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A unified approach to GW data analysis

• To detect a signal you need a model for the signal and a model for the noise 

• The noise model defines the likelihood function 

• The signal model defines priors on the wave amplitude in time/frequency



Prior, Likelihood, Posterior Redux

d ! data h ! signal in the detector n ! noise in the detector

d = h+ n

Posterior distribution for the data p(d|h,n) = �(h+ n� d)

Prior distributions for the signal and noise models p(h), p(n)

Example:   Correlated Gaussian Noise p(n1, n2, . . . , nN ) =
1�

det(2�C)
e�

1
2 niC

�1
ij nj

Noise Correlation Matrix Cij = E[ni nj ] (Uncorrelated Noise has                      )Cij = �ij �2
i



Prior, Likelihood, Posterior Redux

p(h,n|d)p(d) = p(d|h,n)p(n)p(h)Using the Identity

p(h|d) =
Z

p(d|h,n)p(n)p(h)
p(d)

dn =
p(d|h)p(h)

p(d)
Posterior for signal

Example:  Correlated 
Gaussian Noise p(d|h) = 1p

det(2⇡C)
e�

1
2 (d�h)† C�1(d�h)

Likelihood p(d|h) = p(n = d� h) Likelihood = Noise Model 



Gravitational wave signal types
Well modeled - e.g. binary inspiral and merger

Poorly modeled - e.g. core collapse supernovae Stochastic- e.g.  phase transition in early universe

p(h)



Gravitational wave signal models

p(h) = �(h� h(~�))p(~�)Template based

Burst signals

Stochastic signals

p(h) = �(h�
X

)p( )

p(h) =
1p

det(2⇡Sh)
e�

1
2 (h

†S�1
h h) p(Sh)



Basic Noise Model: Colored, Stationary & Gaussian

If the noise is stationary, then the noise correlation matrix C only depends 
on the time difference. Implies that C is diagonal in the Fourier domain.

(a|b) = 2

Z 1

0

ã(f)b̃⇤(f) + ã⇤(f)b̃(f)

Sn(f)
df E[ñ(f)ñ⇤(f 0)] =

1

2
�(f � f 0)Sn(f)

SNR2 = 4

Z 1

0

|h̃(f)|2

Sn(f)
df

p(d|h) = 1p
det(2⇡C)

e�
1
2 (d�h)†C�1(d�h)

log p(d|h) = �1

2

(d� h|d� h)� 1

2

Z 1

0

T
obs

log[T
obs

⇡Sn(f)] df



Multiple Detectors: Uncorrelated, Colored, Stationary & Gaussian Noise

p(d|h) / e�
1
2 (d�h|d�h)

(a|b) = 2
NX

I=1

Z 1

0

ãI(f)b̃⇤I(f) + ã⇤I(f)b̃I(f)

Sn,I(f)
df



Stochastic Signals

We are not interested in the value of each GW signal sample         . Want to infer the power spectrum h̃(f) Sh(f)

Marginalize over h:    p(Sh|d) =
Z

p(d|h)p(h)
p(d)

dh =
p(d|Sh)p(Sh)

p(d)

p(h) =
1p

det(2⇡Sh)
e�

1
2 (h

†S�1
h h) p(Sh)



Stochastic Signals

The integration over h is easy as it just involves Gaussians    [Cornish & Romano, PRD 2013]  

p(d|Sh) / e�
1
2 (d|d)S

Where   

and    SIJ(f) = Sn,I(f) �IJ + Sh(f) �IJ(f)

(a|b)S = 2
X

I,J

Z 1

0

⇣
ãI(f)b̃

⇤
J(f) + ã⇤I(f)b̃J(f)

⌘
S�1
IJ (f) df



Stochastic Signals

SIJ(f) = Sn,I(f) �IJ + Sh(f) �IJ(f)

The quantity               is a geometrical factor that encodes the response of the detectors. In 
the long wavelength limit it is called the overlap reduction function     

�IJ(f)

�
IJ

(f) =
1

4⇡

Z
(F+

I

(n̂)F+
J

(n̂) + F+
I

(n̂)F+
J

(n̂))e2⇡if(~xI�~xJ )·n̂d⌦
n̂
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Stochastic Signals

Stochastic signal detection is usually described in terms of cross correlation 

dI = nI + hI dJ = nJ + hJ

hdIdJi = hnInJi+ hnIhJi+ hhInJi+ hhIhJi
0 0 0

In the weak signal limit Sh(f) ⌧ Sn(f)

log p(d|Sh) = const.�
X

I 6=J

Z 1

0

⇣
˜dI(f) ˜d⇤J(f) +

˜d⇤I(f)
˜dJ(f)

⌘
�IJ(f)Sh(f)

Sn,I(f)Sn,J(f)
df

Optimal cross correlation statistic 
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Things that go bump in the night

Examples of poorly understood signals
Can’t be used as templates  

Core-collapse supernovae

Collapsars

Dynamical capture NS mergers

Ott et al. 2011 East et al. 2016



Time-Frequency Scalograms of LIGO data

Things that go bump in the night



Template based analysis

p(h) = �(h� h(~�))p(~�)These have the strongest priors and hence 
yield the most sensitive searches

Techniques such as MCMC and Nested Sampling can be used to map out the full posterior distribution, 
allowing us to compute mean, median and mode and credible intervals. More on that in a bit.

But first we will look at using Maximum Likelihood (ML) and Maximum a Posteriori (MAP) estimators

Marginalizing over the individual 
signal samples yields the posterior 
on the model parameters

Likelihood

Evidence

Prior

p(~�|d) =
Z

p(d|h)p(h)
p(d)

dh =
p(d|~�)p(~�)

p(d)



Expansions about Maximum Likelihood and Maximum a Posteriori Points

Both the likelihood and the posterior can be expanded about (local) maxima. Usually done in terms of the logs

ML @i log p(d|~�) = 0

@i log p(~�|d) = @i log p(d|~�) + @i log p(~�) = 0MAP

Fisher information matrix

“Augmented” Fisher information matrix Kij = �@i@j log p(~�|d)|MAP

�ij = �E[@i@j log p(d|~�)|ML]



Expansions about Maximum Likelihood and Maximum a Posteriori Points

The two distributions are very similar when the likelihood is more informative than the prior

p(d|~�) = 1q
det(2⇡��1)

e�
1
2�ij(�

i
ML��i)(�j

ML��j)

p(~�|d) = 1p
det(2⇡K�1)

e�
1
2Kij(�

i
MAP��i)(�j

MAP��j)



Maximum Likelihood for Gaussian Noise
Typically the noise spectrum is assumed to be know and the normalization constant is ignored

log p(d|~�) = �1

2

(d� h(~�)|d� h(~�)) + const.

Expanding about the true signal: h(~�) = hT + @ih��i + . . .

log p(d|~�) = const.+ (n|@ih)��i � 1

2

(@ih|@jh)��i
��j

+ . . .

@i log p(d|~�) = 0 (@ih|@jh)��j = (n|@ih))

�ij = (@ih|@jh)�ij = �E[@i@j log p(d|~�)|ML] )

Note, the first term is just � 1
2 times �2

= (d� h|d� h)



Maximum Likelihood for Gaussian Noise

�ij = (@ih|@jh)(@ih|@jh)��j = (n|@ih)

) ��i = (n|@jh)�ij

Cij = E[��i��j ] = E[(n|@kh)(n|@jh)]� ik�jlNoise covariance matrix

= �kj�
ik�jl = �ij

To leading order in the SNR, the noise covariance matrix is given by the inverse of the Fisher matrix

Cij = �ij



Simple Example
n  =  stationary, white Gaussian noise with unit variance (can work in time domain)

h(t) = A cos(2�ft + �) {lnA, ln f,�}Use parameters

SNR2 =
� T

0
h(t)2dt =

1
2

A2 T

Cij � 1
SNR2

�

�����

1 6
(�T )2

3
(�T )

6
(�T )2

12
(�T )2 � 6

(�T )

3
(�T ) � 6

(�T ) 4

�

�����
�ij = SNR2

�

�����

1 1
2 0

1
2

(�T )2

3
�T
2

0 �T
2 1

�

�����

(� = 2�f)

(1)  Parameter errors scale as 1/SNR

(2)  Errors in       and    are inflated due to correlationln f �

(3)  Error in       is tiny compared to the other parametersln f



{lnA, ln f,�}

Eigenvectors, Eigenvalues of Correlation Matrix

�T � 1In the limit of many cycles

Parameters

3
(�T )2 SNR2

4
SNR2

1
SNR2

{0, 1, 0}

{1, 0, 0}

Eigenvalues Eigenvectors
⇢
0,

�1p
37

,
6p
37

�



Simple Example

�A

A
=

1
SNR

�� =
2

SNR
�f

f
=
�

12
SNR

1
(�T )

� �f �
�
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Bayesian Parameter Estimation

Reverend Thomas Bayes Sir Ronald Fisher

“there is a valid defense for using non-Bayesian methods, namely incompetence.”  - Skilling



 Bayesian Inference

• Bayesian Probability Theory

• Bayesian Learning

• Model Selection (theory)

• Bayesian versus Frequentist

• Markov Chain Monte Carlo

• Return to our simple example

• Model Selection (implementation)



Bayesian Probability Theory
Degree of belief interpretation of probability - the natural expression of the 
scientific method (as opposed to the more binary view of Karl Popper that 
heavily influenced Fisher and other frequentists)

Initial Understanding New Observations Updated Understanding� �

p(�x) p(d|�x) p(�x|d)

            Prior        Likelihood            Posterior� �

p(�x|d) =
p(�x)p(d|�x)

p(d)Bayes’  Theorem

Normalization factor is the marginal likelihood or evidence p(d) =
�

p(�x)p(d|�x) d�x



Bayesian Probability Theory

The posterior distribution fully characterizes the model.

E.g.  expectation values E[xi] =
�

xi p(�x|d) d�x

E.g.  single parameter 
probability distributions p(xi|d) =

�
p(�x|d) dx1dx2 . . . dxi�1dxi+1 . . . dxD

E.g.  quantile regions, such as 
90% 

0.05 =
� x1

p(x|d) dx

0.9 =
� x2

x1

p(x|d) dx



Bayesian Learning

“Today’s posterior is tomorrow’s prior” -  Lindley

“The (Bayesian) theory of probabilities is basically just 
common sense reduced to calculus’’ - Laplace

The amount we learn from the data can be measured in bits, 
and can be computed in terms of the Kullback–Leibler 
divergence

DKL =
�

p(�x|d) log2

�
p(�x|d)
p(�x)

�
d�x [bits]



Bayesian Model Selection

Odds Ratio:

More on how we compute the Bayes Factor later...

Probability of Model M: p(M |d) � p(M)p(d|M)

Prior Probability of M Evidence for M

Oij =
p(Mi|d)
p(Mj |d)

=
p(Mi)
p(Mj)

p(d|Mi)
p(d|Mj)

= Prior Odds Ratio� Bayes Factor



Bayesian Machinery:  Markov Chain Monte Carlo

p(�x|d) =
p(�x)p(d|�x)

p(d)Bayes’  Theorem

Marginal likelihood or evidence p(d) =
�

p(�x)p(d|�x) d�x

We know how to compute the prior and the likelihood. The difficulty lies in computing the evidence.

The MCMC technique, introduced by Metropolis and developed by Hastings, allows us to simulated samples 
from the posterior distribution directly, without having to compute the evidence.

It is possible to compute the evidence using augmented MCMC techniques - more on the later.  Another 
powerful technique for computing the evidence and the posterior distributions is Nested Sampling



Bayesian Inference

Prior Likelihood

Posterior Evidence

MCMC

p(h|M)

p(h|d,M) p(d|M)

p(d|h)



Markov Chain Monte Carlo

⇥x

⇥y

H

Transition Probability
(Metropolis-Hastings)

Prior Proposal

Likelihood

Always go up,
Sometime come down

H = min
�

1,
p(�y)p(d|�y)q(�x|�y)
p(�x)p(d|�x)q(�y|�x)

�

Yields PDF p(�x|d) for parameters
�x given data d



Markov Chain Monte Carlo
The choice of jump proposal              is key to convergence 

- Burn-in (finding the dominant modes of the posterior)

- Mixing (exploring the dominant modes of the posterior)

Convergence to the target distribution has two facets:

q(�y|�x)

The perfect proposal distribution is the posterior distribution itself,                          , since thenq(�y|�x) = p(�y|d)

H = min
�

1,
p(�y)p(d|�y)p(�x|d)
p(�x)p(d|�x)p(�y|d)

�

= 1

But if we knew the posterior distribution in advance there would be no need for the 
MCMC procedure! Instead we seek ways to approximate the posterior.



 

My favorite MCMC Recipe

Ingredients:

Fisher matrix proposals

Differential evolution proposals 

Parallel tempering 

Scouting proposals

Directions:
Mix all the proposals together. Check consistency by 
recovering the prior and diagonal PP plots.  Results are 
ready when distributions are stationary. 



Proposal Distributions

Propose jumps along eigendirections of K, scaled by eigenvalues

Quadratic approximation to the posterior using the augmented Fisher Information Matrix

Use a Non-Markovian Pilot search (hill climbers, simulated annealing, genetic algorithms etc) to crudely map the posterior/
likelihood and use this as a proposal distribution for a Markovian follow-up [Littenberg & Cornish, PRD 80, 063007, (2009)]

Fisher matrix proposals

Scouting proposals

q(~y|~x) = 1p
det(2⇡K�1)

e

� 1
2Kij(x

i�y

i)(xj�y

j)



Proposal Distributions

[Braak (2005)]Differential evolution 



Parallel Tempering

Primary Mode

Secondary Mode

Pit of Despair

[Swendsen & Wang, 1986]

Ordinary MCMC techniques side-step 
the need to compute the evidence. 
PT uses multiple, coupled chains to 
improve mixing, and also allows the 
evidence to be computed.

⇡(~�|d)T = p(d|~�)1/T p(~�)

Explore tempered posterior

log p(d) =

Z 1

0
E[log p(d|~�)]� d�

Compute model evidence

(Here             )� = 1
T



Good solutions sink down ladder and get stored

Wide	exploration,	poor	“memory”

Limited	exploration,	good	“memory”

exchange	

Parallel Tempering

Inter-chain transition probability

H = min

 
1,

⇡(~�j+1|d)Tj⇡(~�j |d)Tj+1

⇡(~�j |d)Tj⇡(~�j+1|d)Tj+1

!



Simple Example: Redux
n  =  stationary, white Gaussian noise with unit variance 

h(t) = A cos(2�ft + �) {lnA, ln f,�}Parameters
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Simple Example: Redux
n  =  stationary, white Gaussian noise with unit variance 

h(t) = A cos(2�ft + �) {lnA, ln f,�}Parameters

(SNR = 7.07)
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Markov Chains
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Fisher vs MCMC
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Markov Chains

(SNR = 7.07)
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Simple Example: Extended
n  =  stationary, white Gaussian noise with unit variance 

Parametersh(t) = A cos(2�f(t� t0) + �) {A, f, �, t0}

Now we have a problem......

2�ft0 � 2�ft0 + �

� � � + �

h(t) � h(t)

� �ij singular



Markov Chains

(SNR = 7.07)
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Now with two detectors...
n  =  stationary, white Gaussian noise with unit variance 

Parametersh(t) = A cos(2�f(t� t0) + �) {A, f, �, t0}

t = 0

t = t0



Markov Chains
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Two detectors
Note 1: �ij = �(1)

ij + �(2)
ij

Non-Singular Singular

0

Note 2: Bayesian analysis can be done simultaneously or sequentially

Starting with a uniform prior and the data from detector (1)

K

(1)
ij = �(1)

ij � @i@j ln p(~x) = �(1)
ij

Now update the posterior using the the data from detector (2)

K

(2)
ij = �(2)

ij � @i@j ln p(~x) = �(2)
ij + �(1)

ij



One GW detector + EM Prior
Suppose we have the sky location from an EM counterpart

Simulate this as a simple Gaussian prior on t0

p(t0) =
1�

2��EM

e�(t0�tEM)2/2�2
EM

Now the augmented FIM is no-singular

Non-Singular Singular from prior

Kij = �ij +
1

�2
EM

�t0t0



One GW detector + EM Prior

Without EM Prior
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