defect, was finally clarified. The
prediction was, in fact, extended to any type of defect,
demonstrating that any scaling source at the RD era, pro-
duces always a background of GWs with a scale-invariant
energy density power spectrum. As it was emphasized
in [? ], in the case of cosmic defects the result is in fact
not related to their particular topology, nor to the order
of phase transition or the nature (global or local) of the
symmetry-breaking process that generated them. It is
just a consequence of the defects’ scaling behavior and
of being in RD. Using lattice simulations as an input, [?
] also computed the GW amplitude from numerical sim-
ulations of a system of global O(N) defects, providing
evidence that the numerical results converge to the an-
alytical result calculated in the large-N limit by [? ? ]
.

In the remaining of this section, we will discuss in ??

general aspects about the spectral shape of the GWs
emitted by any network of cosmic defects in scaling
regime. We will summarize the findings from [? ], and ex-
tend our results to the evolution of scaling seeds during
the MD era. In ??, we will review the analytical esti-
mation of the GW signal emitted by self-ordering scalar
fields during RD, computed the large N limit of global
defects. We will also extend the analytical estimation to
the MD era. In the next Section, Sect. ??, we will discuss
our results from lattice simulations, based on two di↵er-
ent methods for obtaining numerically the spectrum of
GWs emitted by the network of cosmic defects. In ??

we will discuss our results from the first method, based
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the scenarios we consider in this paper the energy bud-
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ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
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defects, which have their own energy-momentum tensor
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which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.
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Expanding the Einstein equations to second order in
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density of a GW background is given by [? ]
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where d⌦
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represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...i
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by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by
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ij

(k, t) , (13)

where d⌦
k

represents a solid angle element in k-space.
In in our case, GWs are created from a network of

cosmic defects. As the symmetry breaking process that
originates the defects is a random process, we cannot pre-
dict the exact location of each cosmic defect. However,
we can still describe (and predict) the stochastic distri-
bution that characterizes the defect network. The spatial
distribution of the GW therefore, will be also assumed to
be stochastic, following the random distribution of the
defects. Applying the ergodic hypothesis, we can replace
h...i

V

by an ensemble average h...i over realizations. The
stochastic background of GWs can then be described by

⇢GW =
1

32⇡Ga2(t)

D
ḣ
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ḣ

(k, t) =
(16⇡G)2

k2a2(t)

Z
t

tI

dt0
Z

t

tI

dt00a(t0)a(t00) (19)

⇥G(k(t� t0))G(k(t� t00))⇧2(k, t0, t00) ,

where we have introduced the unequal time correlator
(UTC), ⇧2(k, t, t0), of the TT-part of the anisotropic-
stress ⇧TT

ij

,

⌦
⇧TT

ij

(k, t)⇧TT
ij

(k0, t0)
↵
⌘ (2⇡)3 ⇧2(k, t, t0) �(3)(k� k

0),

.(20)

Stochastic GW backgrounds

3

where ⇤
ij,lm

(k̂) is a TT-projection operator defined as

⇤
ij,lm

(ˆk) ⌘ P
il

(k̂)P
jm

(k̂)� 1

2
P
ij

(k̂)P
lm

(k̂), (7)

P
ij

= �
ij

� k̂
i

k̂
j

, k̂
i

= k
i

/k . (8)

One can easily see that the transverse-traceless condi-
tions in Fourier space, k

i

⇧TT
ij

(k̂, t) = ⇧TT
ii

(k̂, t) = 0, are

fulfilled at any time, thanks to the fact that P
ij

k̂
j

= 0
and P

ij

P
jm

= P
im

.
The anisotropic stress tensor ⇧

µ⌫

describes the devi-
ation of the energy momentum tensor T

µ⌫

with respect
that of a perfect fluid. The spatial-spatial components
read

⇧
ij

⌘ T
ij

� p g
ij

, (9)

with p the homogeneous background pressure and g
ij

=
a2(t)(�

ij

+ h
ij

) the spatial-spatial metric tensor. In
the scenarios we consider in this paper the energy bud-
get is dominated by a homogeneous and isotropic back-
ground fluid, which causes the universe to expand e↵ec-
tively either as RD or MD. The corresponding energy-
momentum of this background is that of a perfect fluid,
with spatial-spatial components T pf

ij

= p g
ij

. On top of
this there is a sub-dominant contribution from cosmic
defects, which have their own energy-momentum tensor
T def
ij

. Hence, in these scenarios, the (spatial-spatial com-
ponents of the) total energy-momentum tensor are given
by T

ij

= T pf
ij

+ T def
ij

. It is clear then that ⇧
ij

= T def
ij

,
which implies that what will act as a source of GW is the
TT-part of the cosmic defects energy-momentum tensor.

Spectrum of gravitational waves

Expanding the Einstein equations to second order in
the tensor perturbations, one recognizes that the energy
density of a GW background is given by [? ]

⇢GW(t) =
1

32⇡Ga2(t)

D
ḣ
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ij

(x, t)
E

V

(10)

⌘ 1

32⇡Ga2(t)

1

V

Z

V

dx ḣ
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ḣ
ij

(k, t) ḣ⇤
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ḣ

(k, t) , (16)

and from here, the GW energy density spectrum reads

d⇢GW

d log k
(k, t) =

1

(4⇡)3Ga2(t)
k3 P

ḣ
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ḣ
ij

(k, t) =
16⇡G

ka(t)

Z
t

tI

dt0a(t0)G(k(t�t0))⇧TT
ij

(k, t0), (18)

where G(k(t� t0)) ⌘ (k cos[k(t� t0)]�H sin[k(t� t0)]).
From here we obtain

P
ḣ
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Once GW production ends, GWs propagate as free
waves, each mode oscillating with period T

k

= 2⇡
k

. In
order to define correctly the energy density spectrum of
GWs we need to perform a time average over those os-
cillations. Strictly speaking, at the moment when GW
production ends, we should match the solution (??) with
the freely propagating wave solution1. From there we
should build the GW energy density spectrum with the
free waves, and only then perform the time average over
oscillations. It is however mathematically equivalent to
take the time average over the product of G(k, t, t0) func-
tions. We obtain
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in Eq. (??), and taking into account that at subhorizon
scales (k2 +H2(t)) ⇡ k2, we arrive at
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Plugging Eq. (??) into Eq. (??), we finally find the energy
density spectrum of a stochastic background of GW (at
subhorizon scales) as
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III. GRAVITATIONAL WAVES FROM
SCALING SOURCES

Based on dimensional grounds and causality, it was
argued in [? ] that the aftermath dynamics of a global
phase transition should generate an approximately scale-
invariant background of GWs. The amplitude was esti-
mated with the GW quadrupole approximation, without
any reference to the number of components N of the cor-
responding symmetry breaking field. In the context of
a phase transition driven by the breaking a global O(N)
symmetry into a O(N � 1) group [? ], even though the
field equations are non-linear, analytic calculations can
be carried out in the largeN limit [? ], describing the evo-
lution of non-topological global defects arising after the
phase transition. Within that context, and using a full
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treatment of the tensor metric perturbation representing
GWs, i.e. not resorting to the quadrupole approximation,
[? ? ] demonstrated that in the large N limit, an exact
scale-invariant background of GWs is generated by the
self-ordering dynamics of the non-topological global de-
fects arising after the phase transition. On the numerical
side, Ref. [? ], presented later, studied lattice simula-
tions and concluded that global defects with arbitrary
N , created after a second-order phase transition, gener-
ate a scale-invariant GW background. Such a conclusion,
however correct, was not fully supported by their numer-
ical spectra of GWs. The latter, even if consistent with
scale invariance, showed some tilt and a wiggly pattern
of large fluctuations.

Important questions were raised in that moment. How
does the scale-invariant GW spectrum come about? How
does the GW spectrum really look in the case of topolog-
ical defects? In particular, string-inspired models such
as [? ? ] can have (approximate) global symmetries
with low N and is it important to know what the GW
prediction is in those cases. How does the true GW sig-
nal from non-topological textures approach the analyti-
cal large N approximate result? What happens when the
defects arise from a broken gauge symmetry? Does this
GW contribute appreciably to the relativistic energy den-
sity and have implications in the cosmic microwave back-
ground [? ]? In [? ], the origin of the scale-invariance
of the GW background emitted by the self-ordering pro-
cess of non-topological defect, was finally clarified. The
prediction was, in fact, extended to any type of defect,
demonstrating that any scaling source at the RD era, pro-
duces always a background of GWs with a scale-invariant
energy density power spectrum. As it was emphasized
in [? ], in the case of cosmic defects the result is in fact
not related to their particular topology, nor to the order
of phase transition or the nature (global or local) of the
symmetry-breaking process that generated them. It is
just a consequence of the defects’ scaling behavior and
of being in RD. Using lattice simulations as an input, [?
] also computed the GW amplitude from numerical sim-
ulations of a system of global O(N) defects, providing
evidence that the numerical results converge to the an-
alytical result calculated in the large-N limit by [? ? ]
.

In the remaining of this section, we will discuss in ??

general aspects about the spectral shape of the GWs
emitted by any network of cosmic defects in scaling
regime. We will summarize the findings from [? ], and ex-
tend our results to the evolution of scaling seeds during
the MD era. In ??, we will review the analytical esti-
mation of the GW signal emitted by self-ordering scalar
fields during RD, computed the large N limit of global
defects. We will also extend the analytical estimation to
the MD era. In the next Section, Sect. ??, we will discuss
our results from lattice simulations, based on two di↵er-
ent methods for obtaining numerically the spectrum of
GWs emitted by the network of cosmic defects. In ??

we will discuss our results from the first method, based

4

Once GW production ends, GWs propagate as free
waves, each mode oscillating with period T

k

= 2⇡
k

. In
order to define correctly the energy density spectrum of
GWs we need to perform a time average over those os-
cillations. Strictly speaking, at the moment when GW
production ends, we should match the solution (??) with
the freely propagating wave solution1. From there we
should build the GW energy density spectrum with the
free waves, and only then perform the time average over
oscillations. It is however mathematically equivalent to
take the time average over the product of G(k, t, t0) func-
tions. We obtain
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Replacing G(k, t, t0)G(k, t, t00) by hG(k, t, t0)G(k, t, t00)i
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in Eq. (??), and taking into account that at subhorizon
scales (k2 +H2(t)) ⇡ k2, we arrive at
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Plugging Eq. (??) into Eq. (??), we finally find the energy
density spectrum of a stochastic background of GW (at
subhorizon scales) as
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III. GRAVITATIONAL WAVES FROM
SCALING SOURCES

Based on dimensional grounds and causality, it was
argued in [? ] that the aftermath dynamics of a global
phase transition should generate an approximately scale-
invariant background of GWs. The amplitude was esti-
mated with the GW quadrupole approximation, without
any reference to the number of components N of the cor-
responding symmetry breaking field. In the context of
a phase transition driven by the breaking a global O(N)
symmetry into a O(N � 1) group [? ], even though the
field equations are non-linear, analytic calculations can
be carried out in the largeN limit [? ], describing the evo-
lution of non-topological global defects arising after the
phase transition. Within that context, and using a full
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treatment of the tensor metric perturbation representing
GWs, i.e. not resorting to the quadrupole approximation,
[? ? ] demonstrated that in the large N limit, an exact
scale-invariant background of GWs is generated by the
self-ordering dynamics of the non-topological global de-
fects arising after the phase transition. On the numerical
side, Ref. [? ], presented later, studied lattice simula-
tions and concluded that global defects with arbitrary
N , created after a second-order phase transition, gener-
ate a scale-invariant GW background. Such a conclusion,
however correct, was not fully supported by their numer-
ical spectra of GWs. The latter, even if consistent with
scale invariance, showed some tilt and a wiggly pattern
of large fluctuations.

Important questions were raised in that moment. How
does the scale-invariant GW spectrum come about? How
does the GW spectrum really look in the case of topolog-
ical defects? In particular, string-inspired models such
as [? ? ] can have (approximate) global symmetries
with low N and is it important to know what the GW
prediction is in those cases. How does the true GW sig-
nal from non-topological textures approach the analyti-
cal large N approximate result? What happens when the
defects arise from a broken gauge symmetry? Does this
GW contribute appreciably to the relativistic energy den-
sity and have implications in the cosmic microwave back-
ground [? ]? In [? ], the origin of the scale-invariance
of the GW background emitted by the self-ordering pro-
cess of non-topological defect, was finally clarified. The
prediction was, in fact, extended to any type of defect,
demonstrating that any scaling source at the RD era, pro-
duces always a background of GWs with a scale-invariant
energy density power spectrum. As it was emphasized
in [? ], in the case of cosmic defects the result is in fact
not related to their particular topology, nor to the order
of phase transition or the nature (global or local) of the
symmetry-breaking process that generated them. It is
just a consequence of the defects’ scaling behavior and
of being in RD. Using lattice simulations as an input, [?
] also computed the GW amplitude from numerical sim-
ulations of a system of global O(N) defects, providing
evidence that the numerical results converge to the an-
alytical result calculated in the large-N limit by [? ? ]
.

In the remaining of this section, we will discuss in ??

general aspects about the spectral shape of the GWs
emitted by any network of cosmic defects in scaling
regime. We will summarize the findings from [? ], and ex-
tend our results to the evolution of scaling seeds during
the MD era. In ??, we will review the analytical esti-
mation of the GW signal emitted by self-ordering scalar
fields during RD, computed the large N limit of global
defects. We will also extend the analytical estimation to
the MD era. In the next Section, Sect. ??, we will discuss
our results from lattice simulations, based on two di↵er-
ent methods for obtaining numerically the spectrum of
GWs emitted by the network of cosmic defects. In ??

we will discuss our results from the first method, based
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Once GW production ends, GWs propagate as free
waves, each mode oscillating with period T
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. In
order to define correctly the energy density spectrum of
GWs we need to perform a time average over those os-
cillations. Strictly speaking, at the moment when GW
production ends, we should match the solution (??) with
the freely propagating wave solution1. From there we
should build the GW energy density spectrum with the
free waves, and only then perform the time average over
oscillations. It is however mathematically equivalent to
take the time average over the product of G(k, t, t0) func-
tions. We obtain
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Replacing G(k, t, t0)G(k, t, t00) by hG(k, t, t0)G(k, t, t00)i
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in Eq. (??), and taking into account that at subhorizon
scales (k2 +H2(t)) ⇡ k2, we arrive at
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Plugging Eq. (??) into Eq. (??), we finally find the energy
density spectrum of a stochastic background of GW (at
subhorizon scales) as
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III. GRAVITATIONAL WAVES FROM
SCALING SOURCES

Based on dimensional grounds and causality, it was
argued in [? ] that the aftermath dynamics of a global
phase transition should generate an approximately scale-
invariant background of GWs. The amplitude was esti-
mated with the GW quadrupole approximation, without
any reference to the number of components N of the cor-
responding symmetry breaking field. In the context of
a phase transition driven by the breaking a global O(N)
symmetry into a O(N � 1) group [? ], even though the
field equations are non-linear, analytic calculations can
be carried out in the largeN limit [? ], describing the evo-
lution of non-topological global defects arising after the
phase transition. Within that context, and using a full

1
The freely propagating waves are described by a superposition

of the linearly independent homogeneous solutions to the source-

free GW EoM.

treatment of the tensor metric perturbation representing
GWs, i.e. not resorting to the quadrupole approximation,
[? ? ] demonstrated that in the large N limit, an exact
scale-invariant background of GWs is generated by the
self-ordering dynamics of the non-topological global de-
fects arising after the phase transition. On the numerical
side, Ref. [? ], presented later, studied lattice simula-
tions and concluded that global defects with arbitrary
N , created after a second-order phase transition, gener-
ate a scale-invariant GW background. Such a conclusion,
however correct, was not fully supported by their numer-
ical spectra of GWs. The latter, even if consistent with
scale invariance, showed some tilt and a wiggly pattern
of large fluctuations.

Important questions were raised in that moment. How
does the scale-invariant GW spectrum come about? How
does the GW spectrum really look in the case of topolog-
ical defects? In particular, string-inspired models such
as [? ? ] can have (approximate) global symmetries
with low N and is it important to know what the GW
prediction is in those cases. How does the true GW sig-
nal from non-topological textures approach the analyti-
cal large N approximate result? What happens when the
defects arise from a broken gauge symmetry? Does this
GW contribute appreciably to the relativistic energy den-
sity and have implications in the cosmic microwave back-
ground [? ]? In [? ], the origin of the scale-invariance
of the GW background emitted by the self-ordering pro-
cess of non-topological defect, was finally clarified. The
prediction was, in fact, extended to any type of defect,
demonstrating that any scaling source at the RD era, pro-
duces always a background of GWs with a scale-invariant
energy density power spectrum. As it was emphasized
in [? ], in the case of cosmic defects the result is in fact
not related to their particular topology, nor to the order
of phase transition or the nature (global or local) of the
symmetry-breaking process that generated them. It is
just a consequence of the defects’ scaling behavior and
of being in RD. Using lattice simulations as an input, [?
] also computed the GW amplitude from numerical sim-
ulations of a system of global O(N) defects, providing
evidence that the numerical results converge to the an-
alytical result calculated in the large-N limit by [? ? ]
.

In the remaining of this section, we will discuss in ??

general aspects about the spectral shape of the GWs
emitted by any network of cosmic defects in scaling
regime. We will summarize the findings from [? ], and ex-
tend our results to the evolution of scaling seeds during
the MD era. In ??, we will review the analytical esti-
mation of the GW signal emitted by self-ordering scalar
fields during RD, computed the large N limit of global
defects. We will also extend the analytical estimation to
the MD era. In the next Section, Sect. ??, we will discuss
our results from lattice simulations, based on two di↵er-
ent methods for obtaining numerically the spectrum of
GWs emitted by the network of cosmic defects. In ??

we will discuss our results from the first method, based
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absence of it), do present a scaling behavior, su�ciently
long after the completion of the phase transition that cre-
ated them [? ? ? ? ]. In all cases, topological or not,
local or global, we will refer to them as cosmic defects.

In a recent letter [? ], we generalized previous results
from the literature, clarifying the origin of the scale-
invariance of the GW background emitted by the self-
ordering process of non-topological textures arising af-
ter a global phase transition [? ? ? ]. We demon-
strated analytically that any scaling source at the radia-
tion dominated (RD) era produces a background of GW
with a scale-invariant energy density power spectrum. In
the case of cosmic defects, we emphasized that this is
not related to their particular topology, nor to the or-
der of phase transition or the global or local nature of
the symmetry-breaking process that generated them. It
is just a consequence of scaling and being in RD. Us-
ing lattice simulations as an input, we also calculated
numerically the GW amplitude from a system of global
O(N) defects, providing evidence that the numerical re-
sults converges to the large-N analytical result calculated
in the large-N limit in [? ? ? ].

In the present paper, we generalize further our results
from [? ]. First of all, we extend our calculation to the
whole range of frequencies of interest, studying the GWs
emitted by a scaling source during all cosmic history,
including both radiation-dominated (RD) and matter-
dominated (MD) eras. This introduces a new feature
in the spectrum, which does not remain scale-invariant
during the entire frequency range, but rather develops
a maximum at feq = ... Hz, which represents the fre-
quency today corresponding to the horizon scale at time
of matter-radiation equality at redshift zeq ' 3400. We
find that the energy density power spectrum scales as
h2⌦GW / f2 for f ⌧ feq, reaches a maximum at the
frequency f = feq, and settles down to a scale-invariant
amplitude h2⌦GW / f0 for f � feq. We also discuss in
full detail the numerical input used in [? ], based on the
extraction of the unequal-time energy-momentum tensor
correlators from large scale field theory lattice simula-
tions. We contrast our previous numerical results versus
other methods, based on the real time evolution of the
tensor metric perturbations, alongside the evolution of
the defect network itself. Finally we discuss the impli-
cations of the discussed background for the cosmic mi-
crowave background and for direct and indirect detection
of GWs.

From now on we will work in units ~ = c = 1,
with ⇢

c

the critical energy density today, and M
p

⇡
1.22 ⇥ 1019 GeV the Planck mass, related to Newton’s
gravitational constant as G = 1/M2

p

. Summation will be
assumed over repeated indices.

II. GRAVITATIONAL WAVES

Gravitational Waves (GW) are tensor perturbations
of the space-time metric, representing the transverse-

traceless (TT) degrees of freedom (DoF) of metric per-
turbations. After inflation the Universe is well described
by a spatially flat Friedman-Robertson-Walker (FRW)
background. The perturbed FRW line element with GW
as the only perturbation, can then be written as

ds2 = a2(t)
⇥
�dt2 + (�

ij

+ h
ij

) dxidxj

⇤
, (1)

with a(t) the scale factor and t the conformal time.
The perturbations h

ij

verify the conditions @
i

h
ij

= 0
(transversality) and hi

i

= 0 (tracelessness), necessary
to identify them as GWs. Splitting the Einstein equa-
tions into background and linearized equations, and af-
ter a conformal redefinition of the tensor perturbations
h̄
ij

(x, t) = a(t)h
ij

(x, t), the GW equation of motion
(EoM) in a FRW background are [? ] Why do we need
the hbar eqs? Maybe eq 4 and 5 are enough

¨̄h
ij

(x, t)�
✓
r2 +

ä(t)

a(t)

◆
h̄
ij

(x, t) = 16⇡Ga(t)⇧TT
ij

(x, t) ,

(2)
with dots denoting derivatives with respect to conformal
time. The source ⇧TT

ij

is the TT-part of the anisotropic
stress tensor ⇧

ij

, which we define below. The conditions
@
i

⇧TT
ij

= ⇧TT
ii

= 0 hold for 8x, 8 t. Either in RD or
MD, and in general for a scale factor with any power
law behavior in time, ä/a ⇠ H2, where H ⌘ ȧ/a is the
(comoving) Hubble rate. Thus the term ä/a is negligible
at sub-horizon scales k � H, and therefore we will drop
it from now on. The GW EoM in Fourier space can then
be written simply as

¨̄h
ij

(k, t) + k2h̄
ij

(k, t) = 16⇡Ga(t)⇧TT
ij

(k, t) . (3)

The solution of Eq. (??) is given by a convolution with
the Green function associated to a free wave-operator
in Minkowski spacetime, G(k, t � t0) = 1

k

sin(k(t � t0)).
That is, at times t > t

I

, with t
I

the initial time with no
gravitational waves, i. e. h

ij

(k, t
i

) = ḣ
ij

(k, t
i

) = 0, we
obtain

h
ij

(k, t) =
h̄
ij

(k, t)

a(t)
(4)

=
16⇡G

k a(t)

Z
t

ti

dt0a(t0) sin(k(t� t0))⇧TT
ij

(k, t0) .

Obtaining the TT-part of a tensor in configuration
space amounts to a non-local operation. It is more conve-
nient to do it in Fourier space, where a projector filtering
out only the TT DoF’s of a tensor can be easily written
down. The GW EoM in fourier space read

ḧ
ij

(k, t) + 2Hḣ
ij

(k, t) + k2h
ij

(k, t) = 16⇡G⇧TT
ij

(k, t),

(5)

where k is the comoving wave-number and k = |k| is the
modulus. The GW source can then be written as

⇧TT
ij

(k, t) = ⇤
ij,lm

(k̂)⇧
lm

(k, t). (6)

kt � 1
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2 Formalism

We first introduce the NLSM and the large N limit of a global O(N) symmetric scalar field,
then we study the physics of the correlators of the anisotropic stress tensor.

2.1 The model

We consider an N -component scalar field with a Lagrangian

L = L0 + L1 = �@µ�T@µ�� �

✓
�T�� v2

2

◆2

+ L1 , (2.1)

where �T = (�1, �2, . . . ,�N )/
p

2, � is the dimensionless self-coupling of � and v is the vev

in the true vacuum. In the case of a thermal bath at high temperature, the Lagrangian
L0 obtains corrections of the form L1 ⇠ �T 2�2, so that its minimum is at � = 0 which
respects the global O(N) symmetry of the Lagrangian. At low temperature, T < Tc ' v, the
thermal corrections are too small to the keep the minimum at � = 0 and the global O(N)
symmetry is spontaneously broken to O(N � 1). In the context of hybrid preheating, there
is no need for thermal restoration of the symmetry. The field � acquires a large mass during
inflation through its coupling to the inflaton �, L1 = �g2�T��2. Above a critical value,
� > �c ⌘

p
�v/g, the e↵ective quadratic mass of � is positive and the field is fixed at � = 0.

When the quadratic mass becomes negative, � < �c, a tachyonic instability triggers the end of
inflation and symmetry breaking. Soon after the symmetry is broken, thermal corrections and
tachyonic e↵ects can be neglected, and � is closely confined (in most of space) to the vacuum
manifold, given by

P
a �2

a(x, ⌘) = v2. Nevertheless, in positions such that their comoving
distance is |x�x0| > H�1, the values �(x, ⌘) and �(x0, ⌘) are uncorrelated, which leads to a
gradient energy density associated to the N � 1 Goldstone modes. For N > 2, the dynamics
of the Goldstone modes is well described by a NLSM [25, 32] where we force

P
a �2

a = v2 by
a Lagrange multiplier. This corresponds to the limit � !1 in the above Lagrangian. This
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where we have substituted C = 6⇡2⌘3
⇤ and we have set y = k⌘. Note that the upper limit

is actually ⌘/⌘⇤, but at late times, the (dimensionless) integral is insensitive to the upper
boundary, so we can take it to infinity and thus make the integral free of any time scale. In
order to obtain a time-independent vev, we then just require

⌫ = � + 1 . (2.12)

Introducing this relation into eq. (2.7), one obtains To in terms of � as

To = 3(� + 1/4) . (2.13)

The constant A is determined then by the condition
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⌫ (y) , hence A =
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Since ⌫ = � + 1, we can also write the amplitude of the field fluctuations, as
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2.2 Unequal time correlators

From eqs. (2.9) and (2.15) we obtain the following expression for the unequal time correlator
of the field:
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We assume that the field � is Gaussian distributed initially. As its time evolution is
linear, it will remain a Gaussian field and we can determine higher order correlators via
Wick’s theorem. This will be important in the next section when we determine the unequal
time correlator of the anisotropic stresses which source the production of GWs. Furthermore,
this source is totally coherent [25] in the sense that its unequal time correlator Pab

� (k, ⌘, ⌘0)
is a product of a function of ⌘ and ⌘0,

Pab
� (k, ⌘, ⌘0) =

�ab

N
6⇡2A(⌘⌘0)3/2 J⌫(k⌘)J⌫(k⌘0)

(k⌘)⌫(k⌘0)⌫
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N
f(k, ⌘)f(k, ⌘0) , (2.17)

with f(k, ⌘) =
p

6⇡2A k3/2 J⌫(k⌘)
(k⌘)⌫�3/2

.

Note the k3/2 scaling law at horizon crossing (k⌘ ⇠ 1) which is characteristic for quantum
fluctuations from de Sitter, i.e. inflation. This already hints to the fact that we will find a
scale-invariant spectrum also in this case.
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where we use the notation
�
qT⇤q

�
ij
⌘ ql⇤ij,lmqm and we have introduced the reality condition

�⇤(k) = �(�k) and the unequal time correlator of the field � which is defined in the same
way as the one for �,

h�a(k, ⌘)�⇤b(k0, ⌘0)i = (2⇡)3�(k� k0)Pab
� (k, ⌘, ⌘0) . (3.10)

The zero-mode of the anisotropic stresses vanishes due to isotropy so that the first term in
the square bracket of the integral (3.9) does not contribute.

We now can compute the unequal time correlator
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We now relate the GW energy density spectrum to the unequal time anisotropic stress
spectrum of the source, ⇧2(k, ⌘, ⌘0). For this we first write the GW evolution equation in
momentum space,

h00
ij + 2

a0

a
h0

ij + k2hij = 8⇡G ⇧ij . (3.13)

Defining a new variable h̄ij ⌘ ahij , one obtains

h̄00
ij +

✓
k2 � a00

a

◆
h̄ij = 8⇡Ga⇧ij . (3.14)

In a radiation dominated background (a / ⌘) this reduces to

h̄00
ij + k2h̄ij = 8⇡Ga⇧ij . (3.15)

The solution of this di↵erential equation with the initial conditions hij = h0
ij = 0 is given by

the convolution of the source with the Green function G(k, ⌘, ⌘0) = sin(k⌘ � k⌘0),

h̄ij(k, ⌘ < ⌘fin) =
8⇡G

k2

Z x

x⇤

dy a(y/k) ⇧ij(k, y/k) sin(x� y) , (3.16)

where we have set x ⌘ k⌘ and y ⌘ k⌘0. The source of gravity waves is acting for a time
interval �⌘⇤ = (⌘fin�⌘⇤) = ✏⌘⇤. If ✏ < 1 we call the process short-lasting. This is the relevant
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approximation to apply for N ¼ 2: not only is N small, but
there are string defects which invalidate the mean-field
analysis from the start. The reason that the scaling density
is so much larger than the large N value is however unclear
to us.

In Fig. 2 we compare the GW amplitude today !th
GW

given by the large N theoretical calculation Eq. (1), versus
the amplitude !num

GW obtained from Eq. (11), with FT
1

calculated from the numerical UETC for each scenario.
We see that !num

GW=!th
GW approaches unity as N grows,

showing that the numerical amplitudes converge to the
large N analytical result. Today’s amplitudes for each
different N considered are summarized in Table I. If we
parametrize the numerical amplitude for N " 4 as

!num
GW ¼ !th

GW a0 þ
a1
N

þ a2
N2 þ $ $ $

! "
; (16)

we find a good approximation with a0 ’ 1:1, a2 ’ 45 (see
Fig. 2) with negligible a1. We believe that the 10% devia-
tion from unity of a0 is due to a systematic uncertainty in
our numerics, most likely a finite volume effect. Thus, the
numerical GW amplitude approaches the large N result
faster than naively expected, as / 1=N2, albeit with a large
coefficient. The convergence reflects the behavior of the
overall scale of the UETCs, as measured by "N , although
we see some N dependence in the UETC width, which we
shall report on in the future. Strings are well above this

trend, by a factor of about 100. We cannot be more precise
at this stage, as there is a systematic uncertainty arising
from the extrapolation of the UETC to x ¼ 0. We estimate
this to be of order 50%.
In this Letter we have clarified the origin of the scale

invariance of the GW background calculated in
Refs. [12,13] for the case of nontopological global tex-
tures. More importantly, we have generalized the result: a
scale-invariant background of GW is expected from any
scaling cosmological source during the radiation era. In
particular, global defects, independent of their topology,
and cosmic gauged strings (local or semi-local), enter into
a scaling regime, and produce a scale-invariant (i.e.,
frequency-independent) GW power spectrum according
to Eq. (11), whose amplitude depends on the defect type.
We performed numerical simulations of the self-

ordering dynamics of an OðNÞ scalar field, showing that
the GW power spectrum approaches the large N prediction
at a rate consistent with N'2 (with a surprisingly big
coefficient). For example, for N ¼ 4 the GW power spec-
trum is approximately four times larger than the large N
prediction. For strings, the factor is of order 100.
We note that global strings (N ¼ 2) decay by emission

of massless [24] and massive scalar radiation, both from
infinite strings and loops, at a rate proportional to ðv=MPÞ2.
Hence the GW emission, whose power is proportional to
ðv=MPÞ4, is not a significant source of energy loss. Global
strings, therefore, do not behave like local strings in the
Nambu-Goto approximation, which decay into GWs alone,
via emission from subhorizon-size string loops. The am-
plitude of this background depends sensitively on the as
yet uncertain loop size distribution (see Refs. [25,26] for a
recent well-referenced investigation). We emphasize that
the background we predict arises from long strings and
short-lived horizon-size loops and has not been considered
before. While subdominant for Nambu-Goto strings, it
forms an irreducible minimum for strings decaying by
particle emission.
It will be interesting to calculate the GW power spec-

trum from gauge cosmic strings, where numerical simula-
tions show that the ETC decays much more slowly. The
GWs can contribute appreciably to the relativistic energy
density, with important implications for the cosmic micro-
wave background power spectrum [27].
We are very grateful toValerie Domcke for pointing out to

us an important typo in the first version of the manuscript.
D.G. F. is supported by the Swiss National Science Foun-
dation. M.H. acknowledges support from the Science and
Technology Facilities Council (Grant No. ST/J000477/1).
J. U. acknowledges support from the Basque Government
(IT-559-10), the SpanishMinistry (FPA2009-10612), and the
Consolider-Ingenio Programme CPAN (CSD2007-00042).
Numerical calculations were performed using the UK
National Cosmology Supercomputer (supported by SGI/
Intel, HEFCE, and STFC).

TABLE I. Values of the numerical ETCs at x ¼ !, and GW
amplitudes today, normalized to the large N calculation. The
fluctuation in the amplitudes over the 20 realizations is less than
10%, except for N ¼ 2 where it is (20%.
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FIG. 2 (color online). Ratio of the numerical GW amplitude
!num

GW to the large N analytical calculation !th
GW (see Table I)

and a fit to 1:1þ 45=N2. The error bars give the 1" variation
over all runs.
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approximation to apply for N ¼ 2: not only is N small, but
there are string defects which invalidate the mean-field
analysis from the start. The reason that the scaling density
is so much larger than the large N value is however unclear
to us.

In Fig. 2 we compare the GW amplitude today !th
GW

given by the large N theoretical calculation Eq. (1), versus
the amplitude !num

GW obtained from Eq. (11), with FT
1

calculated from the numerical UETC for each scenario.
We see that !num

GW=!th
GW approaches unity as N grows,

showing that the numerical amplitudes converge to the
large N analytical result. Today’s amplitudes for each
different N considered are summarized in Table I. If we
parametrize the numerical amplitude for N " 4 as

!num
GW ¼ !th

GW a0 þ
a1
N

þ a2
N2 þ $ $ $

! "
; (16)

we find a good approximation with a0 ’ 1:1, a2 ’ 45 (see
Fig. 2) with negligible a1. We believe that the 10% devia-
tion from unity of a0 is due to a systematic uncertainty in
our numerics, most likely a finite volume effect. Thus, the
numerical GW amplitude approaches the large N result
faster than naively expected, as / 1=N2, albeit with a large
coefficient. The convergence reflects the behavior of the
overall scale of the UETCs, as measured by "N , although
we see some N dependence in the UETC width, which we
shall report on in the future. Strings are well above this

trend, by a factor of about 100. We cannot be more precise
at this stage, as there is a systematic uncertainty arising
from the extrapolation of the UETC to x ¼ 0. We estimate
this to be of order 50%.
In this Letter we have clarified the origin of the scale

invariance of the GW background calculated in
Refs. [12,13] for the case of nontopological global tex-
tures. More importantly, we have generalized the result: a
scale-invariant background of GW is expected from any
scaling cosmological source during the radiation era. In
particular, global defects, independent of their topology,
and cosmic gauged strings (local or semi-local), enter into
a scaling regime, and produce a scale-invariant (i.e.,
frequency-independent) GW power spectrum according
to Eq. (11), whose amplitude depends on the defect type.
We performed numerical simulations of the self-

ordering dynamics of an OðNÞ scalar field, showing that
the GW power spectrum approaches the large N prediction
at a rate consistent with N'2 (with a surprisingly big
coefficient). For example, for N ¼ 4 the GW power spec-
trum is approximately four times larger than the large N
prediction. For strings, the factor is of order 100.
We note that global strings (N ¼ 2) decay by emission

of massless [24] and massive scalar radiation, both from
infinite strings and loops, at a rate proportional to ðv=MPÞ2.
Hence the GW emission, whose power is proportional to
ðv=MPÞ4, is not a significant source of energy loss. Global
strings, therefore, do not behave like local strings in the
Nambu-Goto approximation, which decay into GWs alone,
via emission from subhorizon-size string loops. The am-
plitude of this background depends sensitively on the as
yet uncertain loop size distribution (see Refs. [25,26] for a
recent well-referenced investigation). We emphasize that
the background we predict arises from long strings and
short-lived horizon-size loops and has not been considered
before. While subdominant for Nambu-Goto strings, it
forms an irreducible minimum for strings decaying by
particle emission.
It will be interesting to calculate the GW power spec-

trum from gauge cosmic strings, where numerical simula-
tions show that the ETC decays much more slowly. The
GWs can contribute appreciably to the relativistic energy
density, with important implications for the cosmic micro-
wave background power spectrum [27].
We are very grateful toValerie Domcke for pointing out to

us an important typo in the first version of the manuscript.
D.G. F. is supported by the Swiss National Science Foun-
dation. M.H. acknowledges support from the Science and
Technology Facilities Council (Grant No. ST/J000477/1).
J. U. acknowledges support from the Basque Government
(IT-559-10), the SpanishMinistry (FPA2009-10612), and the
Consolider-Ingenio Programme CPAN (CSD2007-00042).
Numerical calculations were performed using the UK
National Cosmology Supercomputer (supported by SGI/
Intel, HEFCE, and STFC).

TABLE I. Values of the numerical ETCs at x ¼ !, and GW
amplitudes today, normalized to the large N calculation. The
fluctuation in the amplitudes over the 20 realizations is less than
10%, except for N ¼ 2 where it is (20%.

N 2 3 4 8 12 20

"N 36 4.5 3.1 1.7 1.4 1.3
!num

GW=!th
GW 130 7.3 3.9 1.8 1.4 1.3

10
0

10
1

10
0

10
1

10
2

N

Ω
nu

m
G

W
/Ω

th G
W

FIG. 2 (color online). Ratio of the numerical GW amplitude
!num

GW to the large N analytical calculation !th
GW (see Table I)

and a fit to 1:1þ 45=N2. The error bars give the 1" variation
over all runs.
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approximation to apply for N ¼ 2: not only is N small, but
there are string defects which invalidate the mean-field
analysis from the start. The reason that the scaling density
is so much larger than the large N value is however unclear
to us.

In Fig. 2 we compare the GW amplitude today !th
GW

given by the large N theoretical calculation Eq. (1), versus
the amplitude !num

GW obtained from Eq. (11), with FT
1

calculated from the numerical UETC for each scenario.
We see that !num

GW=!th
GW approaches unity as N grows,

showing that the numerical amplitudes converge to the
large N analytical result. Today’s amplitudes for each
different N considered are summarized in Table I. If we
parametrize the numerical amplitude for N " 4 as

!num
GW ¼ !th

GW a0 þ
a1
N

þ a2
N2 þ $ $ $

! "
; (16)

we find a good approximation with a0 ’ 1:1, a2 ’ 45 (see
Fig. 2) with negligible a1. We believe that the 10% devia-
tion from unity of a0 is due to a systematic uncertainty in
our numerics, most likely a finite volume effect. Thus, the
numerical GW amplitude approaches the large N result
faster than naively expected, as / 1=N2, albeit with a large
coefficient. The convergence reflects the behavior of the
overall scale of the UETCs, as measured by "N , although
we see some N dependence in the UETC width, which we
shall report on in the future. Strings are well above this

trend, by a factor of about 100. We cannot be more precise
at this stage, as there is a systematic uncertainty arising
from the extrapolation of the UETC to x ¼ 0. We estimate
this to be of order 50%.
In this Letter we have clarified the origin of the scale

invariance of the GW background calculated in
Refs. [12,13] for the case of nontopological global tex-
tures. More importantly, we have generalized the result: a
scale-invariant background of GW is expected from any
scaling cosmological source during the radiation era. In
particular, global defects, independent of their topology,
and cosmic gauged strings (local or semi-local), enter into
a scaling regime, and produce a scale-invariant (i.e.,
frequency-independent) GW power spectrum according
to Eq. (11), whose amplitude depends on the defect type.
We performed numerical simulations of the self-

ordering dynamics of an OðNÞ scalar field, showing that
the GW power spectrum approaches the large N prediction
at a rate consistent with N'2 (with a surprisingly big
coefficient). For example, for N ¼ 4 the GW power spec-
trum is approximately four times larger than the large N
prediction. For strings, the factor is of order 100.
We note that global strings (N ¼ 2) decay by emission

of massless [24] and massive scalar radiation, both from
infinite strings and loops, at a rate proportional to ðv=MPÞ2.
Hence the GW emission, whose power is proportional to
ðv=MPÞ4, is not a significant source of energy loss. Global
strings, therefore, do not behave like local strings in the
Nambu-Goto approximation, which decay into GWs alone,
via emission from subhorizon-size string loops. The am-
plitude of this background depends sensitively on the as
yet uncertain loop size distribution (see Refs. [25,26] for a
recent well-referenced investigation). We emphasize that
the background we predict arises from long strings and
short-lived horizon-size loops and has not been considered
before. While subdominant for Nambu-Goto strings, it
forms an irreducible minimum for strings decaying by
particle emission.
It will be interesting to calculate the GW power spec-

trum from gauge cosmic strings, where numerical simula-
tions show that the ETC decays much more slowly. The
GWs can contribute appreciably to the relativistic energy
density, with important implications for the cosmic micro-
wave background power spectrum [27].
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Work in progress !
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Conclusions

Cosmic (super)strings

A cosmic string network consists of:
1) “Infinite cosmic strings”
2) Cosmic string loops

Intercommutation

• Cosmic strings: p = 1

• Cosmic superstrings: p ∈ [10−3, 1]

DESY GW and Cosmology workshop / 3rd eLISA Cosmology WG meeting, DESY, Hamburg 3/22

A cosmic string network formed by: 
1) ‘Infinite' long cosmic strings 
2) (subhorizon)Cosmic string loops

Intercommutation !

Cosmic Strings Network: Loop configurations
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ii. lensing events
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Extra emission of GWs !
(Vilenkin 

 ’81)



Cosmic
(super)strings
Basics

Evolution

Observational
signatures

GW emission

Cosmic string
SGWB
GW Spectrum

Modelling

Tension limits

eLISA vs.
PTAs
Parameter space

eLISA vs. SKA No.1

Large loops

eLISA vs. SKA No.2

eLISA performance

Conclusions

GW emission from cosmic string networks

Loops once formed, decay by radiation emission

−→

Gravitational
Scalar/Gauge boson
Synchrotron/Radio/γ-ray
Neutrinos
UHERC

Also, cosmic strings create:

i. imprints on the CMB (anisotropies, non-Gaussianity)
ii. lensing events
iii. 21-cm signatures

Observational probes already used:

CMB experiments (e.g., Planck XXV)
Lensing surveys (e.g., Christiansen et al. 2009)
Diffuse γ-ray background (e.g., Santana Mota & Hindmarsh 2014)
GWs (EPTA, NANOGrav, LIGO)

DESY GW and Cosmology workshop / 3rd eLISA Cosmology WG meeting, DESY, Hamburg 5/22

Cosmic
(super)strings
Basics

Evolution

Observational
signatures

GW emission

Cosmic string
SGWB
GW Spectrum

Modelling

Tension limits

eLISA vs.
PTAs
Parameter space

eLISA vs. SKA No.1

Large loops

eLISA vs. SKA No.2

eLISA performance

Conclusions

GW emission from cosmic string networks

GW emission “engines”: cusps and kinks

Emission in a series of harmonics (modes) n:

fn = 2nc/ℓ, n = 1 → ∞

Emitted GW power per mode:

dEgw,loop

dt
= PnGµ2c , Pn = Γn−q/

∞∑
m=1

m−q

Given a loop number density n(ℓ, t)

Ωgw(f) =
2Gµ2c3

ρcrita5(t0)f

∞∑
j=1

jPj

∫ t0

tf

a5(t′)nj(f, t
′)dt′

Also GW emission from:

• Infinite cosmic strings (Kawasaki et al. 2010; Matsui et al. 2016)
• Scaling evolution in the radiation era (Figueroa et al. 2013)
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Assuming GW emission dominates …

* GW emission 
* Boson emission 
* UHCR 
* …
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Given that the power radiated by the population of cosmic loops from a string

network, comes from the contribution through all the cosmic history evolution of the

string network, it is convenient to express the above results in terms of a redshift integral.

This can be easily done by ...

Before we move on, it is important to note that the above spectral mode emission

Pn / 1/nq+1, or equivalently P(fl) / 1/(fl)q+1, is based on the asymptotic behavior

expected for large n. Hence, this modeling might be inaccurate for the lower harmonics,

specially for n = 1. Since Eq. (191) was derived independently of the functional form

of P(fl), it might be interesting to compute the GW emission assuming that only the

fundamental mode n = 1 of the GWs harmonics is emitted. This can be modeled by

simply considering a Dirac Delta distribution as P(fl)�(1)(fl � 2).

8.2.1. Cusps, kinks, and other features Summary of expressions based on asymptotic
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Appendix A. Gravitational wave propagation equation

In this appendix, we derive the propagation equation for GWs...

Appendix B. Detecting gravitational waves through their e↵ect on photon

propagation

We will discuss in the next section how cosmological GW backgrounds can be detected

with CMB experiments, pulsar timing observations and interferometric experiments.

These three kinds of experiments rely on the e↵ect of GW on the propagation of photons,

wether photons propagating from the epoch of last scattering in the case of the CMB,

electromagnetic pulses emitted by pulsars in the case of pulsar timing observations,

or photons in laser beams in the case of interferometers. Therefore, before describing

these experiments in more detail, we first discuss in this sub-section how GW a↵ect the

propagation of electromagnetic signals. We will follow the analysis performed by Sachs

and Wolfe [33, 34] for the CMB, and apply it also to pulsar timing observations and

interferometric experiments.
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FIG. 1: The GW energy density per logarithmic frequency
interval Ωgw(f)h2 of a cosmic string network with Gµ/c2 =
10−7, α = 10−3 and n∗ = 1. The black (solid) line is the full
spectrum from the network due to loops formed in both radi-
ation and matter eras, whereas the red (dashed) line is that
from the radiation-dominated era and the blue (dot-dashed)
line is from the matter-dominated era. The grey shaded area
shows the frequency window probed with the highest sensi-
tivity by PTA experiments with duration between 5 and 10
years.

D. Intercommutation probability

Whenever two field theory cosmic strings collide they
exchange partners with an intercommutation probability
p = 1 [70]. This is not necessarily the case for cosmic su-
perstrings however, which intercommute with a reduced
intercommutation probability p < 1. This can be at-
tributed to the extra dimensions in which cosmic super-
strings are moving, with a successful intercommutation
requiring their collision in all dimensions and not just in
the three spatial dimensions visible to us. If p < 1 then
the scaling density of long strings is increased in order
to increase the number of intersections per unit time and
hence allow the network to lose the requisite amount of
energy necessary to maintain scaling. This will increase
the number of loops and hence will increase the ampli-
tude of the SGWB by a uniform scaling. There is, how-
ever, some controversy as to the exact dependence on p.
Jones, Stoica and Tye [19], argued that the self-similar
length scale, L, of the cosmic string network should scale
as L ∝ pt, which would mean that ρ∞ ∝ L−2 ∝ p−2.
In that case, even a small decrease in p would lead to a
dramatic increase in the amplitude of the SGWB. How-
ever, in such a case the inter-string distance ds, due to
the higher string density, is smaller than the length scale
of the network L, whereas in the one-scale model L ∼ ds,
suggesting that this argument needs to be modified.
Sakellariadou [83] has performed simulations of cosmic

superstring networks in Minkowski spacetime which sug-
gest that L ∝ p1/2t, implying that ρ∞ ∝ p−1. It was
suggested the discrepancy with the results of Jones et
al. stems from the small-scale structure of cosmic stings,

which ensures more intersection points when two strings
collide, and therefore there are more chances for success-
ful loop production.
There are two techniques used to model the dynam-

ics of strings in the Nambu-Goto approximation: one
is the Minkowski spacetime approach used in [83]; the
other is to model the expansion of the Universe. The
results of such simulations are reported by Avgoustidis
and Shellard in [84, 85]. They find that when p ≤ 0.1
then ρ∞ ∝ p−0.6, whereas for 0.1 < p ≤ 1.0 they find
ρ∞ ∝ p−1. They also suggest that small-scale structure
is responsible for the difference from the ρ∞ ∝ p−2 scal-
ing law and they propose a simple two-scale model which
describes quite accurately their simulation results. The
difference in the scaling laws of [83] and [85] has to do
with fitting model parameters to results of fundamen-
tally different simulations, so the exact reasons for this
discrepancy are not easy to trace.
In this work we will not make a judgement on the pre-

cise dependence of the scaling density of infinite strings
as a function of p except that it can be modeled by a
power law

A(p) =
A(1)

pk
, (25)

where k is the model parameter and A(1) = 52 and
A(1) = 31 in the radiation and matter eras respectively.
The results of [83] suggest that k = 1, whereas those
of [84, 85] suggest k = 0.6 for p ≤ 0.1 and k = 1
for 0.1 < p ≤ 1.0. The consequence of this assump-
tion is that the amplitude of the SWGB will scale as
Ωgw(f) ∝ p−k independent of f .

III. CHARACTERISTICS OF COSMIC STRING
INDUCED SPECTRA

A. Low frequency cut-off due to newborn large
loops.

As we mentioned in Sec. II B, each cosmic string loop
emits GWs into an ensemble of harmonics defined by
fn = 2nc/ℓ. This means that there is a low frequency
cut-off on the GWs that a cosmic string network emits,
defined by the first emission mode of the largest loops
present. The largest loops are those created at the
present time t0 and have length ℓ0 = frαdH(t0), with
a corresponding low frequency cut-off f0 ∝ 1/αt0. The
redshifted frequencies of the GWs emitted by loops pre-
viously born will always be higher than f0 in both the
radiation- and matter-dominated eras. For example, in
the radiation era the frequency of the first emission mode
of a loop formed at time t1 redshifted to the present is

f1 ∝ t1/6eq /α(t1/21 t2/30 ) > f0, where teq ≈ 25, 000 yrs is the
time of radiation-matter equality. The same calculation

in the matter era gives f1 ∝ 1/α(t1/31 t2/30 ), which is also
greater than f0. To demonstrate the strength of this in-
equality, in the matter era, the GWs of the first emission

Cosmic Strings Network: Loop configurations
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FIG. 4: Plots of normalized gravitational wave energy den-
sity per logarithmic frequency interval, Ωgwh

2, due to cosmic
string networks with different tensions but the same fiducial
values of α, n∗, q and p. The thick blue lines are for networks
in the large loop regime and the thin red lines are from net-
works in small loop regime. The dashed black line signifies
the network for which α = ΓGµ/c2. The analytic approxima-
tions of the peak frequency are also shown: the approximation
found in CA92 (red long dashed curve) and our improved ap-
proximation (short dashed green curve).

different behavior in the large and small loops regimes
and indeed this can be seen in Fig. 4. Moreover, even in
the large loop regime where it seems to be in reasonable
agreement, the more we decrease the string tension the
worse the approximation becomes.
We have managed to construct a better approximate

formula for fpeak, where we do not make any assumption
about the birth time of the loop population responsible
for the peak emission. Instead, we created a general,
approximate formula and we determine when these loops
were formed by comparing the analytic results with those
of our computations.
The peak frequency must originate from the redshifted

emission in the n = 1 mode of this population, the lowest
frequency it ever emitted. Using Eq. (26) for the birth
time of loops we introduce the concept of loop genera-
tions, g. We will refer to loops which die right now, and
therefore, were born at time t1 = tb(t0), as generation
g = 1 loops. The loops of generation g = 2 are those
which died when the loops of g = 1 were born and have
a birth time t2 = tb(t1). In the same way, the loops of
generation g are those which die when the loops of gen-
eration g− 1 were born. From Eq. (26) we find the birth
time tg of generation g loops to be

tg =

(

1 +
3frαc2

ΓGµ

)−g

t0 . (27)

The lowest GW frequency (n = 1) emitted by loops of
generation g in the matter era is

fg,em =
2

3frαtg
=

2

3frαt0

(

1 +
3frαc2

ΓGµ

)g

, (28)
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FIG. 5: Ωgwh2 for cosmic string networks with different values
of α and the fiducial values of Gµ/c2, n∗, q and p. With thick
blue lines we plot the networks in the regime of large loops and
with thin red lines the networks in the regime of small loops.
With dashed line we plot the network with α = ΓGµ/c2 which
signifies the critical point after which we have no amplitude
decrease.

and when we redshift it to the present day, its observed
frequency is

fg =
a(tg)

a(t0)

2

3frαtg
=

2

3frαt0

(

1 +
3frαc2

ΓGµ

)g/3

. (29)

Eq. (29) is the general approximation for the peak fre-
quency, without making any assumptions about which
generation’s loops created it. Using the results of our
computations, we found out that the best approximation
to the peak frequency is given by

fpeak =
2

3frαt0

(

2 +
3frαc2

ΓGµ

)10/9

, (30)

which is plotted with a short dashed green line in Fig. 4.
This means that the peak region is due to loops of gen-
eration g ∼ 10/3, i.e. of loops born just before the third
generation loops. We have changed the numerical factor
in the parenthesis of Eqs. (29), (30) from 1 to 2, so to
achieve a perfect fit. In any case, this is a minor cor-
rection (less than 3%) which only affects networks with
ΓGµ/c2 > α.

2. Varying α

The effects of varying α in the large/small loop re-
gions are the inverse of those seen when varying Gµ/c2.
In Fig. 5 we present the GW spectra for cosmic string
networks with the fiducial values of Gµ/c2, n∗, q and p
for various values of α.
In the large loop regime (blue thick lines), as α de-

creases the most prominent feature is a decrease of the
amplitude of the overall spectrum. This decrease is
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and indeed this can be seen in Fig. 4. Moreover, even in
the large loop regime where it seems to be in reasonable
agreement, the more we decrease the string tension the
worse the approximation becomes.
We have managed to construct a better approximate

formula for fpeak, where we do not make any assumption
about the birth time of the loop population responsible
for the peak emission. Instead, we created a general,
approximate formula and we determine when these loops
were formed by comparing the analytic results with those
of our computations.
The peak frequency must originate from the redshifted
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computations, we found out that the best approximation
to the peak frequency is given by

fpeak =
2

3frαt0

(

2 +
3frαc2

ΓGµ

)10/9

, (30)

which is plotted with a short dashed green line in Fig. 4.
This means that the peak region is due to loops of gen-
eration g ∼ 10/3, i.e. of loops born just before the third
generation loops. We have changed the numerical factor
in the parenthesis of Eqs. (29), (30) from 1 to 2, so to
achieve a perfect fit. In any case, this is a minor cor-
rection (less than 3%) which only affects networks with
ΓGµ/c2 > α.

2. Varying α

The effects of varying α in the large/small loop re-
gions are the inverse of those seen when varying Gµ/c2.
In Fig. 5 we present the GW spectra for cosmic string
networks with the fiducial values of Gµ/c2, n∗, q and p
for various values of α.
In the large loop regime (blue thick lines), as α de-

creases the most prominent feature is a decrease of the
amplitude of the overall spectrum. This decrease is

↵
loop
size

(relative to  
horizon)
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FIG. 1: The GW energy density per logarithmic frequency
interval Ωgw(f)h2 of a cosmic string network with Gµ/c2 =
10−7, α = 10−3 and n∗ = 1. The black (solid) line is the full
spectrum from the network due to loops formed in both radi-
ation and matter eras, whereas the red (dashed) line is that
from the radiation-dominated era and the blue (dot-dashed)
line is from the matter-dominated era. The grey shaded area
shows the frequency window probed with the highest sensi-
tivity by PTA experiments with duration between 5 and 10
years.

D. Intercommutation probability

Whenever two field theory cosmic strings collide they
exchange partners with an intercommutation probability
p = 1 [70]. This is not necessarily the case for cosmic su-
perstrings however, which intercommute with a reduced
intercommutation probability p < 1. This can be at-
tributed to the extra dimensions in which cosmic super-
strings are moving, with a successful intercommutation
requiring their collision in all dimensions and not just in
the three spatial dimensions visible to us. If p < 1 then
the scaling density of long strings is increased in order
to increase the number of intersections per unit time and
hence allow the network to lose the requisite amount of
energy necessary to maintain scaling. This will increase
the number of loops and hence will increase the ampli-
tude of the SGWB by a uniform scaling. There is, how-
ever, some controversy as to the exact dependence on p.
Jones, Stoica and Tye [19], argued that the self-similar
length scale, L, of the cosmic string network should scale
as L ∝ pt, which would mean that ρ∞ ∝ L−2 ∝ p−2.
In that case, even a small decrease in p would lead to a
dramatic increase in the amplitude of the SGWB. How-
ever, in such a case the inter-string distance ds, due to
the higher string density, is smaller than the length scale
of the network L, whereas in the one-scale model L ∼ ds,
suggesting that this argument needs to be modified.
Sakellariadou [83] has performed simulations of cosmic

superstring networks in Minkowski spacetime which sug-
gest that L ∝ p1/2t, implying that ρ∞ ∝ p−1. It was
suggested the discrepancy with the results of Jones et
al. stems from the small-scale structure of cosmic stings,

which ensures more intersection points when two strings
collide, and therefore there are more chances for success-
ful loop production.
There are two techniques used to model the dynam-

ics of strings in the Nambu-Goto approximation: one
is the Minkowski spacetime approach used in [83]; the
other is to model the expansion of the Universe. The
results of such simulations are reported by Avgoustidis
and Shellard in [84, 85]. They find that when p ≤ 0.1
then ρ∞ ∝ p−0.6, whereas for 0.1 < p ≤ 1.0 they find
ρ∞ ∝ p−1. They also suggest that small-scale structure
is responsible for the difference from the ρ∞ ∝ p−2 scal-
ing law and they propose a simple two-scale model which
describes quite accurately their simulation results. The
difference in the scaling laws of [83] and [85] has to do
with fitting model parameters to results of fundamen-
tally different simulations, so the exact reasons for this
discrepancy are not easy to trace.
In this work we will not make a judgement on the pre-

cise dependence of the scaling density of infinite strings
as a function of p except that it can be modeled by a
power law

A(p) =
A(1)

pk
, (25)

where k is the model parameter and A(1) = 52 and
A(1) = 31 in the radiation and matter eras respectively.
The results of [83] suggest that k = 1, whereas those
of [84, 85] suggest k = 0.6 for p ≤ 0.1 and k = 1
for 0.1 < p ≤ 1.0. The consequence of this assump-
tion is that the amplitude of the SWGB will scale as
Ωgw(f) ∝ p−k independent of f .

III. CHARACTERISTICS OF COSMIC STRING
INDUCED SPECTRA

A. Low frequency cut-off due to newborn large
loops.

As we mentioned in Sec. II B, each cosmic string loop
emits GWs into an ensemble of harmonics defined by
fn = 2nc/ℓ. This means that there is a low frequency
cut-off on the GWs that a cosmic string network emits,
defined by the first emission mode of the largest loops
present. The largest loops are those created at the
present time t0 and have length ℓ0 = frαdH(t0), with
a corresponding low frequency cut-off f0 ∝ 1/αt0. The
redshifted frequencies of the GWs emitted by loops pre-
viously born will always be higher than f0 in both the
radiation- and matter-dominated eras. For example, in
the radiation era the frequency of the first emission mode
of a loop formed at time t1 redshifted to the present is

f1 ∝ t1/6eq /α(t1/21 t2/30 ) > f0, where teq ≈ 25, 000 yrs is the
time of radiation-matter equality. The same calculation

in the matter era gives f1 ∝ 1/α(t1/31 t2/30 ), which is also
greater than f0. To demonstrate the strength of this in-
equality, in the matter era, the GWs of the first emission
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FIG. 1: The GW energy density per logarithmic frequency
interval Ωgw(f)h2 of a cosmic string network with Gµ/c2 =
10−7, α = 10−3 and n∗ = 1. The black (solid) line is the full
spectrum from the network due to loops formed in both radi-
ation and matter eras, whereas the red (dashed) line is that
from the radiation-dominated era and the blue (dot-dashed)
line is from the matter-dominated era. The grey shaded area
shows the frequency window probed with the highest sensi-
tivity by PTA experiments with duration between 5 and 10
years.

D. Intercommutation probability

Whenever two field theory cosmic strings collide they
exchange partners with an intercommutation probability
p = 1 [70]. This is not necessarily the case for cosmic su-
perstrings however, which intercommute with a reduced
intercommutation probability p < 1. This can be at-
tributed to the extra dimensions in which cosmic super-
strings are moving, with a successful intercommutation
requiring their collision in all dimensions and not just in
the three spatial dimensions visible to us. If p < 1 then
the scaling density of long strings is increased in order
to increase the number of intersections per unit time and
hence allow the network to lose the requisite amount of
energy necessary to maintain scaling. This will increase
the number of loops and hence will increase the ampli-
tude of the SGWB by a uniform scaling. There is, how-
ever, some controversy as to the exact dependence on p.
Jones, Stoica and Tye [19], argued that the self-similar
length scale, L, of the cosmic string network should scale
as L ∝ pt, which would mean that ρ∞ ∝ L−2 ∝ p−2.
In that case, even a small decrease in p would lead to a
dramatic increase in the amplitude of the SGWB. How-
ever, in such a case the inter-string distance ds, due to
the higher string density, is smaller than the length scale
of the network L, whereas in the one-scale model L ∼ ds,
suggesting that this argument needs to be modified.
Sakellariadou [83] has performed simulations of cosmic

superstring networks in Minkowski spacetime which sug-
gest that L ∝ p1/2t, implying that ρ∞ ∝ p−1. It was
suggested the discrepancy with the results of Jones et
al. stems from the small-scale structure of cosmic stings,

which ensures more intersection points when two strings
collide, and therefore there are more chances for success-
ful loop production.
There are two techniques used to model the dynam-

ics of strings in the Nambu-Goto approximation: one
is the Minkowski spacetime approach used in [83]; the
other is to model the expansion of the Universe. The
results of such simulations are reported by Avgoustidis
and Shellard in [84, 85]. They find that when p ≤ 0.1
then ρ∞ ∝ p−0.6, whereas for 0.1 < p ≤ 1.0 they find
ρ∞ ∝ p−1. They also suggest that small-scale structure
is responsible for the difference from the ρ∞ ∝ p−2 scal-
ing law and they propose a simple two-scale model which
describes quite accurately their simulation results. The
difference in the scaling laws of [83] and [85] has to do
with fitting model parameters to results of fundamen-
tally different simulations, so the exact reasons for this
discrepancy are not easy to trace.
In this work we will not make a judgement on the pre-

cise dependence of the scaling density of infinite strings
as a function of p except that it can be modeled by a
power law

A(p) =
A(1)

pk
, (25)

where k is the model parameter and A(1) = 52 and
A(1) = 31 in the radiation and matter eras respectively.
The results of [83] suggest that k = 1, whereas those
of [84, 85] suggest k = 0.6 for p ≤ 0.1 and k = 1
for 0.1 < p ≤ 1.0. The consequence of this assump-
tion is that the amplitude of the SWGB will scale as
Ωgw(f) ∝ p−k independent of f .

III. CHARACTERISTICS OF COSMIC STRING
INDUCED SPECTRA

A. Low frequency cut-off due to newborn large
loops.

As we mentioned in Sec. II B, each cosmic string loop
emits GWs into an ensemble of harmonics defined by
fn = 2nc/ℓ. This means that there is a low frequency
cut-off on the GWs that a cosmic string network emits,
defined by the first emission mode of the largest loops
present. The largest loops are those created at the
present time t0 and have length ℓ0 = frαdH(t0), with
a corresponding low frequency cut-off f0 ∝ 1/αt0. The
redshifted frequencies of the GWs emitted by loops pre-
viously born will always be higher than f0 in both the
radiation- and matter-dominated eras. For example, in
the radiation era the frequency of the first emission mode
of a loop formed at time t1 redshifted to the present is

f1 ∝ t1/6eq /α(t1/21 t2/30 ) > f0, where teq ≈ 25, 000 yrs is the
time of radiation-matter equality. The same calculation

in the matter era gives f1 ∝ 1/α(t1/31 t2/30 ), which is also
greater than f0. To demonstrate the strength of this in-
equality, in the matter era, the GWs of the first emission
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FIG. 1: The GW energy density per logarithmic frequency
interval Ωgw(f)h2 of a cosmic string network with Gµ/c2 =
10−7, α = 10−3 and n∗ = 1. The black (solid) line is the full
spectrum from the network due to loops formed in both radi-
ation and matter eras, whereas the red (dashed) line is that
from the radiation-dominated era and the blue (dot-dashed)
line is from the matter-dominated era. The grey shaded area
shows the frequency window probed with the highest sensi-
tivity by PTA experiments with duration between 5 and 10
years.

D. Intercommutation probability

Whenever two field theory cosmic strings collide they
exchange partners with an intercommutation probability
p = 1 [70]. This is not necessarily the case for cosmic su-
perstrings however, which intercommute with a reduced
intercommutation probability p < 1. This can be at-
tributed to the extra dimensions in which cosmic super-
strings are moving, with a successful intercommutation
requiring their collision in all dimensions and not just in
the three spatial dimensions visible to us. If p < 1 then
the scaling density of long strings is increased in order
to increase the number of intersections per unit time and
hence allow the network to lose the requisite amount of
energy necessary to maintain scaling. This will increase
the number of loops and hence will increase the ampli-
tude of the SGWB by a uniform scaling. There is, how-
ever, some controversy as to the exact dependence on p.
Jones, Stoica and Tye [19], argued that the self-similar
length scale, L, of the cosmic string network should scale
as L ∝ pt, which would mean that ρ∞ ∝ L−2 ∝ p−2.
In that case, even a small decrease in p would lead to a
dramatic increase in the amplitude of the SGWB. How-
ever, in such a case the inter-string distance ds, due to
the higher string density, is smaller than the length scale
of the network L, whereas in the one-scale model L ∼ ds,
suggesting that this argument needs to be modified.
Sakellariadou [83] has performed simulations of cosmic

superstring networks in Minkowski spacetime which sug-
gest that L ∝ p1/2t, implying that ρ∞ ∝ p−1. It was
suggested the discrepancy with the results of Jones et
al. stems from the small-scale structure of cosmic stings,

which ensures more intersection points when two strings
collide, and therefore there are more chances for success-
ful loop production.
There are two techniques used to model the dynam-

ics of strings in the Nambu-Goto approximation: one
is the Minkowski spacetime approach used in [83]; the
other is to model the expansion of the Universe. The
results of such simulations are reported by Avgoustidis
and Shellard in [84, 85]. They find that when p ≤ 0.1
then ρ∞ ∝ p−0.6, whereas for 0.1 < p ≤ 1.0 they find
ρ∞ ∝ p−1. They also suggest that small-scale structure
is responsible for the difference from the ρ∞ ∝ p−2 scal-
ing law and they propose a simple two-scale model which
describes quite accurately their simulation results. The
difference in the scaling laws of [83] and [85] has to do
with fitting model parameters to results of fundamen-
tally different simulations, so the exact reasons for this
discrepancy are not easy to trace.
In this work we will not make a judgement on the pre-

cise dependence of the scaling density of infinite strings
as a function of p except that it can be modeled by a
power law

A(p) =
A(1)

pk
, (25)

where k is the model parameter and A(1) = 52 and
A(1) = 31 in the radiation and matter eras respectively.
The results of [83] suggest that k = 1, whereas those
of [84, 85] suggest k = 0.6 for p ≤ 0.1 and k = 1
for 0.1 < p ≤ 1.0. The consequence of this assump-
tion is that the amplitude of the SWGB will scale as
Ωgw(f) ∝ p−k independent of f .

III. CHARACTERISTICS OF COSMIC STRING
INDUCED SPECTRA

A. Low frequency cut-off due to newborn large
loops.

As we mentioned in Sec. II B, each cosmic string loop
emits GWs into an ensemble of harmonics defined by
fn = 2nc/ℓ. This means that there is a low frequency
cut-off on the GWs that a cosmic string network emits,
defined by the first emission mode of the largest loops
present. The largest loops are those created at the
present time t0 and have length ℓ0 = frαdH(t0), with
a corresponding low frequency cut-off f0 ∝ 1/αt0. The
redshifted frequencies of the GWs emitted by loops pre-
viously born will always be higher than f0 in both the
radiation- and matter-dominated eras. For example, in
the radiation era the frequency of the first emission mode
of a loop formed at time t1 redshifted to the present is

f1 ∝ t1/6eq /α(t1/21 t2/30 ) > f0, where teq ≈ 25, 000 yrs is the
time of radiation-matter equality. The same calculation

in the matter era gives f1 ∝ 1/α(t1/31 t2/30 ), which is also
greater than f0. To demonstrate the strength of this in-
equality, in the matter era, the GWs of the first emission
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Figure 3. Big panel: Temperature angular power spectrum of scenarios combining inflation +
SOSF, with di↵erent contributions from SOSF (top curves). Also shown are the signals from SOSF
alone (lower curves). Small panels: Zoom on the first acoustic peak (left), and 2nd and 3rd acoustic
peaks (right) for the models shown in the big panel. The data points and errors are from the Planck
data. The di↵erent values of f10 correspond to the attempt to fit the BICEP2 data with only the
SOSF B-mode signal, see Fig. 4.

data. One could expect a slightly di↵erent upper bound for f10 for the large-N SOSF case

due to the di↵erent spectra, and being generous we will allow for bigger values than 0.055.

But as we shall see later, the BICEP2 data actually decrease the upper bound of f10 for

the large-N SOSF well below the 0.055 limit for O(4)-global textures. For the time being

we assume f10 = 0.055 as a reference value.

In Fig. 3 we show the temperature power spectrum from the Planck data. We plot

the Planck best-fit in black and the Planck best-fit for di↵erent fractional contribution

from the SOSF in di↵erent colors as indicated in the figure. Zooming into the first or the

second and third acoustic peaks (lower panels), we see that a contribution from SOSF,

when normalized such that the low-` Sachs-Wolfe plateau remains unchanged, reduces the
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Figure 3. Big panel: Temperature angular power spectrum of scenarios combining inflation +
SOSF, with di↵erent contributions from SOSF (top curves). Also shown are the signals from SOSF
alone (lower curves). Small panels: Zoom on the first acoustic peak (left), and 2nd and 3rd acoustic
peaks (right) for the models shown in the big panel. The data points and errors are from the Planck
data. The di↵erent values of f10 correspond to the attempt to fit the BICEP2 data with only the
SOSF B-mode signal, see Fig. 4.
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Figure 2. SOSF B-mode angular power for f10 = 0.055 including lensing (green dashed line),
which is the sum of the SOSF B-mode signal without lensing (blue dotted line) plus the lensing
E-modes (gray dashed line). The analogous B-mode angular power from inflation for r = 0.2 with
lensing is also shown (red continuous line); this is the sum of the inflationary signal without lensing
(pink dotted line) and the lensing E-modes.

butions, both in the case of inflation and SOSF. The shape of the SOSF + inflationary

scalar B-mode spectrum shown in (green, dashed) is clearly very di↵erent from the pure

inflationary tensor + scalar spectrum (solid, red). Especially, the ‘blue’ SOSF spectrum

⇠ `2 does not show the characteristic ‘plateau’ at 70 . ` . 180 which has been measured

by BICEP2, and is well reproduced by the inflationary scenario.

Let us now define the fractional contribution of the SOSF (and of cosmic defects in

general) to the temperature anisotropies at multipole ` = 10 as

f10 ⌘
CTT
10

��
SOSF

CTT
10

��
obs

,

where CTT
`

��
x
are the temperature angular power spectra from x = SOSF and x= obs

the spectrum observed by Planck (modeled by an inflationary signal). The analysis of the

Planck collaboration indicates that f10 . 0.015, 0.03, 0.045 for Nambu-Goto, Abelian-Higgs

and semi-local strings, respectively, and f10 . 0.055 for O(4)-global textures. Unfortu-

nately, there are no upper bounds set for f10 for the large-N limit of SOSF’s, neither from

Planck nor from the successive series of WMAP 1-, 3-, 5-, 7 and 9-year analysis. However,

the O(4)-global textures studied by Planck already capture well the large-N limit of SOSF,

since with temperature anisotropy spectra normalized at a given multipole (say ` = 10),

their B- power spectra only di↵er by a few %. Therefore, it should su�ce to take the upper

bound f10 . 0.055 from O(4)-global textures as an approximate upper bound f10 for SOSF,

and significantly bigger values of f10 are probably ruled out by the Planck temperature
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Figure 1. B-mode angular power from SOSF for f10 = 0.055 without lensing contribution (blue
continuous line), which is the sum of the vector (red dashed line) and tensor (green dashed line)
contributions. The B-mode angular power from inflation for r = 0.2 also without lensing is shown
(purple continuous line) for comparison.

and from SOSF assuming a fractional contribution f10 = 0.055 (blue continuous). The

first noticeable feature is that the inflationary curve is peaked at ` ' 90, whereas the

SOSF one is peaked at roughly the double, ` ' 185. Furthermore, the inflationary B-

modes show oscillations at ` & 200, whereas those from SOSF do not. We could also note

the di↵erence in the very low-` (` . 15) tail of the B-power spectra due to reionization.

However, since BICEP2 has not measured these multipoles, we ignore this di↵erence here,

and when plotting B-mode power spectra we start from ` & 10. We finally remark that

the inflationary B-spectrum comes only from tensors, while to the SOSF B-signal, both

tensor and vector perturbations contribute, as indicated by the dashed lines in the figure

(red and green dashed lines for the vectors and for the tensors respectively in Fig. 1).

Vector perturbations create even a bigger signal than tensors for all the relevant scales

outside the small interval ` 2 [15, 58]. The low multipole data points of BICEP2 are at

` ⇠ 45, 74, 109 and 144 (central values), so if the BICEP2 signal was attributed to SOSF

only, the amplitudes at multipoles ` ⇠ 74, 109 and 144 would be dominated by the vector

contribution, whereas at ` ⇠ 45 there would be a mix from tensors and vectors. Therefore,

a first conclusion from this analysis is that if the BICEP2 signal was due (and only due)

to SOSF, this would not imply a very strong detection of GW. It would instead represent

mainly a detection of vector perturbations (although in SOSF models generically both

vector and tensor modes contribute). Anticipating our results, we will see below that, in

reality, only a very small fraction of the BICEP2 signal can be due to SOSF, and therefore

these conclusions do not hold.

In Fig. 2 we decompose the total B-power spectra into primordial plus lensing contri-
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