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Gravitational Wave Telescopes
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Interferometer Design

Consideration 1 �T / hL for fgw <
c

L

Want L as large as possible up to L ⇠ c

103 Hz
= 300 km

Expensive!

Solution: folded arms

Consideration 2 � / ⌫0�T

Fluctuations in Laser frequency can masquerade as GW signal

Partial Solution: Highly stable lasers

Solution: Michelson topology - cancel laser frequency noise



Interferometer Design

Basic design The 4 km Fabry-Perot cavities effectively fold the arms

Can calculate the response using basic E&M, 
electric field transmission and reflection 
coefficients at each mirror. (See Maggiore’s text) 
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Single Fabry-Perot Cavity

Basic design |��FP| =
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Reflectivities are very close to unity 

fp = 42Hze.g. advanced LIGO F = 450

Note that increasing the Finesse improves the low frequency 
sensitivity (good), but lowers the pole frequency (bad)

Advanced LIGO gets around this problem by using signal recycling



Michelson Interferometer with coupled Fabry-Perot Cavities 
The actual LIGO design is much more complicated. 
FP cavities are coupled by a power recycling and 
signal recycling mirrors

There is a common mode and a differential mode
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L1 + L2

2
L� =

L1 � L2

2

Differential mode contains the GW signal
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s = signal recycling mirror

Advanced LIGO
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Transfer function

The gain from folding and recycling is now a complicated 
combination of terms. Comes out at a factor of  ~1,100

f� = 350 Hz



Signal recycling and response shaping
The cavity transfer function for the Michelson-Fabry-Perot topology with signal recycling allows us to 
shape the response and target particular signals by changing the distance to the signal recycling mirror 
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The pole frequency quoted on the last slide 
was for the zero detuned configuration



Sources of Noise

Fundamental noise

Facility noise



Fundamental (quantum) noise
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Shot noise: Digital camera, photons per pixel 
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Radiation pressure noise 

The test masses are essentially free (inertial) in 
the horizontal direction for frequencies above the 
pendulum frequency of the suspension

) x̃ = � F̃rad

4⇡2
f

2
M
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Fundamental (quantum) noise

The intensity of the laser light is frequency 
dependent due to the cavity response
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Standard Quantum Limit

SQL� x�p � ~ S
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The SQL is not a fundamental limit to GW detector sensitivity

1) Measure momentum change rather than 
position change (speedmeter)

2) The RP and Shot noise can be made to 
be correlated. Allows us to reshape 
uncertainty ellipse using squeezed light 
(Quantum no-demolition measurement)



Facility Noise

Facility noise



Seismic Noise
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Seismic Noise
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Thermal Noise

Thermal noise contributions



Thermal Noise
Fluctuation-dissipation theorem: PSD of fluctuations of a system in equilibrium at 
temperature T is determined by the dissipative terms that return the system to equilibrium
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For an anelastic spring with loss angle           Hooke’s law becomes
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Mirror Coating Thermal Noise

ST (f) =
kBT
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The resonant frequencies for the coatings are very high (tens of kHz), and the loss angle small (millionths)
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Suspension Thermal Noise

ST (f) =
kBT
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Pendulum mode

Violin modes

fpen = 9Hz

fv = 500, 1000, . . . Hz



Pendulum Suspension Thermal Noise
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Violin mode Thermal Noise
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For advanced LIGO, first harmonic
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Gravity Gradient Noise

This is why we need LISA!

ẍ = G

Z
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We can’t escape Newton



Real aLIGO noise spectra from O1

Suspension Thermal noise 
Violin modes



Real aLIGO noise spectra from O1

60 Hz power line and harmonics
Electronic noise



Real aLIGO noise spectra from O1/S6

Calibration lines

Calibration and the control 
system is a whole other topic…



Recall: Likelihood for Stationary Gaussian Noise

(a|b) = 2
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LIGO searches for binary inspired signals

Suppose that we have two hypotheses:          H1 : A signal with parameters ~� is present

H0 : No signal is present

⇤(~�) =
p(d|h(~�), H1)

p(d, H0)
Likelihood ratio:         For Gaussian noise:        ⇤(~�) = e�(d|h)+ 1

2 (h|h)



Frequentist Hypothesis Testing

p(Λ|H0)

ΛΛ∗

p(Λ|H1)

Set threshold       such that              favors hypothesis    �� � > �� H1

Λ

Type II error Type I error

Type 1 error - False Alarm

Type 1I error - False Dismissal

� �Detection Statistic H0 �Noise Hypothesis H1 �Noise + Signal Hypothesis



Neyman-Pearson Theorem

For a fixed false alarm rate, the false dismissal rate
is minimized by the likelihood ratio statistic

The likelihood ratio is maximized over the signal parameters. 

⇤(~�) =
p(d|h(~�), H1)

p(d, H0)

The rho statistic is often used in place of the likelihood ratio
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2⇢

2

@⇤(~�)
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The rho statistic and SNR

The signal-to-noise ratio 
(SNR) is defined:

SNR =
Expected value when signal present

RMS value when signal absent

=
E[�]�

E[�2
0]� E[�0]2

= (h|ĥ)

=
�

(h|h)

In practice, the detector noise is not 
perfectly Gaussian, and variants of the 
rho statistic are now used, notably the 
“new SNR” statistic, introduced by B. 
Allen Phys.Rev. D71 (2005) 062001
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Matched Filtering = Maximum Likelihood

Convolve the data with a filter (template) K: Y =
�

dt

�
du K(t� u)d(u)

Maximizing the SNR yields K̃(f) =
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Frequentist Detection Threshold 
For stationary, Gaussian noise the detection statistic     is Gaussian distributed.

p0(�) =
1�
2�

e��2/2For the null hypothesis we have

p1(�) =
1�
2�

e�(�2�SNR2)/2For the detection hypothesis we have

�

Setting a threshold of       gives the false alarm and false dismissal probabilities��
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1
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�
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�
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FAR =
P
FA

T
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LIGO/Virgo analyses do not use SNR thresholds, but rather use False Alarm Rate thresholds

e.g.   FAR = One in million years and an observation time of one year

PFA = 10�6 aka 4.9� ⇢⇤ = 4.8



Grid Based Searches
Goal is to lay out a grid in parameter space that is fine enough to catch 
any signal with some good fraction of the maximum matched filter SNR

The match measures the fractional loss in SNR in recovering a signal       

M(�x, �y) =
(h(�x)|h(�y))�

(h(�x)|h(�x))(h(�y)|h(�y))

with a template and defines a natural metric on parameter space:

(Owen Metric)gij =
(h,i|h,j)
(h|h)

� (h|h,i)(h|h,j)
(h|h)2where

Taylor expanding M(�x, �x + ��x) = 1� gij�xi�xj + . . .

Number of templates (for a hypercube lattice in D dimensions)

Cost grows geometrically with D for any lattice
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LIGO Style Grid Searches

Typically 2-3 dimensional, 1000’s points



Reducing the cost of a search
In most cases it is possible to analytically maximize over 3 or more parameters

Distance:

The unit normalized template     defines a reference distance D̄ĥ

Scaling this template to distance      givesD

h =
D̄

D
ĥ

The distance is then estimated from the data as

D =
D̄

(d|ĥ)



Reducing the cost of a search

Phase Offset:

Generate two templates                and h(� = 0) h(� = �/2)

Then (d|h)max � =
�

(d|h(0))2 + (d|h(�/2))2

Easy to see this in the Fourier domain.

d̃ = h̃0 ei�Suppose , then

(d|h(0)) = (h0|h0) cos �

(d|h(�/2)) = (h0|h0) sin�



Reducing the cost of a search

Time Offset:
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Fourier transform treats time as periodic - use this to our advantage
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Compute the inverse Fourier transform of the product of the Fourier transforms:

d(t) = h(t� t0)Then if the template and data differ by a time shift:

(d|h)max t = (d|h)(�t = t0)



Workflow for pyCBC search

Matched filtering is done 
per-detector (not coherent)

Template bank constructed

Detection statistic computed (“new SNR”)

Coincidence in time/mass enforced 
Data quality vetoes applied

Monte Carlo background to compute 
FAR vs new SNR



T

(Bandpass filtered, whitened, time domain)

Samples from the Syracuse Audio Study of Glitches

Things that go bump in the night



Contending with non-stationary, non-Gaussian noise

Non-stationary: 

Adiabatic drifts in the PSD - work with short data segments

Non-Gaussian: 

Glitches - vetoes and time-slides



Analysis of 16 days of data from September 2015

Divide by 16 
days to get FAR

“new SNR”
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BayesWave reconstruction of the signal
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GW150914

GW151226

LVT151012

GW170104

LIGO detections to-date



Triangulating the Source

Hanford



Triangulating the Source

Hanford + Livingston



Triangulating the Source

Hanford + Livingston + Virgo



GW170104

Parameter estimation





• Bayesian model selection 
• Three part model (signal, glitches, gaussian noise) 
• Trans-dimensional Markov Chain Monte Carlo 

• Wavelet decomposition  
• Glitch & GW modeled by wavelets  
• Number, amplitude, quality and TF location of wavelets varies

BayesWave

Continuous Morlet/Gabor Wavelets

Cornish & Littenberg 2015

Detection without templates



Lines and a drifting noise floor
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Time-Frequency Scalograms of LIGO data

Glitches

Model these too

X



Gravitational Waves

and model theseX



“Caedite eos. Novit enim Dominus qui sunt eius” Arnaud Amalric 
(Kill them all. For the Lord knoweth them that are His.)



Example from LIGO’s S5 science run



Reconstructing GW150914 with wavelets



Reconstructing GW170104 with wavelets



Match GR prediction

Inferred Signal
Predicted Signal

GW150914 GW170104



Astrophysical Inference

Would like to know merger rate to constrain 
population synthesis models. Even better, would 
like to know merger rate as a function of mass, 
spin, redshift etc

Many cool techniques being developed to do 
this using things like Gaussian processes

Only have time to discuss the total merger rate



Astrophysical Rate Limits

Expect binary mergers to be a Poisson process.  If the expected number of  events is    , 
then the probability of detecting k events is

p(k|�) = �ke��/k!

�

If the event rate is                               , and the observable 4-volume is  R [Mpc�3 year�1] V T [Mpc3 year]

� = R V T

The probability of observing zero events (k=0) is then

p(R) = V T e�R V T

p(0|�) = p(R) dR = e�R V TFollows from 

Even without a detection we can produce interesting astrophysical results such as bounds on the binary merger rate for NS-NS



Astrophysical Rate Limits

p(R) = V T e�R V T

The probability distribution is peaked at a rate of zero.  A 90% rate upper limit can be computed:

� R�

0
p(R)dR = 1� e�R�V T = 0.9

� R�V T = ln(0.1)

� R� =
2.3
V T
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Astrophysical Rate Limits

When a signal is detected the probability distribution for the rate is no longer peaked 
at zero. For example, with a single detection (k=1) we have

p(R) = R(V T )2 e�R V T

This distribution is peaked at

R =
1

V T

The 90% confidence interval now sets upper and lower limits on the merger rate.



Simulated NS-NS Merger Rate Constraints
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Week 3
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Simulated NS-NS Merger Rate Constraints



Week 4
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Simulated NS-NS Merger Rate Constraints



Week 5
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Simulated NS-NS Merger Rate Constraints
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Simulated NS-NS Merger Rate Constraints


