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ABSTRACT. Using a direct approach, we prove a 2-dimensional epiperimetric inequality for the
one-phase problem in the scalar and vectorial cases and for the double-phase problem. From
this we deduce, in dimension 2, the C*** regularity of the free-boundary in the scalar one-phase
and double-phase problems, and of the reduced free boundary in the vectorial case, without any
restriction on the sign of the component functions. Furthermore we show that in the vectorial
case each connected component of {|u| = 0} might have cusps, but they must be a finite number.
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1. INTRODUCTION

The epiperimetric inequality is a purely variational approach to the regularity of the free
boundaries and the minimal surfaces which gives an estimate on the rate of convergence of the
energy to its blow-up limit. In particular, it encodes the information on the rate of improvement
of flatness and the oscillation of the free boundary, which in turn give a C%* regularity theorem.
In this paper we prove an epiperimetric inequality for the Weiss monotonicity function related
to Bernoulli free boundary problem in dimension two. As a consequence we obtain the C'h®
regularity of the free boundary in the two dimensional case for the classical one-phase problem
in the scalar and vectorial cases, and the double-phase problem.

This is the first inequality of this type in the framework of the Bernoulli-type free-boundary
problems. The epiperimetric inequality was first introduced by Reifenberg [13] in the context of
minimal surfaces. The approach was then used by Weiss [14] to prove the regularity of the free
boundary for the classical obstacle problem and was extended to the case of the thin-obstacle
problem by Focardi-Spadaro [8] and Garofalo-Petrosyan-Garcia [9]. In all these papers the in-
equality is obtained by a contradiction argument. Our approach on the other hand is direct,
that is we construct an explicit competitor, whose energy is strictly smaller than the one of the
1-homogeneous extension of the boundary datum, thus giving the improved rate of convergence.
This is a powerful method, inspired by work of White [16] in the context of minimal surfaces,
which allows us to treat at once the scalar and vectorial one-phase problems as well as the
double-phase problem, both in the flat points and in the singularities.

The regularity of the scalar one-phase Bernoulli problem was first proved by Alt and Caffarelli
in [1], where it is shown that in dimension two the whole free boundary is locally a graph of a C'1:*
function, while in higher dimensions this holds only around the so called flat points. We often
refer to the Bernoulli problem as the Alt-Caffarelli free boundary problem. Here we prove the
two-dimensional result from [I] using the purely variational approach given by the epiperimetric
inequality. This approach provides an elementary self-contained proof, which does not invoke
tools from geometric measure theory or minimal surfaces.

The vectorial counterpart of the Bernoulli problem recently received a lot of attention. The
currently available regularity results are due to Caffarelli-Shahgholian-Yeressian, Kriventsov-Lin
and Mazzoleni-Terracini-Velichkov (see [5, 11, 12]). They rely on the so called improvement of
flatness and use some powerful geometric and measure theoretic tools as the boundary Harnack
principle for NTA domains. Although these results hold in any dimension, they all require
additional a priori assumptions on the signs of the components of the vector-valued minimizer,
while the regularity of the flat free boundaries in its full generality, when all the components are
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allowed to change sign, remains unaccessible due to the nature of the technical tools involved
in the proofs. The epiperimetric inequality allows to prove the complete regularity result in
dimension two without any assumption on the sign of the components.

The positivity assumption on one of the components is not only an important technical obstacle
for the regularity around the flat points, but also affects dramatically the qualitative behavior
of the free-boundaries. Indeed, when this assumption is removed, cuspidal singularities might
appear even in dimension two. This behavior is typical for the double-phase problem, where the
free boundary might be obtained as the union of the boundaries of two tangent C1* domains;
thus we dedicate a special attention to the double-phase problem and the related epiperimetric
inequality. Nevertheless, the description of the singularities of the vectorial solutions is even more
complicated, since there can also be cuspidal points on the boundary of a connected open set.
We give a complete description of the singular set in the vectorial case by reducing the problem,
via the epiperimetric inequality, to the classical obstacle problem and then applying the result of
Caffarelli-Riviere [4].

Finally we remark that our work is inspired by Weiss’ observation in the context of the obstacle
problem which states ”...it should however be possible to give a direct proof of the epiperimetric
inequality which would then also cover singular sets of intermediate dimension” (see [14]). Indeed,
in forthcoming work joint with Max Engelstein, we will extend our results to dimension higher
than 2 and use it to study some special singular points of the free-boundary.

1.1. Statements of the main Theorems. Let Q C R? be an open set and consider the following
three functionals:

(OP) Eop(u) := / Vu|? dz + |[{u > 0} N Q|, where u > 0 and u € H(Q);
Q

, where u € H*(Q) and

(DP) Epp(u) = / Vuldz + A [{u > 0} N Q| + A2 [{u < 0} NQ
Q
A1, A2 > 0, A1 # Ag;

(V) Ev(u) = /|Vu\2dx—|— {ul > 0} N Q| = Z/ Vuil?de + [{Ju] > 0} N |, where
Q —~ Jo

u€ HY(Q;R") and n > 1.
We say that
o u € HY(Q) is a minimizer of Eop in Q, if u > 0 and Eop(u) < Eop (@) for every @ € H(Q)
with |9 = ulaq, that is u — @ € HE(Q);
o u € HY(Q) is a minimizer of Epp in Q, if Epp(u) < Epp(a) for every 4 € H(Q) with
u— 10 € HYQ);
o u € HY(;R™) is a minimizer of &y in Q, if &y (u) < Ey(a) for every @ € H'(Q;R™) with
u— i € HH R,
Since many results and notions are common for minimizers of Eop, Epp and &y, from now on
we will often replace the indices OP, DP and V by 0. When J = V we will assume that the

arguments are R™-valued functions, where n > 1 is a fixed integer.
For r > 0, zo € R and u € H(B,(z0); R") we define the functional Wy by

1 1 _
Wo(u,r,x0) := rd/B - \Vu|? dz — i /aB Ju|? dHT L
(L0 r

The Weiss’ boundary-adjusted energy, associated to Eop, Epp and &y, is given by
1
WOP (u,r, xg) = Wo(u,r, 20) + ﬁ|{u > 0} N By (20)| (1.1)
1
WP (u,r, x0) = Wo(u,r, z) + ] ()\1 [{u >0} N By(z0)| + A2 |[{u <0} N Br(&“o)D (1.2)

1
WY (u,r, 20) = Wolu,r,z0) + ﬁ|{\u] > 0} N By(z0)| - (1.3)
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By a celebrated result of Weiss (see [15] for the scalar case and [5 12] for the vectorial case),
these functionals are monotone non-decreasing in r. In particular, there exists the density of u
at xg defined as

0Y(z0) := W (u,0,z0) = li_r}r(l) W5 (u, r, x0).
T

Thanks to results of Alt-Caffarelli and Alt-Caffarelli-Friedman (see [I,2]), later refined by Caffarelli-
Jerison-Kenig and Jerison-Savin (see [6, [I0]), we have that

(OP) if 2 < d < 4 and xg € d{u > 0}, then O97 () = %, where wy is the volume of the unit
ball in dimension d;
(DP) if 2 < d < 4, then 2 € O{u > 0} \ d{u < 0} implies OLF (29) = Al%,
zo € d{u < 0} \ d{u > 0} implies OPF (zq) = )\2%,
zo € d{u > 0} N d{u < 0} implies OPF (29) = (A, + )\2)%;
(V) if d = 2 and 2 € d{|u| > 0}, then either ©Y (z) = T or 0V (zo) = 7. In particular, if

20 € Oreq{|ul > 0}, then O () = g (see Subsection .

The epiperimetric inequality improves the monotonicity of W to a rate of convergence to the
density ©Y. Since W" has the scaling property

1
Wm(u,r, xo) = WD(ur, 1,0), where wu.(x)= —u(xg+rx),
r

we can suppose that zg = 0 and r = 1 and for the sake of simplicity we set W (u) := W5 (u, 1, zg).
For the one-phase problem in the scalar case we have the following result.

Theorem 1 (Scalar epiperimetric inequality for the one-phase problem). For every a > 0 there

is € > 0 such that if c € HY(0B1) is a non-negative function satisfying / c > «a, then there is
0By
a function h € H'(By) such that h = ¢ on OBy and

WOP(n) -5 < (1-e) (WOP(z) - ) | (1.4)
where z € H'(By) is the one-homogeneous extension of the trace of ¢ to Bj.
In the cases 0 = DP and O = V the functional W% (u, zg,r) behaves differently in points zg of
the free boundary with different densities. We distinguish two cases.
- The high density points zo, that is the points zg such that @2 (z9) = (A +)\2)g or ©) (xg) = .

For the minimizers of Fpp these are precisely the points of the double-phase boundary. In the
case of Fy there are several possibilities: the high density points can be isolated, double-phase
points or they might be the vertex of an entering cusp. In all these cases the epiperimetric
inequality holds at all scales.

- The points of low density, that is the points xg such that ©PF (zq) = Alg, ODF(z4) = )\gg

or OV (xg) = g In the case of Fpp, these are the points of the one-phase boundaries 9{u >

0} \ O{u < 0} et I{u < 0}\ 9{u > 0}. In the case of Fy, the points of low density are precisely
the points of the reduced free boundary 0,¢q{|u| > 0}. In these cases the epiperimetric inequality
holds only starting from a sufficiently small radius depending on the point z.

The precise statements are the following.
Theorem 2 (Scalar epiperimetric inequality for the double-phase problem). For every a > 0

there is € > 0 such that if c € H'(OB1) is a function satisfying / c™ > a and / c > a,
8B1 8Bl
then there is a function h € HY(By) such that h = ¢ on 0By and

WPP () — (A + Ag)g <(1-¢) (WDP(Z) — (M + AQ)g) : (1.5)
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where z € HY(By) is the one-homogeneous extension of ¢ to By.

Theorem 3 (Epiperimetric inequality for vector-valued functions). Let n > 1 and By C R2. For
every oo > 0 there is € > 0 such that

(i) ifc € HY(8B1;R™) and |{|c| > 0}NOB1| < 2mw—0o, then there is a function h € H'(By; R™)
such that h = ¢ on 0By and

Vipy— = _ Viey—TY .
W) =3 < -9 (W) - ) s (1.6)
(ii) if c € HY(OB;R™), then there is a function h € H'(By;R") such that h = ¢ on OBy and
WY —m<1—-e)(WY(2)=m). (1.7)

In both cases z € HY(B1;R™) is the one-homogeneous extension of ¢ in By .

As a consequence of the epiperimetric inequalities we obtain the uniqueness of the blow-up
limits and the regularity of the free boundary following a standard procedure (see [§]). For the

next theorem we recall the standard notation u, z,(z) := tu(zo + rz) and u,(z) := uro().

Theorem 4 (Uniqueness of the blow-up limits). Let Q C R? be a given open set.

(OP) Suppose that v € HY(Q) is a minimizer of Eop in Q and xg € O{u > 0} N Q. Then
there is a unit vector e = ez, € 0By such that u, converges, as r — 0, to the function
h(z) := max{0,e -z} locally uniformly and in H} (R?).

(DP) Suppose that u € HY(Q) is a minimizer of Epp in Q and xg € O{|u| > 0} N Q. Then there
s a unit vector e = ey, € 0B such that u, converges locally uniformly and in Hlloc(RQ) to
the function h, defined as:

h(z) = A\imax{0,e-z}, if xo€ O{u>0}\0{u<0};
h(z) = Aemin{0,e-z}, if xp€ O{u<0}\O{u>0}
h(z) = gy max{0,e -z} + pomin{0,e -z}, if xzp € d{u >0} No{u < 0},

where 1 > A1, o > Ay and ,u% — ,u% = /\% — )\g.

(V) Suppose that u € H*(Q;R™) is a minimizer of Ey in Q and xo € O{|u| > 0} NQ. Then there
is a function h : R?> — R™ such that u, converges locally uniformly and in HI%C(RQ;R”) to
h, where

e if OV (x0) = 7/2, then h(x) = E max{0,e -z}, where £ € R, |¢| =1, e € S!;

o if OV (x0) =, then h(z) = (£ hey (), .., E" he, (7)), where he(x) = e -z, with e € ST,
and & € R. Moreover, if there exists i # j € {1,...,n} such that e; # e; then x¢ is
isolated in Of|u| > 0} N Q. In particular, if xo is not isolated in O{|u] > 0} N Q and
0V (xo) = =, then the blow-up in x¢ is of the form h = £ he, for some e € S' and
£ e R™

Theorem 5 (Regularity of the free boundary). Let Q C R? be an open set. There exists a
universal constant o > 0 such that:
(OP) if u € HY(Q) is a minimizer of Eop in 2, then d{u > 0} NQ is locally a graph of a C1~
function;
(DP) if u € HY() is a minimizer of Epp in Q, then both d{u > 0} NQ and O{u < 0} N are
locally graphs of CY* functions;
(V) if u € HY(;R™) is a minimizer of Ey in 2, then the reduced free boundary Opeq {|u| >
0} N Q is locally a graph of a C** function.
It is interesting to notice that the free boundary in the vectorial case may end in a cusp, that is
a connected component of {|u| = 0} may be enclosed in a union of C1'® curves ending in a cusp,
indeed we have the following example.
Example 1. There exists a local minimizer u : R? — R? of the functional &, for which

(1) Q2 = {|u| > 0} is a connencted open set;
(2) there is a point xo € O, of density O (zo) = T.
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This is a completely different behavior with respect to the one-phase and double-phase problems.
For the one-phase problem the points of density wq are not admitted in any dimension. On the
other hand, for the double-phase problem, if the point xoy € 0{|u| > 0} is of density m, then the
two sets {u > 0} and {u < 0} meet in zo and they are both CH regular.

However, by reinterpreting our free boundary problem as an obstacle problem for the square
of the modulus, we have the following characterization of cuspidal points.

Corollary 6 (Cuspidal points). Let Q C R? be an open, bounded and connected set. If u €
HY(Q;R™) is a minimizer of Ey in Q satisfying |u| > 0 on 0K, then if G is a connected component
of the interior of the set {|u| = 0} N Q, its free boundary OG is the union of finitely many C*<
Jordan arcs.

Finally we remark that Theorems [] and [f] remain true if we replace the measure terms in our
functionals by a Holder continuous weight function ¢ : Q — R™, that is we define

ggp(u) = /Q [|Vu’2+Q(37) X{u>0}] dz,
£9 () = /Q [Vl + 01(2) Xgus0y + 22(2) Xgucoy] do,

et = [ [IVuP + a(e) xgusor] do.

where x4 denotes the characteristic function of a set A. The minimizers of these functionals are
in fact almost minimizers of the original functionals £, so that we can prove the following

Theorem 7 (Hélder continuous weight functions). Let @ C R? be an open set and q,q1,q2 €
CY7(Q;R*) be Hélder continuous functions such that q,qi,qo > cq > 0, where cq is a given
constant. There exists a constant o > 0 such that:
(OP) if ue HY(Q), u >0, is a minimizer of ELp in Q, then d{u > 0} NQ is locally a graph of
a CY® function;
(DP) if u € H'(Q) is a minimizer of £ p in Q, then 0{u > 0} NO{u < 0} NQ is locally a closed
subset of a graph of a CY® function;
(V) if u € HY(Q;R™) is a minimizer of £} in Q, then the reduced free boundary Oyeq {|u| >
0} N Q is locally a graph of a CH* function.
Moreover, the blow-up limits of the minimizers of £} are unique and are gien precisely by the
classification in Theorem [4].

1.2. Sketch of the proof of Theorem [1| Since the epiperimetric inequality is the key and new
part of our work, we sketch its proof here in the case [J = OP, the other cases being similar.
Given u € H'(By) N C°(By) as in the statement of Theorem || we consider the trace ¢ := u|sp,
and its positivity set S := {¢ > 0} C IB;.

We first show that there exists a dimensional constant dg > 0 such that, if |S| > 27 — Jp, then the
harmonic extension of ¢ in the ball By satisfies . Loosely speaking this means that, in the
regime where the positivity set {z > 0} N B; is almost the whole ball, the energy gain is bigger
than any loss in measure (cp. Subsection .

Next we assume that |S| < 27 — Jp; a natural candidate for the function h is the continuous
function h : B; — R such that:

e 1 is harmonic on the cone Cg generated by the support S of the boundary datum ¢
Cs = {)\9 L A€o, 1], ees}; (1.8)

e h=con dB; and h = 0 outside Cg.
This function provides an immediate improvement of the term Wy (we deal with the decomposition
of h in Fourier series and the subsequent energy estimates in Subsection , but it does not
take into account the measure term in W". In order to deal with it, we have to modify h by
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appropriately adding measure or cutting off pieces from the cone Cg. To do this we divide the
support S = {c¢ > 0} C 9B; into disjoint sets S = Sy, UJ; St ;1> according to the parameter
dg, in the following way :

do

. 17

® Shig =S \U; St man- Notice that in general Sp;, could be the empty set, but if not, then it is

e 5! . are the connected components of S whose measure does not exceed 7 —

connected and 7 — —2 < [Shig| < 27 — dp. In fact, if Sp;q had two or more connected components,

then the measure of S would exceed 2w — dg.

We modify the function h on Sgnan by a truncation argument with a suitably chosen cut-off
function supported in a small ball centered in the origin. Since we use this truncation in other
parts of the paper, the main estimate is proved separately in Subsection Roughly speaking,
this improves W5 because the first eigenvalue of Sgqu is a dimensional constant bigger than
(d — 1), that is we are far away from the half sphere, which is the linear solution.

In order to construct an appropriate competitor on sz-g, we represent the restriction c| Shig 38

c(0) = c191(0) + g(0),

where c; is a constant, ¢ is the first eigenfunction on Sp;4 and g contains all the higher frequencies
of ¢. For the higher frequencies g, the usual harmonic extension combined with the same cut-off
argument used for Sgqi, gives the required improvement (this is once again because the second
eigenvalue on Sy, is bigger than (d — 1) plus a geometric constant). It is interesting to notice
that, up to this point, the argument works in every dimension. For the first frequency c; ¢1,
we use an internal variation, supported in the ball cut-off from the higher frequencies, to move
the support of ¢; in the direction of the half plane solution max{0,e -z}, whose trace is given
precisely by ¢1. The improvement on Sy, is contained in Subsections and for the one and
double phase respectively.

O

1.3. Organization of the paper. The rest of the paper is divided into three sections. In Section
2] we recall some basic properties of the minimizers of the functionals Eop, Epp and Ey p, and do
some preliminary standard computations related to harmonic extensions and the cut-off function
we use. In Section [3] we prove the epiperimetric inequalities of Theorems [I} 2] and [3] while the
last section is dedicated to the proofs of Theorems [d] [f| and [7}

1.4. Acknowledgements. The authors are grateful to Emanuele Spadaro and Guido De Philip-
pis for many suggestions and interesting conversations.

2. PRELIMINARY RESULTS AND COMPUTATIONS

In this section we recall some regularity results for local minimizers of &g and we carry out
some preliminary computations that will be useful in the sequel. Many times we will drop the
index [, when it will be clear from the context which functional we are referring to.

2.1. Non-degeneracy and Lipschitz regularity. In this section we recall some well-known
results about the one-phase and double-phase problems, that is the Lipschitz continuity and the
non-degeneracy of the minimizers.

Lemma 2.1 (Regularity and non-degeneracy of local minimizers of (OP) and (DP)). Let Q C R?
be an open set, q,q1,q2 € COV(QRY) Hélder continuous functions such that q,q1,q2 > 1, and
u € HY(Q) be a minimizer of either Egp or ELp. Then the following properties hold:

(i) ue ol Q).

loc
(ii) There is a dimensional constant o > 0 such that for every xo € d{u™ > 0} NQ and every

0 < r < dist(xo, 0) we have / ut > ar, where we note ut = max{=+u,0}.
0B (z0)
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Proof. For the one-phase functional Epp, the first property follows from [1, 3.3 Corollary], while
the second follows from [I, 3.4 Lemmal. For the double-phase problem Epp, (ii) is the content of
[2, Theorem 3.1], while (i) for u™ is proved in [2, Theorem 5.3], and the proof for ™ is exactly the
same. More general proofs of (i), valid in both our situations, are given in [6], where the authors
extend it to the inhomogeneous case, or in [3], where the point of view of almost minimization is
used. OJ

A similar statement is true for the vectorial case (see [12, [5]).

Lemma 2.2 (Regularity and non-degeneracy of vector-valued minimizers). Let Q C R? be an
open set, ¢ € CY7(Q;RY) a Hélder continuous function such that ¢ > 1, and uw € H'(Q;R") be a
minimizer of E(,. Then

(i) ue CONQ;RY).

loc
(ii) There is a dimensional constant o > 0 such that for every xo € 9{|u| > 0} NQ and every

0 < r < dist(xo, 02) we have / lu| > ar.
0B (z0)

Proof. The proof of (ii) can be found in [I2, Lemma 2.9], while for (i) we make the following

observation. Let i € {1,...,n} and ¢ € C°(B,(x¢)), Br(xo) C 2, then for some constant C' > 0
the following inequality holds

/ |Vui]2da:§/ |V (u; + ¢)|* dz + Cr,
BT(mO) Br(xo

that is each component of u = (uq,...,u,) is a quasi-minimizer for the Dirichlet energy. The
result then follows by [3, Theorem 3.3]. O

Remark 2.3. We remark that the Lipschitzianity of the solutions to all of our problems is indeed
equivalent to the fact that the components of the solutions are quasi-minimizer for the Dirichlet
energy as described in the proof of Lemma (see [3]).

2.2. Classification of blow-ups in the vectorial case. The possible blow-up limits for the
one-phase and the double-phase problems are well-known in dimension two. For the sake of
completeness, we prove in this section the classification of the possible blow-ups in the vectorial
case. The precise statement is the following.

Lemma 2.4. If h € H*(By(wo);R"), By C R?, arises as the blow-up of a minimizer u to the
functional Ey at a free boundary point xo € O{|u| > 0}, that is there exists a subsequence (uy, )
of (uy), which converges to h, then we have two possibilities
e 0V (z0) =7/2 and h(z) = E max{0,e -z}, where £ €R", |¢| =1, e € S!;
o 0V (z0) =7 and h(z) = (&' hey (), ..., E% he,, (7)), where he(x) = e - x, with e € S*, and
¢ e R.
Proof. Assume that zg = 0. We start by noticing that by standard argument and the Weiss’
monotonicity formula, h is a 1-homogeneous minimizer of &, and each component is harmonic
on the cone {|h| > 0} N By, see for instance [0, [12]. Then we have two possibilities.
e {|n| >0} = {e-x > 0}, in which case h(z) = ¢ max{0,e-x} =: £ho(x) and O) (z¢) = /2.
Moreover, for any function ¢ € H'(Bj), consider the competitor £ ¢, then

€ [ 19h il > 0 < 1€ [ 1V Ghe 0+ (ke + 6] > 0}

B1
1

€17
of the 1-homogeneous solutions to the scalar one-phase problem, implies that || = 1.

e [{|h] > 0}| = 7, in which case all the components of h are harmonic functions in Bj.
Indeed assume without loss of generality that the first component of the blow up Al is

that is h. minimizes the functional / |Vhe|?+—5|{|he| > 0}, which by the classification
B1
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not harmonic, then it is easy to see that, if A is the harmonic extension of the trace of
h', then

JRLGIED S RS Y MES OY
B i=2 /B B i=2 /B

which is a contradiction with the minimality of the blow up h. By the 1-homogeneity of
h all the functions are linear, which concludes the proof.

0

2.3. Harmonic extension of the boundary datum. Let S be an open subset of the unit
sphere 0B;. On S we consider the sequence of Dirichlet eigenfunctions ¢;, 7 > 1, and the cor-
responding eigenvalues A;, j > 1, counted with their multiplicity on the spherical subset S. We
have that each ¢; solves the PDE

—Agpj=Njp; in S, ¢;=0 on 99, /qu;%(e)de:l,

where Ag denotes the Laplace-Beltrami operator on the unit sphere dB; and @ is the variable on
S. Given a Sobolev function ¢ € H&(S ;R™) on the sphere, we set

R" > ¢j := /BB c(0) ¢;(6) do

Then we can express ¢ as a Fourier series
oo
= Z cipi(0), c; € R" for every j > k

converging in H'(S;R"), where k € N is the first value for which ¢; # 0. We consider the
radial and the har1~nonic extensions, z and h, of ¢ inside the cone Cg defined in (1.8]). In polar
coordinates z and h are given by

2(r,0) =) rejg(0)  and  A(r,0) =) r%c;¢;(6), (2.1)
j=k j=k

where o; = «j(S) is the homogeneity of the harmonic extension of 7; on Cg which also can be
defined through the identity

aj(oj+d—2)=X; forevery jeN.

Lemma 2.5 (Harmonic extension). Let S C 0B; be an open subset of the unit sphere and c, h
and z as above. For every e € [0,1] we have

Walh) =3l (o = 1), W) = Y le (5 < 1), (22)
=k =k
Wo(h) — (1 — &)Wo(z |c 2(a (a Cigd- ) (2.3)
d / / 1—e¢
In particular, if ap > 1, then
1 -
for every e < d%-ch—l we have Wy(h) — (1 —e)Wy(z) <0. (2.4)

Proof. We first calculate Wy(z) and Wy(h). By the orthogonality of ¢; in H'(S), that is

/S bicr; 6 = 63, /S Vodi - Vo; db = Aoy,
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we have

5 1 _ 7 2
/ |Vh|2dx:/ /(|&~h(r,9)|2+ ‘Vehg’e)’ >rd_1d9dr
B

_2/ /‘CJ|2< 2(a;—1) 2(9)+ W) rd_l d0 dr

[e'e} 2 2 [e e}
2(.2 2a;—1)+d—1 1" (aF + ) 2

=3 [ ) ety = 3 SO 3 e

i=k i=k

=k

1 2
Vz2dx: Orz(r, 0 2—I—M r4=1 do dr
)
B

_Z/ /‘C]|2 <¢] |v9¢3( )‘ )Td_ldgdr
_2/ ;2 (14 Xj) rd™ 1dr—§ZCJ\ 1+ X)) (2.5)
j=k

/ z|2d7{d_1:/ |l~z|2d7-ld_1:/|c]2(0)d9:Z]cj|2.
OB B s =k

Now for any € €]0, 1] we get

Wolh) — (1= e)Wo(2) = 3 lej? _aj o (1—5)(12)\‘7 _1)]

IR

= [ aj(aj+d—2)—d+1

=2 lol* jaj =1 (1 —e)=

=D lel O‘j_l_l;E(aj_l)(Oéj—i-d—l)]

=%t

= IS lePlog =)oy -1 d- 1),
j=k

d
which proves (12.3). We notice that if ap — 1+ d — 1< > 0, then the same inequality holds for

every j > k and so Wo(h) — (1 — €)Wy (z) < 0, which gives the claim (2.4)). O

2.4. Measure correction of the competitor. In this section we compute the energy of an
harmonic function after cutting off a ball of radius p/2 from its support. In particular we will
consider the radial cut-off function ¢?: By — [0, 1] defined by

PP(x) =0 if [z € [0, p/2],
AYP = if |z| €]p/2, pl, (2.6)

PP(x) =1 if fz] € [p,1].

The main result of this subsection is the following.

Lemma 2.6 (Energy of a measure corrected competitor). Consider an open set S C 9By and a
o0

function 6 — c(0) = ch¢j (0) € R", where ¢; are as in Subsection and k > 1 is fized. Let
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p >0 and v := P be as in ([2.6). Let h(r,0) = Zro‘i ¢i ¢i(0) be the harmonic extension of ¢ in

the cone Cg defined in (L.8]). Then we have

- Cop2len—1)+d . Cp2(ex—1)+d
Wo(wh) < (1 4 Gy / o2,
0B1

&7 Qg

where Cy > 0 s a dimensional constant. If moreover ay > 1, then

WO(QNE)S( Coakp(

ap — 1

Oék—l)-i-d

) Wo(h). (2.7)
Proof. For any function f € H'(B1) we have

/ |V<¢f>|2§/ |Wf+fw|2§/ w2|Vf|2+/ Vi - V(1)
B B B B

GV + / ViV (120)
By BF’\Bp/2

9 C
< [vips [ P [wpa S [ g
B 4B, on By pP JoB,

where Cy is a dimensional constant.
If f is of the form f(r,0) = r*¢;(6) for some a > 0 and j > 1, then we have

1 2
2 d—1 a2r2e=1) 4 202 12 ot
Jo 19 = o L, (e 0) o i o = G5y

so that

_ 1d+2(a—1
/ f2 :p2oc+d 1:p2a+d 1 2( A )/ |Vf’2,
8Bp (6% +)\] B

which gives

/B VAP < <1+0 A QW) /B VT (28)

By (2.8), applied to each component of h, and the orthogonality of ¢; we have

/ Z/ V(e
20 +d—2d + 2(a; — 1) a2
S;<1+0p e )/Blrwczr o)

e 2az+d 2
(1490 [ 9P
(673 B

i=k
2C¥k+d 2 0 2C¥k+d—2 -
NS [ e = (14 ) [ i
B1 Qg B1

i=k

IN
—_

_l’_
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Now by the definition of Wy and the fact that ¥h = h = ¢ on dB; we get
Wa(wh) = [ [V@RE = [ e
Bi By

Q(Qk—1)+d -
< (1+Cop) / VR - / of?
L B 0By

C 2(ap—1)+d 5 Cp2lar—1)+d
(122 wothy + S
0B

873 Qg

If ap > 1, then

iy = 1) 2 = DY Jo P = (x -1 [ e
Za Za -

which implies ([2.7)). O

3. THE EPIPERIMETRIC INEQUALITY

This section is dedicated to the proofs of the various epiperimetric inequalities (|1.4 . -
and , as sketched in the introduction. First we prove a series of technical lemmas which
corresponds to the different possible lengths of the support S = {¢ > 0} of the non-negative trace
¢ >0, that is 2m — 6o < |5], |S| < 7 —dp and 7 — Jp < |S| < 2w — dg. Most of the results are
valid in any dimension d > 2; only for the last case we will need to assume d = 2. Finally we will
combine the lemmas to prove the various versions of the epiperimetric inequality.

3.1. Improvement on the very large cones. In this subsection we consider the case |S| >
dwgq — Mo, where d > 2 and np > 0 is a sufficiently small dimensional constant.

Lemma 3.1. Let c € HY(0By) and S = {c¢ > 0} C 9B;. For every a > 0, there are constants
no > 0 and €9 > 0, depending only on o and the dimension of the space, such that

if c>a and |S|>dwg—mno, then WES(h)—0F < (1—g) (WD(Z) - @D) ,
0B,
where O = OP,DP, ©°F = “d - ind OPP = (M + )\2)%, and z and h are respectively the

one-homogeneous and the harmonic extensions of ¢ in Bj.

Proof. Let {¢;}; be a complete orthonormal system of eigenfunction on 0B with ¢ = (dwd)_l/ 2,
We decompose the function c as follows

0) =Y c;j0;(0) =
j=1

We use the notation

z(r,0) = re(0 chmﬁj and h(r,0) = chraj¢j(9)
=2

Thus we have
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For the case 0 = OP, let 0 < ¢ < 1/3 and notice that

(W(h) = 22) —(1 = 2) (W(2) = ) = Wo(h) — (1 - e)Wo(2) + 22— (1—2) (22 - )
=+ o)~ (1—2) (o (AL ) + a(e) ) + 2 - 1 - o) (22 - )
<—d-(-ow ()< -0 (Y- %)

1 w w
21 L 2 Wd o (W o
-2 5)(d 1>01+2 (1 5)(2 d)
1 6(d—1) 2 To Wy To 1 2
<d+ ] >01+d+€<2 d)‘d( A + o + edwg)
On the other hand we have that

) 2 1 2 ag
¢l = cq§1> = — </ C> > -,
! </631 dwq \JoB, dwq

and so, choosing € and 7y such that o2 > dwg(no + edwy) we get the claim.
If O = DP, we have, by similar computations and using |{h > 0}! < wy,

(W(h) “(Ou+ AQ)%) —(1—¢) (W(z) (M Ag)%)

() o (o (- D) (0o (- )

1 _
- (—cf +no + edwq + |{h < 0}]).

Now a simple compactness argument on harmonic functions and the maximum principle show that
for every § > 0 there exists 1p > 0 small enough such that, if [S| > dwg — no, then [{h < 0}| <4,
and so the conclusion follows as before by choosing 79 small enough. O

IN

3.2. Improvement on the small cones Sg,,,;. In this subsection we consider the situation
dw
where d > 2, |S| < 7(1 —9dg and dp > 0 is a dimensional constant. Using the fact that, under these

assumptions, the first eigenvalue of S is strictly bigger than (d — 1), we can prove the following
result directly for vector-valued functions c.

Lemma 3.2 (Small cones). Let n > 1 and By C RY with d > 2. For every 5y > 0, there are
constants €1,p1 > 0, depending on 8, d and n, such that if the function ¢ € H'(0B1;R"™) N

d
C(0B1;R™), supported on the open set S = {|c| > 0} C By, is such that |S| < % —dp, then

Wo(?1h) + A[{g: ] > 0}] < (1 — 1) (Wo(z) +A[{l2] > 0}|) for every A>0,  (3.1)

where z and h are the one-homogeneous and the harmonic extensions of ¢ in By, defined in (2.1)),
and PP is the cut-off function defined in ([2.6)).

d
Proof. We first notice that if |S| < % — 0p, then o := a1(S) = 1+ 70, where 79 > 0 is a

constant depending only on the dimension and dy. By Lemma [2.6] and Lemma [2.5] we have

N CIO ay p2(a1—1)+d

a1 — 1 ) WO(}NI)

Co p? a;—1 Cop? Y0
< -l - - .
_<1+a1_1> (1 d+a1_1>W0(Z) <1+ o 1 d-l—’}/o W()(Z)

Wo(¥h) < (1
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On the other hand since ¢ = 0 in B, /5 we get

[l > 0} = (1= (p/2)") |{12] > 0}].

It is now sufficient to choose €1 and p; such that

d d
Pl Copi Y0
1-PL <12 and 14+ 2001 (1 - <1—¢, 3.2
2¢ = 1 < Y0 > < d+70> - ! (3:2)
and recall that, since ay > 1, then Wy(z) > 0 (cp. (2.2)). O

3.3. Improvement on the large cones over Sy,. In this subsection we consider arcs S =
Shig C OB1 of length m — 69 < S| < 21 — dp. The main result is the following

Proposition 3.3 (Big cones (OP) and (VP)). Let By C R? and ¢ € HY(0B1;R") be a function
such that S := {|c| > 0} C 0By is a connected arc and let z be the one-homogeneous extension
of ¢ in By. For every g > 0, there exists a constant pa > 0, depending only on dg, such that
the following holds. If m — 69 < |S| < 27w — dp, then for every p < pa there exists a function
h, € H'(B1;R") such that h,|ls = ¢, h, =0 on 0By \ S and

WY (h,) — g < (1-p?) <WV(Z) - g) . (3.3)

In order to prove this proposition, we distinguish between high and linear frequencies of the
boundary datum ad then we sum the respective contributions. In the rest of this subsection we
set W =WV,

3.3.1. The high frequencies on Sp;s. In this subsection we consider the case when the boundary
datum c contains only high frequencies. The argument is very close to the one for Sg,qi, the
only difference being that the measure is not involved. The result below holds in any dimension.

Lemma 3.4 (High frequencies on Sy,). Let do > 0 and S C 0B be an open set such that

o0

S| < dwg— 6y and ¢ = c;®;, where ¢; are as in Subsection 2.3| and ¢; € R™. Let z and h be
\

=2
the functions defined in (2.1). There are dimensional constants €3, p3 > 0, such that
Wo(Ph) < (1 —e3) Wo(z)  for every  p < ps,
where P is the function from Lemma [2.6]

Proof. We first notice that, as |S| < dwgq — dg, there is a constant vy > 0 depending only on the
dimension and dg such that

a2(5) = 1+ 0.
By Lemma [2.6] and Lemma [2.5] with pg := p, we have

~ C’ 2(0{271)+d ~
Wo(wh) < (1 n Opal> Wo(h)
-

Cop2(01271)+d as — 1
<|l14+4 —— l1-—
_<+ P pE— Wo(z)

Copd)< Y0 >
1+ 1- Wo(2),
Yo d+0 olz)

2\ Ve
which, after choosing p < p3 := ( 7 ) and observing that, since ag > 1, then Wy(z) > 0,

<

2dCy
concludes the proof. O
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3.3.2. The principal frequency on Syy. In this subsection we consider the case when the boundary
datum c is of the form c(f) = c1¢1(0), that is only the first eigenfunction is involved. From now
on in this subsection we will suppose that the dimension is precisely d = 2. Thus S is an arc of
circle and setting 0 := |S| — 7 we obtain

2
T T
Sl=n+5 A <W+5> md o=

We notice that the case 6 = 0 is trivial. In fact in this case we have a3 = 1, as = 2 and choosing
h as in Lemma [2.5| we have that for ¢ < 1/3

Wo(h) < (L—)Wo(z)  and  [{[Al >0} = 5 =[{]s] > 0}| - 5 =0
which, by the definition of W, proves that
if =0 and < % , then W(h) < (1—¢g)W(z). (3.4)
The rest of the section is dedicated to the analogous estimate in the case
d € [—d0,0[U]0,m — p], where dp = dp(d) > 0. (3.5)
First we observe that, loosely speaking, z is a perturbation of size § of the flat cone.

Lemma 3.5 (Principal frequency on Sy I). Suppose that 6 € R is as in (3.5)), Skig is the arc
10,7 + 0], s € H'(0By) is such that {|s| > 0} =0, 7| and z € H'(B1;R") is the 1-homogeneous
extension of the function ¢ € H'(0By;R"), where

Cs<ﬂ9ﬂ> if 0e[0,m+d],

é(0) = +4 (3.6)
0 otherwise,,
with C € R™. Then
Tl _12
W(z) - 579 <HCHL2(]O,7T+5[;R") - HCHL2(}O77r+6[;R”) + 5)
_CP (a2 2 o ( ICP 2 |C|2
= 5 (1 Wagomp = Is3agamp) + 5 (—7 gl WF2g0mp = sl Zogom +1
(3.7)
Proof. We shall denote the various L? norms simply by || - ||2, the domain beeing the same as the

domain of definition of the function inside. Notice that, by the 1-homogeneity of z we immediately

have
T+ 82’
Wo(z) = /erPdm—||cH2—/rdr/ (\ar 2 '9) a6 — |l
=/ / (12 +121?) do — |3

5 (115 ~ IelB)

J
so that, since by definition of 9, 5= I{|z] > 0} — g, the first equality in follows. Next we

set ¢ = 71_9:5, we notice that d¢ dr = WL—F&dG dr and we compute

||-'||2—|~|2/”+5 ™\ e (O d0—|~|2/ $12(9) dé =
=i J \axs) " \a+s) @Y, +58

(3.8)
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and analogously

B m+0 s T+6 [T T+0
g =1cp [ (2T ) an=1cpTER [T a0 = TN CR 1 69

T+ s

which immediately gives

71'_’0’2 T 112 7T+(5 ) 5
W) - 5 = 50 (B - T ) + 5

C|? 0 C|? C|?
— 0 s - i) + 5 (~2Z55 1 - ot 1)

+9

O

Next we consider a perturbation z. of the function z, by an internal variation of size £ and we
compare the energy W(z.) with the one of W (z).

Lemma 3.6 (Principal frequency on Sy, II). Suppose that z € H'(By;R") is the one ho-
mogeneous extension of a function ¢ € H*(S;R™), S :=]0,7 + 6, and consider the function
2. € HY(By;R") defined by

)8

0 otherwise ,

ze(r,0) =

where € : [0,1] — R™ is a smooth function compactly supported on ]0,1[. If § + € > —2dy, then

1 lellZ2qo.rramny  11E2 g0 spmm)
< _
Wi(ze) < W(2) +€/0 ré§(r) dr (1 T+0 T+

1 5)? , 1 2 4 2310002
+ 2 <+7£7T+§)) 1105 (/0 rf(r)(ﬂirgg (r)] dr>. 510)

Proof. With an abuse of notation we denote by z., ¢ the components of the corresponding func-
(m+6)6
T+ 0+ &€

tions. Moreover we set ¢(r,0) := and we compute in polar coordinates

1
|V'Zs|2 = |arzs‘2 + ﬁ|6925|2

r(mr+8)0el(r y
(m 40+ €&(r ))2

2 /
=& (p(r,0)) + T )|aﬁwvﬁ»—2erw“”f“)awvﬂ»awwﬂ»

c(¢(r,0))

2+(”+5())ﬂaﬁwvﬂ»

((r,9)) T+0 + ef(r

T+ 064 e&(r) (m+0+¢e&(r))
=:I1(r,0) =1I(r,0)
2 2| ¢! 2
2T ¢(T79) ’é( )‘ ‘—l‘ (¢(T,9))

(m 40+ e&(r))?

:=I3(r,0)
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We notice that

/ /ﬁ+5+gg(r 0 db s _/ /7r+5+€§ ( S0 1 <7T+7;i;g£(r)>2 |C/|2(¢(7“,«9))) db

:i/7dr/”w<”+5+fﬂ>c<¢y+”+5w?<w)d¢

T+o T+ 06+ e€(r)
= 5 08+ 1718) + <208 [ reyar et [ ) ar
= 5 (el + 1) +< [ reryar (142 1E1E)
“2”5/”%/01 (7r+5)(;'§—2f—(5)+ =i
where we used dé dr = ﬂ:;ﬁgéde dr. For the second integrand we have
/ /”JF‘SJFE& (r,0)do dr = / rdr /WJF(HE5 " ﬂﬁl_(rg)g(r)(]ﬁ(r, 0)c(o(r,0)) é (p(r,0)) do
= 5/ Tdr/ 7r-|—7;5€if— wrorem?© (@)/W d¢

2 o [te?
6/o /57r—|—5 d¢_7r_|_55||0||2/0 55 (r)dr
1

where we used integration by parts in ¢ from the second to the third line, together with ¢(0) =
0 = é(m + 0), and integration by parts in r in the last equality. Finally for the third integral, we
compute

1 m+d+e&(r) 1 m+0+e&(r) 2| ¢t 2
/ 7“/ I3(r,0)do dr = 52/ rdr/ )l 2¢2|E’]2 (¢(r,0)) db
0o Jo

(m+d+£(r))
T+0 r2 l 2
€'(r)] 2102\ T+ 0+e(r)
—e/rdr/ 7T+5+E§())2¢’C’(¢)7T—+(5d¢

y e (r)]?
<e(n+6)%|e H%/O (m+6)(m + 6 + ££(r)) a

Lo31e()]2
§€2||5'||3(7T+5)/0 Jﬁs@ig)

Combining the previous computation, and summing over the components, we conclude for the
vectorial functions that

=112
L (2 2 : lel3 |, 1€Moot
Wo(ze) < 9 (HC ||L2(]o,7r+5[;Rn) - ||C”L2(}0,7r+6[;Rn)) - 5/0 r&(r) dr Y + 4o

14+ +5 2 , 1 é— 2+ 36/ 2
+ &2 (“) | H%Z(}O,TrJr(S[;R") (/0 : (T)(W +T8|£) () dr) .

Next notice that z:|spp, = ¢ and

1

1
[{|ze| > 0} :/0 r(m+d+e&(r)) dr = |{|z]| > 0} +6/0 ré(r)dr,
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so that, using the first equality of (3.7]), we conclude

! ez o, yapmm 1€ 022 g0.m1o1mm)
W) W) e [ réwydr(1- -
0

T+ T+

2 (L T+ 2 g (r)? + 3l ()
+e <7r+5 If ||L2(]0,7r+6[;R") 0 (7 + €€) dr
which is . O

In the next lemma we combine the estimates of Lemma [3.5] and Lemma [3.6] to prove the
epiperimetric inequality in the case when the trace ¢ is premsely the principal frequency function
of the arc Sp;g.

Lemma 3.7 (Principal frequency on S III). Suppose that 6 € R is as in (3.5), Skig is the arc
10,7+ 6], 5 : [0,7] = R is such that ||s||2 = ||s'|3 and & : [0,1] — R is a compactly supported
function on [0,1]. We notice that if z. and s are as in Lemma and respectively, than

o () = rCs(eﬂ) if 6el0,m+0d+el(r)],

T+ 6+ e&(r)
0 otherwise.
If e|€] < b, then
T 1
W) < W)+ 5 (W) = 5) [ rear
CP '] m(1+(r+0)*) ! )
+e 3 0)2 2( / ré(r)dr 4 ¢ ) /0 (r&? + 131 (r)|?) dr | .

Proof. By Lemma combined with the condition ||s||3 = ||s||3, we have that

n G (O ICP
W) -3 =3 (1- - gz

Using this together with (3.10)), (3.9) and (3.8)), we obtain
UN I3 11713
W(ze) — W(z2) < e | r&(r)dr{1— -
0

T+d w40
+€2 1+(7T+5)2 HE/HQ ! g( ) +T3|£( )|
T+ 0 2 (W+€

1 2 2 2 || ! 2 !
TS [y ar (1 Il o P13 .. 0P 11 / et
0 T

-~

UG
e (H(WM C2 |
)

)
s ) £ )
G <2 (/o (7t 26) dr)

_ 2e 4 ' 211112
= F(We-3) [ ok

' 6 1r N dr €W1+(7T+(5>2 Lre(r)? + 731 (r)? .
((77+5)2/0 coyar e B [ d)

which, using the bound on &£, gives the claim. O

3.3.3. Proof of Proposition . Let {¢;};>1 C H}(S) be the family of eigenfunctions on the arc
S. Using the same notations of Subsection we decompose the function ¢ as

[e.@]
c=c1¢91+g, where g:= chqﬁj and c; € R" for every j > 1.
j=2
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Let 21,2 € H 1(Bl; R™) be the one-homogeneous extensions in B; respectively of ¢1¢; and g, and
let h be the harmonic extension of g on the cone generated by S, so that

“+oo

21(r,0) =rcip1(0), z4(r,0) =rg(f) and ﬁ(r, 0) = Zro‘j cjp;(0).
j=2

Furthermore we choose
pa < min {%,g;/?’,é} : (3.11)

where p3,e3 > 0 are the universal constants of Lemma d C will be chosen in (13.15)).

Let p < pg and 1% be the truncation function from Lemma Then the truncated function
hy := ?°h satisfies

Wo(hg) < (1 —e3)Wo(zy) and supp(hf) C B1\ B, . (3.12)

Moreover, since h(f) and ¢;(#) are orthogonal in H'(dB;) and ¢ is a radial function, hf is
orthogonal to ¢1 in H'(By).
Up to a change of coordinates we can suppose that S is the arc [0, 7 + J]. Next we will apply

1)
Lemma toc=ci¢1, 2 =2 and s = Tt ¢r, where ¢, is the first eigenfunction of the
7

2
semicircle ¢.(0) = {/=sinf, so that indeed ||s||3 = ||s'||3. Let & : [0,1] — RT be a smooth
T

1
1
positive function with support in ]0, 1[ and such that / ré(r)dr = 3 Applying Lemmawith
0
the function &, = p&(r/p) we obtain

(W) - 3) < (1 + 255/017“5,)(7“) dr) (W -17)

§'|12 1 7 (1+ (7 +06)? 1 ,
+€HH2)2 (5/0 r&p(r)dr +¢ Ltirs ))/0 (T§Z+T3‘§p(r)‘2) dr).

(7T+(5 (7T—(50)

Choosing € = —§, and recalling that |§] < dp, the previous estimate yields
T ! ™
W) -5 < (1-2 [ rgmdr) (W) - 3)
0

$'12 1 T T 2 1
-0 (7T”+||;)2 </0 r&p(r) dr — (1(:; (_ 51’)5) ) /0 (ng +7’3’f;;(7")’2) dr) :

—(1-p% (W(zl) . g) (3.13)
-l (; AR ey dr)
<(1=p") (W) - 7)) (3.14)
where in order to have the last inequality we choose
¢= (H&HW AT TEW) P e dr) - 3.15)

where C' is a dimensional constant, since & is universal. Moreover, with this choice of C' we have
that ||£,|/ > < 1 and thus the condition

Eé-p = gp > _507
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is satisfied and Lemma can indeed be applied. Notice that, since supp(hy) C B \ B, and
2:(r,0) = rcy ¢1(0) for every r > p we have that hfj and z. are orthogonal in H'(By;R"), and
therefore summing (3.12) and (3.13)) we conclude, with h” := 2. + hf, that

W (h?) = 5 < Wolz) + Wo(hf) + [zl > 0} = 5 = (W(z) = 5 ) + Wa(h)

2
< (1-p% (W(zl) - g) + (1 — e3) Wo(zg)

= (1= p%) Wolz1) + (1= e3) Wo(zg) + (1= %) (I{Ia] > 0} = 7)
< (1= %) Wolz1) + (1= 0%) Wolzg) + (1= %) (1121 > 0} - )
=(1- p3) (W(z) — g) ,

where in the first inequality we used that {|hj| > 0} C {|z:| > 0} so that [{|h*| > 0}] < |{|2:| > 0}
and for the last one we used that |[{|z1| > 0}| < |[{|z] > 0}| and also the fact that, since ag > 1,
we have that Wy(z4) > 0 by (2.5)). O

bo | 3

3.4. Improvement on the large cones Sy, for the double phase. We can prove an anal-
ogous version of Proposition for the double-phase functional at the points of high density,
where both phases are present in the ball Bj.

Proposition 3.8 (Big cones (DP)). Let By C R?, A\;,A\2 > 0, 6o > 0 and ¢ € H'(0By). Let
St = {ct > 0} and S~ := {¢~ > 0} be two disjoint arcs such that © — 6y < |SE| < 27 — .
There exists a constant py > 0, depending only on &g, such that for every 0 < p < po there is a
function h, € HY(By) such that h,|g+ = c¢*, h, =0 on dB; \ S and

m w
WPP () = (4 X5 < (1) (WDP(Z) (M + Ag)g) , (3.16)
where z is the one-homogeneous extension of ¢ in By.

Proof. We are going to implement the procedure from Proposition to ¢ and ¢~ respectively
on ST and S~. The only additional difficulty is to make sure that the supports of the competitors
generated by Lemma applied to the highest frequencies of ¢™ and ¢~ respectively are disjoint.

Let {¢;—L}j21 C H(S%) be the families of eigenfunctions on the arcs S*. Using the same
notations of Subsection 2.3 we set

ct = c + N c. = c n
= [ oo wma = [ oo

and we decompose the functions ¢t and ¢~ as
(o]
& =cEof + g%, where ¢F = Zc;tgi)]i
j=2

Let zfc, z;f € H'(B1) be the one-homogeneous extensions in B; respectively of ciﬂb{c and ¢% and
let A% be the harmonic extension of g= on C g+, that is

+o0o
zli(r, 0)=r c:fqbli (9), zj(r, 0) =rg=(0) and hE(r,0) = Zro‘j cjiqﬁf(tg)
j=2

Furthermore we choose

02 §min{%,5;/3,é’}, (3.17)

where p3,e3 > 0 are the universal constants of Lemma and C will be chosen in (3.20).
Let p < pp and 9% be the truncation function from Lemma Then the truncated function

hgjE := 2P h¥E satisfies

Wo(hgi) <(1- 53)W0(z;t) and supp(h;t) C Bi\B,. (3.18)
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Moreover, since h*(0) and ¢ (0) are orthogonal in H'(9B;) and %" is a radial function, hgi is

orthogonal to ¢ in H'(By).

For the linear frequencies we apply Lemma to cf d)f and to ¢; ¢ on their respective domains,

parametrized as ST := [0, 7 4+ 6T], with the function s being the principal frequency function on
2

the half-sphere s(6) = ¢.(0) := \/7sin0 and with &£,(r) = p&(r/p) the internal variation from
T

Lemma to obtain the functions zgc : By — R satisfying

W) -2 < (-0 (Wi - 7)), (3.19)
where we choose ¢ = —4 and
- T+ T+00)2) 1, o s -
C = <4H£||Loo +4 ) /0 (re? +131¢'(r) %) dr) _ (3.20)

Furthermore, by this choice, we have ||,z < 1. Now we notice that the set 9B \ (ST U S™)
has precisely two connected components and that at least one of them has length greater or equal
to do/2. We choose the two internal variations to take place precisely on the boundary of this
arc. Thus the supports of the perturbations 2} and z_ are disjoint

supp(zF) Nsupp(z2) = 0. (3.21)
Notice that, since supp(hi) C By \ B, and 2= (r, ) = rct ¢ (6), for every r > p, we have that hE
and zZ are orthogonal in H'(B;), and therefore summing (3.12)) and (3.13) we conclude, setting
hp:=ht —h™ = (2 +h}) — (22 + h,), that

WPP(R) = (A1 + 22) 5 < (Wol=F) + Wolhg) + Ml > 0} = M)
_ _ _ T
+ (Wolz2) + Wolhy) + dal{z > 0} = a7 )
— A (WOP(A;”?ZJ) - g
_ T

2 (WOP OG220 = 2) + Walhy)

<A (1= %) (WOPOTY2) = 2) + (1= p°) Wa(z;)

e (1= %) (WOPOG20) = T) + (1= p°) Wa(z;)

= (1=0") (WPP () - A+ 2)3 ).

where in the first inequality we used (3.21]) to infer that supp(h™) Nsupp(h~) = 0, the choice of
p and the same observations at the end of the proof of Proposition [3.3 O

3.5. Proof of Theorem [1] for £,p. We are going to denote WO simply by W. Let u be as
in the statement, ¢ = ulgp, and let S := supp(c). Let |S| > 27 — 19, where 79 is the dimensional
constant of Lemma then follows by the same lemma and the non-degeneracy of w in (ii)
Lemma 2,11

We now assume that |S| < 27 — . By the continuity of v (Lemma the set S is open and

so we can decompose it as the disjoint union of its connected components. Choosing g := % we

)+ Wo(hy)

have that there can be at most one connected component of length bigger than © — dg. Thus we
have two possibilities :

oo oo
S = Sbig U U S;mall or S= U S;mall ’

i=1 i=1

where Sy and nga”, 1 > 1, are disjoint arcs on 0B such that

® Spig is an arc of length m — 6y < |Spig| < 27 — do;
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P

¢ s for i € N, are disjoint arcs each one of length |S? | <7 — do.

Next we choose
p < min {01,,02751/3} ) (3.22)
where p1,e; are as in Lemma and p9 is as in Proposition and we distinguish two cases
depending on whether Sy;, is empty or not.
Suppose that Sy # 0. Let us denote by ¢ 0By — R, i >0, the traces

&= uls,, and ¢ = ulg for i>1,

small
by z': By — R, i > 0, the corresponding one-homogeneous extensions
20r,0) =7 (@) and Z(r,0) =rd(f) for i>1,
by h° the function of Proposition with p as in (3.22) and by A’ the truncated function from
Lemma [3.2| with ¢ = ¢, S = S}, ., and truncation function %P, We recall that

e for i > 1, the support of each A’ is contained in the cone over the support of ‘ci,
e for i > 1, the choice of the truncation ¢?” implies that h is zero in B,: supp(h?) C By \ B,
e outside B, the support of hO is contained in the cone over the support of c°,

and so, if h = Y 2%, h’, we have that

smal

supp(h) = supp(h®) U (U supp h’)) and the union is disjoint.
i=1

Summing the energy contributions, we then obtain

= > Won) + (I > 0} = T) + 3 I{n' > 0}
i=0 i=1

= W(hO) + i (Wo(h") + [{h" > 0}])
HH (1- < +§: (Wo(z") + [{#" >0}\)>

<(1- 3) W(z) ,
where in the second inequality we used (| and the positivity of Wy(z%), i > 1, to infer that
(1= e1) (Wo(eh) + [{= > 0}|) < (1= p%) (Wol=) + |{=" > 0}]) .
If Spig = 0, then with the same notation as above we have, by Lemma

Z Wo(h') + [{h* > 0}]) —

=1

2 (1-a) (Z (Wo(=) + [{=" > 0}|)> (- )W),

=1

a
E
)

0

3.6. Proof of Theorem [2| Let c be as in the statement, ¢t = max{=£e,0}, ST := {¢* > 0} C
9By and z* : B; — R be the one- homogeneous extensions of ¢* in Bj.

We start by considering the case when one of the sets ST and S~ is very large and the other
very small. Precisely, we assume that [ST| > 27w —ng and |S~| < ng, where 79 > 0 the dimensional
constant of Lem If |S7| = 0, then the conclusion follows by Lemma If 0 < |S™| < no,
then by Lemma there are €1 > 0, p1 > 0 and a function A~ such that

{h= >0} Cc{z” >0}, h~ =0 on B, , and
W()(hi) + )\2‘{}17 > O} N Bl‘ < (1 - 81) (W()(Zi) + )\2|{27 > 0} N Bl’) .
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Now we suppose that (Wo(z") 4+ M\ |{z" > 0} N By| — /\1g > 0 (since otherwise the conclusion

follows immediately by choosing 2™ — h™ as test function). We define the test function h™ as:

W () = B;l(m), if z € B,,,
| 2t(2), ifx € B\ By,

where B,‘; is the harmonic extension of z* in the ball B,,, that is iNL;)"l (z) = h™(p1x). By Lemma
B.1] we have that

Wo(hH) + M|{h" > 0} N By - Alg - p%(wo(iﬁ) +M[{At > 01N By - Alg)
+(1- p%)(Wo(f) + M {zT >0y N By — Alg)
< P2(1 - &) <Wo(z+) + {2t >0y N By - )\1%>
+(1- p%)(wo(f) + M |{zT >0y N By — Alg)
= (1 - eop?) (W0<z+) F Mzt >0} N By — A1g> .

The claim follows by choosing ¢ = min{e1, g9p?}.

Next, we assume without loss of generality that |ST| < 2w —ng, |[S™| < 2mr—ng and |ST| > |S™|.
By the continuity of ¢ the set S = {¢ # 0} is open and so we can decompose it as a disjoint union
of its connected components, on each of which c is either strictly positive or strictly negative.
Choosing §p := % we have that there can be at most one connected component of ST of length

bigger than m — §g. Thus we have three possibilities:

oo o0 o0
_ g+ — j _ o+ ‘ _ j
S = Sbig U Sbig U U Semall or S = Sbig U U Small or S = U Semail >
i=1 i=1 i=1

where Sg';g and Séma”, 1 > 1, are disjoint arcs on 0B such that

° Sg';g is an arc of length m — §g < |S§g’ < 27 — 8;

. for i € N, are arcs of length |S! .| < — &.

i
small’

Next we choose
p < min {p1,p27€i/3} : (3.23)

where py,e1 are as in Lemma [3.2] and p9 is as in Proposition and we distinguish three cases
depending on whether S;Z , are empty or not.

Suppose that S;;g # 0 and Sy; # (. This is the only new case with respect to the one-phase
functional. Let us define

0
C =C + —
’SbigUSbig

. +cl| e if ¢|qi >0
and ¢ ) TSt _ i for i>1, (3.24)
—clgi ifelgg <0
small small

by z' : By — R, i > 0, the corresponding one-homogeneous extensions

220r,0) =rc?(0) and  2'(r,0) =rc(f) for i>1,
by h, the function of Proposition with ST = Sgl[.g and p as in (3.23)) and by A’ the truncated
function from Lemma with c=¢', § = Sﬁmall and truncation function ??. We recall that

e for 7 > 1, the support of each h’ is contained in the cone over the support of 'ci,
e for i > 1, the choice of the truncation ¢/?? implies that h is zero in B,: supp(h') C Bi1\B,,
e outside B, the support of h, is contained in the cone over the support of ct,
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so that supp(h,) Nsupp(h’) = @ for every i > 1. Let h := h, + > o, (+h"), where the sign in
front of A’ is the same as the sign in front of ¢! in (3.24)), and

, Aoifelg >0 ,
A= ] small for > 1.
Ay ifelg <0

Then we have
WPP ()= + Aa)g = (WPP(hy) = (s +22)F ) + 3 (Wolh') + X {A' > 0}))
i=1

o0

(B-1)&(3.3)
< (1—p3) (WDP —|—Z Wo —|—)\Z {Z >0}|) —()\1—1—)\2)7;)

s
< (1-p%) (WPP() = (M + A2>5) ,
where in the second inequality we used (3.22)) and the positivity of each Wy(z%) to infer that
(1 —e1) (Wo(z") + |{z" > 0}]) < (1—p*) (Wo(z") + |{z" > 0}]) .

Next, suppose that Slj; # () and szg = (). Then the proof is the same as the one for the

one phase, by using Lemma for the small arcs § = S’ . and Proposition E 3.3 for ST, and
subtracting an additional /\Qﬂ/2
Finally, if S = 0 =

big then the proof follows by Lemma [3.2] subtracting (A1 + A2)7/2
instead of /2.

bzg’
O

3.7. Proof of Theorem (3. Let S := {|c| > 0} C 9B;. We distinguish two cases.

(i) If there exists a universal constant dy > 0 such that |S| < 27 — dp, then as in Theorem
we can write S as a union of disjoint arcs

(o ¢]
S = Sbig U U Semall-
i=1
Now the proof is the same as the one of Theorem [I] for the one phase, using Lemma [3.2]
and Proposition [3.3]

(ii) If |S| = 2, then let h be the harmonic extension of ¢ and notice that
WY (h) —7=Wy(h) < (1 —e)Wo(2) = (L—e)(WV(2) — ).

Otherwise let dg > 0 be fixed and decompose S := szg U szg UlU, Ssmall,
Sz’

tmai 18 a connected arc of length less than 7 — do, Si
distinguish the following situations.

If 2 — 6o < |S), gl <2, let {¢;}; be a complete orthonormal system of eigenfunction
on S and let ¢; € R" be the projection of ¢ on ¢;. Moreover set

where each

big are connected arcs, and we

o0 o
z1:=71c1 P17, 2g =T g cj oj and hg == E rY ¢ ¢
Jj=2 Jj=2

for ¢; € R™ for every j > 1. Then, if h := 21 + hy, we have by (2.2) that

WY(h) =7 = (W" (21) — ) + Wo(hg) = . (|01| (af = 1) +|S| = 27) + Wo(hy)

IN

50=9) (lerP (03 — 1)+ 1] — 27) + (1 ) (Wolz) — )
(1—e) (WY(z) - )

IN
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where in the first inequality we used that a2(S) —1 < a%(Sl?ig) —1 <0, since |S| > 27— do,
and |S| — 27 < 0.

Ifm—6p < |Sb1ig\ < |S£Z.g| < 21 — dp, then the proof follows by the same arguments as
in the double phase case.

If |S§ig\ <m—9dp < |S£ig] < 27 — o, then we are in the same situation as in (i), and so

the proof follows by the same argument.
O

4. REGULARITY OF THE FREE BOUNDARY

In this section we derive the regularity of the free boundary in a standard way by combining the
epiperimetric inequality and the Weiss’ monotonicity formula. This is done by first improving
the usual monotonicity of W (u,r), giving a rate of convergence to its limit as » — 0. Using
this rate we then prove the uniqueness of the blow-up at every point, which, combined with the
Lipschitzianity of u, will give the smoothness of the free boundary. The main references for this
section are [§] and [14].

4.1. Improvement on Weiss monotonicity formula. It is well known that for any Lipschitz
function v € H'(B1;R") in any dimension the following identity holds
d

%W‘j(uv T) =

r T

d W5z, 1) = W (u,, 1)] + 1/ |z - Vu, — u |2 dHL (4.1)
0B1

where z.(z) = |z|u, < ) and 0 = OP,DP,V (see for instance [I4] for the one and double-

x
]
phase in the scalar case and [12] for the vectorial case). In dimension two the epiperimetric
inequality allows us to improve the Weiss’ monotonicity identity. Before stating and proving this
improvement, we need a simple lemma that allows us to apply one of the epiperimetric inequalities
above uniformly at points with the same density. In particular we recall that u, . (y) = r~tu(z+
ry) and we introduce the notation

IF(w) ={zecQ: 6Yx) =06},

where the admissible densities are
o if J=0OP, then 6 = 7,
o if 1= DP, then 6 = \1 5, A7, (M1 + )\2)%
o if U=V, then 0 = 3, .

Lemma 4.1. Let Q C R? be an open set and u € HY(Q) a minimizer of the functional &y in
Q. Then for every compact set K € 1 and every dg < m there exists ro > 0 such that for every
x € FWV/Q(u) NK and every 0 < r < g

{|tar| > 0} N OBy| < 21 — 6. (4.2)

Proof. Assume by contradiction that for some dy there exist a sequence of points (x)r C I'xp(u)N
K and of radii 7, — 0, such that the sequence u, := g, r, satisfies

{|ug| > 0} NOB1| > 2w — dy Vk e N. (4.3)

By Lemma the Lipschitz constant of the sequence (ug) is uniformly bounded, and so up to
a subsequence, we can assume that uip — ug uniformly, and moreover x; — xg € '~ /2 (u)NK. It
is a standard argument to see that each wuy is a minimizer of £y, so that ug is also a minimizer
and

{lug] > 0} N By — {Jug| > 0} N By in the Hausdorff distance, (4.4)
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(see for instance [12]). Moreover, by the Weiss monotonicity formula, for every s > 0, p > 0 and
k large enough we have

g < Wv(uka 570) = WV(U’ Tksvl'k:)

= Wv(uﬂaksawk) - WV(UaP, xk) +Wv(u7 pwrk) - Wv(u,p’ l’o) + Wv(ua p>$0)
<0
< Wv(ua pal‘k) - Wv(ua pa$0) + Wv(u,p, 1:0)7

that is, passing to the limit as k — oo, 7/2 < WV (ug, 5,0) < WV (u, p, z¢). Since p is arbitrary,
we get WY (ug, s,0) = m/2 and using again the Weiss monotonicity formula we obtain that ug is
1-homogeneous. However, the only 1-homogeneous minimizers with density 7/2 are the half-plane
solutions ug(x) = h(z) = £ max{0,e -z}, see Lemma so that

{|lug| >0} NOBy| =
which together with (4.3) and (4.4]) gives the desired contradiction. O

Proposition 4.2 (Decay of the Monotonicity formula). Suppose that u is a minimizer of the
functional &7 in the open set Q C R2, where O = OP,DP,V. Then there exists a universal
constant € > 0 such that for every compact set K &€ €) there is a constant C' > 0 for which the
following inequality holds

WE(u, 7, 20) — 0 (20) < C71 (W (u, 1, 20) — O (20)) 0 <7 < dist(K,09), Vo € I'F(u)NK

where § = O (x0) is any of the 2-dimensional densities O (x¢) = m/2, OPF (x9) = (M1 +A2)7/2

and O} (zo) = /2 or m, and we have set y := £=.

Proof. Assume w.l.o.g. that xg = 0 and let us drop the [J. By Lemma [4.1] combined with

Theorems and |3 for each one of our functionals and every possible density there exists a
radius 79 > 0 such that we can apply the epiperimetric inequality in (4.1]), to obtain

d

— (W (u,r) — ©,(0)) = Z[WD(ZT, 1) — W(u,,1)] + 1/ 2 - Vu, — u,|* dH?
dr r T JoB,
= 2 (W (zr,1) — ©4,(0) — W (uy, 1) + 0,(0)] + 1/ |z - Vu, — up|? dH!
T r 8B,
2 ¢ 1 9 a1l
> = (W (up, 1) — 0,4(0)) + = |z - Vu, —up|*dH > — (W(up, 1) — 0,(0)) , (4.5)
rl—e r JoB, T

where we used the minimality of u, with respect to its boundary datum, the positivity of the last

term in (4.1) and one of the epiperimetric inequalities (1.4)), (1.5)), (1.6) or (1.7) depending on

the density. Integrating this differential inequality, we conclude that
(W (u,r,x0) — Oulzo)) < Cr7(W(u,1,z0) — Oy(x0)) VO<r<mg.

In order to conclude the proof it is enough to observe that for every g € I'y(u) N K € By this
decay can be derived by the same arguments with a constant C' > 0 which depends only on
W(u,1,z09) — ©y(z0) > 0 (by monotonicity) and dist(K, 0B). O

4.2. Uniqueness of the blow-up limit. Using the decay of W (u,r, zg) of the previous propo-
sition we can now easily prove that the blow-up limit is unique at every free boundary point.

Proposition 4.3. Let Q C R? be an open set and u € HY(Q) a minimizer of Eq, where O =
OP,DP or V. Then for every compact set K € (), there is a constant C > 0 such that for every
free boundary point xq € I‘E(u) N K, the following decay holds

[Uo,t — Uag sllL20m1) < ct forall 0<s<t<dist(K,0Q), (4.6)

where v is the exponent from Proposition and 0 = OY(x0) is any of the 2-dimensional densities
09 (z0) = m/2, OPF(20) = (A1 + X2)7/2 and ©Y () = 7/2 or T.
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Proof. We are going to treat all the cases at once. Let us assume without loss of generality that
o = 0 and let us drop the 0. Notice that we can rewrite (4.5) as

d |W — 0,(0 1

_ (U7T) ’u( ) Z / ‘117 . VUT _ ur|2 de*l. (47)
dr rY 7 Jop,

Next let 0 < s <t < rg and compute

t 2
/ g — ug? d?—[1§/ </ 1]x~Vur—uT] dr> dH*
0B 0By \Js T
¢ ¢
< / (/ r dr) (/ rY Y e Ve, — u)? dr> dH?
0B1 s s

1 t
<=7 - 57)/ rl'y/ |z - Vu, — up|* dH dr
v s 0B1
@7 ¢t —
g 0otd [W(u,m @um)} 0
v Js dr 77
g _ _ g
_ <W(u, t) —0u4(0)  W(u,s) @u(0)> < Ct ’ (4.8)
g 7 s7 v
where in the last inequality we used the positivity of W (u,s) — ©,(0) and the estimate from
Proposition O

Proof of Theorem 4. In the cases (OP) and (DP) the claim follows immediately from
and the classification of the 2-dimensional blow-up limits due to Alt-Caffarelli and Alt-Caffarelli-
Friedman (see [I} 22]). For the case (V), again the uniqueness part follows from (4.6]), while the
classification of the blow-ups from Lemma It only remains to prove the last statement of
the second bullet. Suppose that the free-boundary point zg is the origin. Moreover assume
that the blow-up is such that e; # ey and that there exists a sequence (zy)r C Of|u| > 0}
with z — 0. Let 7 := |z)| and consider the rescaled functions u,, and the sequence of points
Yk := x1/|zk|. By uniqueness of the blow-up u,, — h uniformly, and also yx — y € S, so that
h(y) = 0. However, since y = y'e; + y% ez, with at least one of y1, y2 not zero, it follows that
|h[(y) > |he,|(y) + |he,|(y) > 0, a contradiction.

This implies that, in the non isolated points of the free boundary of density 7 the unique tangent
function is of the form h := £ h,, for some e € S*. O

4.3. Regularity of the one-phase free boundary. In this subsection we prove that the whole
free boundary d{u > 0} is smooth when the scalar function w is a solution of the one-phase
functional Epp.

Proof of Theorem (5| (OP). Notice that, by Proposition and Theorem (4] for every zo €
QN o{u > 0}, the unique blow-up of the rescaled functions ug, , has the form

Uz 0(T) =1 he(zo) () = max{0,z - e(zo)}, for every x€ R?,

where e(z9) € S. In particular, we have that Q N d{u > 0} = T’ 5 (u).
We claim that

the function By N {|u| > 0} > z+ e(x) € S' is Holder continuous.

To see this, let r := |zg —yo|' =, with a := 7/(2++), where « is as in Proposition Notice that
the Lipschitz continuity of u (see Section [2.1)) implies that for every x € 9By we have

1
[u® (x) — u¥ (x)| < rt /0 ‘(azo — ) - Vu(s(mo +rx) 4+ (1 —s)(yo + m’))‘ ds

<Vl v a0 = yol < [ Vullzes 20 — yol*
and so, integrating on 0B and setting L to be the Lipschitz constant of u, L = ||Vul|g~, we get
Jur® = u¥\l L2 0my) < L |0 — o™ - (4.9)
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On the other hand, it is easy to see that for every pair of vectors v, vy € R? we have

1 2
lv1 — va| = </ \vl-x—vz-a:|2dx>
™ JoB,

— (1 / o)~ (o x>+r2da:) " (4.10)

s

which gives that
o) = e(u0)| < —=lhetag = heam 20, (4.11)
Combining , and with a triangular inequality, we get
le(zo) — e(¥o)| < 2 [|he(zy) = Peyo) l2(081)

<2 (JJuf® = Peguo) | 2208y + 1ur® — w2\l L20B,) + U = Peyo)lL2(081))

<2 (L lzo — ol ™ + 207”/2) = (2L +4C) |z — yo|* . (4.12)
Next, for every z9 € I'x,(u) and any ¢ > 0, we introduce the cones

C*(xg,€) = {z € R\ {0} : £(z — x0) - e(xo) > €|z — x0l},

and we claim that for every ¢ > 0 there exists § > 0 such that for every xg € I'xj(u) N B, the
following holds:
lu| >0 on Cir(xo, ) N Bs(xo) (4.13)
lul =0 on C~(xg,e) N Bs(xg),
from which the theorem immediately follows as in [§, Proposition 4.10]. To prove the claim we
assume by contradiction that there exists z; € 'z, N B, with z; — xo and y; € C™(zj,¢) with
|y; —x;| — 0 such that |u(y;)| = 0. Consider the rescalings u; := uy; ,,, where r; := |z; —y;|, then
by the C%!-regularity of u (see (i) Lemma [2.2)) and the fact that we are rescaling geometrically,
we deduce that, up to a subsequence, the u; converges uniformly to ug := uz,0 = h . By the
(y; — 5)
rj
|uol(2) = |Re(ag)|(2) = | max{0,e(xo) - 2}[ = €|2] = > 0.

e(zo)

Holder continuity of e, we can assume that — z € CT(xp,¢) NS, which implies that

On the other hand, by the uniform convergence of u; we also have |ug|(z) = 0, which is a
contradiction. O

4.4. Regularity of the free boundary of vector-valued minimizers. This subsection is
dedicated to the proof of Theorem [5 (V). The argument is precisely the same as in the scalar
case, except for the fact that (see Theorem [4]) the possible densities at the boundary points are
two: 7/2, where the free boundary is smooth and behaves precisely as the free boundary of a
scalar one-phase solution, and 7, where the behavior is of double-phase type or cusps may be
formed (see Example [1)).

Proof of Theorem 5 (V). Let u :  — R" be a minimizer of £y in the open set Q C R%. We
recall that the free boundary QN d{|u| > 0} can be subdivided into two disjoint sets:

Qnoflul >0} = F,,/2 url,,
where

Ty — {xo € offul > 0} : O} (x0) := lim WY (u,r0) = 9}.

We first notice that I'; /5 is an open subset of the free boundary. Since r — WV (u,r, o) is non-
decreasing and xg — WV (u,r,2¢) is continuous, we get that ©Y : Q N d{|u| > 0} — R is upper
semi-continuous and thus I'; /; is an open subset of the free boundary. By the uniqueness of the
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blow-up limits and the Hausdorff convergence of the blow-up sequences (see [12]) we get that
'z /2 coincides precisely with the measure theoretic reduced boundary 9cq{|u| > 0}.

Let g € 'y /5 and 79 > 0 be such that dist(zg, 9S2) > ro and dist(zo,'z) > ro. By Proposition
[4.3] we have that for some constant C'

|zt — Uz sl 20m,) < Ct forall 0 < s <t <dist(K,09), (4.14)

for every x € By,(z0). We are now going to prove that the free boundary 0f{|u| > 0} is Ch
reqular in By, (o). Let x1,x2 € Byy(x¢) and let £1he, and £2he, be the blow-up limits in x; and
x9, where he(r) = max{0,z - e}, e1,e2 € 9B; C R? and £1,& € 9By C R™. By (4.11]) we get that
2 2
ler —eg] < ﬁ”hel — hes |2 0By) < ﬁ”ﬁlhel — &hes L2 (08y)-

Now reasoning as in (4.12)) we get that
le1 — ea] < Colzy — 22|,

where C is a constant depending only on zp and 79 and « = /(2 + 7). Now, by the same
argument as in Subsection Oreal{|u| > 0} is locally a graph of a C1< function in B, (zo). O

4.5. Regularity of the free boundary for the double-phase problem. In this subsection
we prove Theorem [5{ (DP). We are going to show that the normal to the double-phase boundary is
C%¢, which will imply that the positive and the negative parts of the solution of the double-phase
problem are actualy solutions of the classical one-phase free boundary problem in its viscosity
formulation (we notice that at this point we will have to apply some result from the classical
theory and not Theorem [5| (OP) which applies only to variational solutions).

Let u € H'(Q2) be a local minimizer of the functional Epp and suppose that u changes sign in
the open set  C R%2. We decompose the free boundary d{u # 0} as follows:

8{U#O}IFDPUP+UF_,
where I'pp = {u > 0} No{u < 0}, 'y = 9{u > 0} \ d{u < 0} and I'_ = 9{u < 0} \ d{u > 0}.

By the classification of the blow-up limits we have that
()\1 + )\2)7'(/2 if g€ T'pp,
ODP(g4) := li_r)%WDP(u,xo,r) = Nm/2 if xgely,
)\271'/2 if xoel_.

Since the function WPF (u,z,r) is continuous in x and monotone in r we have that 2% is upper
semi-continuos and so I'pp is a closed subset of O{u # 0}. As a consequence I'y and I'_ are
open and disjoint. In particular, they are locally the free-boundaries of the solutions vy and u_
of a one-phase problem. Thus, they are both smooth. We now concentrate our attention at the
double-phase boundary I'pp.

Lemma 4.4. Suppose that u : Q — R is a local minimizer of Epp in the open set Q C R? and
let Tpp = 0{u >0} No{u <0}. Let ro >0 and Q,, = {x € Q : dist(x,0Q) > ro}. Then, there
s a constant Co > 0 such that, for every xo,yo € I'pp Ny, we have

[ (o) — pa(yo)| + |2(zo) — p2(yo)| < Colzo —yo|™  and |e(zo) —e(yo)| < Colzo —yol®, (4.15)

where e(xg), e(yo) the normal vectors to the free boundary in xoy and yo and the constants
w1 (o), p2(zo), p1(yo), n2(yo) are determined by the blow-up limits ug,, wy, of u in xo and yo,
precisely

Ugy () = p1(xo) max{0, e(zo) - } + p2(zo) min{0, e(zo) - x},
Uy, (z) = p1(yo) max{0, e(yo) - x} + p2(yo) min{0, e(yo) - z}.
In particular, Tpp is locally a closed subset of the graph of a C*% function.
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Proof. We first notice that by Proposition there is a constant Cy, depending on rq, such that
|ty 2o — UonL?(aBl) < Cor? forevery zp€l'ppNQ,, and 0<7r <.

Now the Lipschitz continuity of u gives that there is a constant (still denoted by Cp) such that

1Urwg — Uag || Loo(By) < Cor?  for every x9 € PppN €y and 0 <7 < 7p. (4.16)
Now setting r := |zg — yo|'™® and a := 7/(2++), and reasoning as in we get

[ty — uyoHLw(Bl) < Hunmo - umo”LOO(Bl) + 2 — uhyoHLw(Bl) + [ty 2y — “wo”LOO(Bl)
< (C'orw/2 + %\1’0 — Yol + C'OT’m) = (Lo +2Cy) |wo — yol® ,
where L is the Lipschitz constant of v in 2,,. Now using the fact that
Jugy — ugo oo (myy < Ntay — tyoll oo (),
and the inequality we get that
|1 (wo)e(xo) — pa(yo)e(yo)| < Colzo — yol*-

Using the fact that Ay < pq(x0), p1(yo) < Lo, we get that for some constant Cy

l1(zo) — p1(yo)| < Colwo — yol® and  |e(wo) — e(yo)| < Colzo — yo|?,

which concludes the proof of (4.15)), the argument for py being analogous. The last claim follows
by the same argument as in the proof of Theorem |5 (OP). O

Remark 4.5. By (4.16]) we have that, if g € Q,, NT'pp, then
|u(z) —u(xo) — p (o) (z — 20) - e(x0)| < Colz—zo|'7  for every € By (wo)N{u > 0}. (4.17)

In particular, u is differentiable on {u > 0} up to z¢ and |Vu(zg)| = p1(xo). The analogous result
holds on the boundary I'y. In fact, if g € Q@ NIy, then there is some rg > 0 such that

|u(z) — u(wo) — Ai(z — q) - e(xo)| < Colz — zo|"7 for every x € By (x0) N {u > 0}.

Lemma 4.6. Suppose that u : Q — R is a local minimizer of EPT in the open set @ C R2. Then
there is a C% continuous function pi : O{u > 0}NQ — R such that py > N\ and uy is a solution
of the one-phase problem

Auy =0 in {u>0}, [Vug|=p1 on 0{u>0}NQ,
that is, for every xo € O{u > 0}, there is a unit vector e(xy) € dB1 C R? such that
uy(x) = p1(zo)(z — o) - e(xo) + o(|x — xo|)  for every =z € {u > 0}.

Proof. The existence of a function u; is given by Remark The only point to prove is the C%®
continuity of pp. Since pp is Holder continuous on I'pp and constant on I'y, we just need to show
that if 9 € I'pp is such that there is a sequence x,, € I'; converging to xq , then uq(xg) = Aq.
Suppose that this is not the case and that pq(xg) > A;. Let y, be the projection of z, on the
closed set I'pp. Setting r, = |z, — yn| and u, () = %U.ﬁr (zpn, + rpx) we have that u, is a solution
of the free boundary problem

Au, =0 in {u, >0}, IVu,| =A1 on H{u, >0}NBy.

Since u,, are uniformly Lipschitz they converge to a function u., which is also a viscosity solution
(see [7]) of the same problem. On the other hand, by (4.17)), we have that us, = p1(xg) max{0,z-
e(xo)}, which gives that necessarily () = A1. O

Proof of Theorem |5/ (DP). The proof follows by Lemma and the regularity result for the
one-phase problem (see, for example [7]). O
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4.6. An example of a non-smooth free boundary. As stated in Example[T} in this subsection
we will show that there exists a local minimizer u : R> — R? of the functional & for which
(1) ©Q, = {|u| > 0} is a connencted open set;
(2) there is a point xg € 982, of density O (zo) = .
In order to construct a solution with the properties (1) and (2) described above, we consider the
following situation:

e Consider the two balls B’ := By and B” := B;(3,0) in R2.

e Let C' > 0 be a sufficiently large numerical constant (C' = 10 is one possible choice).

e Let € > 0 and u. = (ul,u?) be a solution of the problem
min {5V(u) L ue H'R%ERY), u=((1+)C,C)on B, u=(C,C) on B"}. (4.18)

e Denote by €. the open set {|uc| > 0}.
We claim the following:

(i) The solutions u. are locally Lipschitz continuous in R? \ (B’ U B”) with Lipschitz constants
that does not depend on e. This follows directly by Lemma [2.2

(ii) The sets €2, are open and connected.
Proof: Suppose that this is not the case. Then Q. has two connected components QF,
containing B’, and €7, containing B”. Then we have that ul = (1 + ¢)u? on QF and

ul = 2 is a solution of the double-phase problem

£
u? on Q. Moreover, the function v. = u

min{(l+(1+5)2)/ ]Vv+]2+2/ Vo > +[{v#0}| : v=Con B, v:—ConB”}.
R? R?

We first notice that the double-phase boundary {v. > 0}N{v. < 0} is non-empty. Indeed,
suppose that this is not the case. Then the sets {v. > 0} and {v. < 0} are distant and the
functions v} and v_ are local solutions of the one-phase problems

min{(1+(1—|—5)2)/2|V1}+|2+]{v+>O}] vy =Con B},
R

min{2/ Vo > 4+ [{v_ >0} : v_=Con B”}.

R2

In particular, we have that the free boundaries 9{v. > 0} and d{v. < 0} are smooth and
Vo2 =1+ (1+¢)? on 9{v. >0}, and Voo ?=2 on d{v. <0}.

Consider the radial test function ¢¢(x) = t — 9ln|z| and let ¢y > 0 be the largest t for

which ¢; < v} on R% 1If ¢y < C, then there is a free boundary point zg € 9{v. > 0}

such that ¢; touches v} from below in zg (that is v} — ¢; has a local minimum in zy and
v} (x0) = ¢¢(x0) = 0). Then

|x90| — [Ver|(z0) < [V |(wo) = VI + (1 +2)2 < 3.

Thus |zo| > 3 and so v > 0 on the ball Bs which is impossible. Then we have that ty = C
and so, {¢c > 0} C {ve > 0}. On the other hand, the set {¢c > 0} is a ball of radius
R = exp(C/9), which again intersects the ball B” if we choose C large enough. Thus, we
have that the double-phase boundary d{v. > 0} N 9{v. < 0} is non-empty. Moreover, by
the same argument, there is a point zg € d{v. > 0} N d{v. < 0} such that |V |(zo) > 3.
Now for € small enough the optimality condition

1 1

2 14+ (14¢)?
implies that also |V |(xz0) > 2. By the continuity of the normal derivative, there is a radius
ro > 0 such that the ball B, (z¢) contains only double-phase boundary

By (z0) N 0{v: # 0} = By, (z0) NO{v: > 0} N O{ve < 0}.

Vol P = Voo | = on 9{v. >0} Nd{v. < 0},
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In particular, the set {v. = 0} has measure zero in By and so the functions u! and u? are both
harmonic (and so, smooth) in B, (7). Now since ul = u? on - we get that |Vul|(zg) =
|Vu2|(x0), while since ul = (1+¢)u2 on QF we get that |Vul|(xg) = (1+¢)|Vu2|(zg), which
is impossible since by the choice of xg the gradient is non-zero in this point. Thus, the set
Q. has to be connected. g
Up to a subsequence, u. converges in H!(R?;R?) and locally uniformly in R? \ (B’ U B") to
a function ug, solution of the problem with € = 0. The uniform convergence follows
by the fact that the family of functions is locally uniformly Lipschitz, while the fact that wug
is a minimizer follows by a standard argument, usually applied to blow-up sequences (see
for example [12]).

The function ug has two equal components v := u(l) = u% that are solutions of the double-
phase problem

min{/ Vol +[{v#0} : ve HY(R?), v=Con B, v=—-C on B"}. (4.19)
R2

This claim is just a consequence of the fact that the components of ug are harmonic functions
on the same domain with the same boundary datum.

There is a point zg € d{v > 0} N d{v < 0} such that there are points of the one-phase
free boundary (9{v > 0} \ 0{v < 0}) U (0{v < 0} \ 9{v > 0}) arbitrarily close to x¢, that
is xg is on the boundary of the one-phase free-boundary. The same argument as the one
that we used in the proof of (7i) shows that the double-phase boundary is non-empty d{v >
0} N9{v < 0} # 0. Moreover, at least one of the boundaries d{v > 0} \ 9{v < 0} and
o{v < 0} \ 9{v > 0} is non-empty (it is easy to show that the point of d{v # 0} at the
largest possible distance from zero has to be a one-phase point since the density of the set
{v # 0} cannot exceed 1/2 in that point).

There are 79 > 0 and ¢ > 0 such that u. has a point of density 7 in B,,(zo). Suppose by
contradiction that this is not the case. Then, we can apply the epiperimetric inequality at
a uniform scale, that is there exist constants Cy > 0 and rg > 0 such that for every € > 0

[te zwr — UezllLoo(By) < Cor?  for every x € Byy(zo), 0 <1 <o,

1

where uc ;. (y) = Jue(z +ry) and ue , = li_r>r(1) Ue z,r. As a consequence, we get
T

le=(x) — ec(y)| < Colz —y|*  for every 2,y € Bry(20),

where e.(z) and e.(y) are the exterior normals to x and y. On the other hand, let x4 €
0{v > 0} \ 9{v < 0} be sufficiently close to zyg. We notice that for » > 0 sufficiently small
we have B, (x4) C By, (zo) and

10,24, — w00 [l Loe (1) < Cor”

By the convergence of u. — ug we have
ilj}’(l) ||uE,I+,T - u07x+7THLOO(Bl) = 0'

Now choosing € > 0 small enough, there are free-boundary points 1 € 9, arbitrarily close
to x4, that is liné xl = z4. Then also eg(z4) = lim. 0 |e-(zF). In particular, all the free
E—>

boundaries 9. are C1® graphs in the ball By, (x0) with uniform constants. Thus, also the
limit has to be a C1® graph, which is a contradiction with the fact that the density of the
set Qo = {|up| > 0} in zp is one.
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4.7. Proof of Corollary @. We start by noticing that, if u = (u!,...,u") € HY(;R) is a
minimizer of £y, then for every ¢ € C1() we have

2y _ - iNT T - iT T
/QQZ)A(M])— 2;/qu¢ Vu 2;/9 u'Vo-Vu

N{|u|>0}

=2 / put Aut 42 /
ZZ:; QN{|u|>0} ; Q

_ / 6| Duf?,
QN{|u|>0}

where we used the fact that Au’ = 0 on QN {|u| > 0}. In particular we have
A(Jul®) = 2[Dul® x{ju>0; on €, (4.20)

n

¢\Vui|2—22/ puld,ul

N{|u|>0} i—1 Y QNo{|ul>0}

that is |u|? solves an obstacle type problem. Next we claim that
|Du| € C%(Q N {|u] > 0}) and |Du| > 1 on QN of|u| > 0}. (4.21)

Notice that implies that the set A := QN ({Ju| = 0} U{|Du| > 1}) is open, and so the
conclusion follows by [4, Theorem 1] applied to the function |u|? and A¢ = 2|Du|?> > 5 which is
C%<. In particular notice that the assumption |u| > 0 on 9Q guarantees that A CC €, so that
the Theorem can indeed be applied.

To prove (4.21)) we observe that, proceeding as in the proof of Theorem [5[ (V) and (DP) we
immediately deduce that for every zo € 0{|u| > 0} = I'; UT'x), there exists a radius ro such that

|u(a) —u(wo) — &(x0) (@ — x0) - (o) | < Colz — x0T for every z € By, (z0)N{|u| > 0}. (4.22)

where [£](zo) = 1 if 29 € T'xj, and £ € C%*(I'r; R™). Now the conclusion follows by the same
reasoning as in the proof of Lemmawith p1 =& M =1,Tpp =Ty and I'y =Txp, and using
the fact that also in the vectorial case the limit of viscosity solutions to

Au=0 in {|ul >0}, |Dul=1 on 0{|u| >0} N By,

is a viscosity solution (see for instance [12]).

4.8. Proof of Theorem |7, We are going to give the proof only for the case Sg) p» the other two
cases being analogous. We start by showing that Proposition holds in this case too. Indeed
notice that, if v is a minimizer of £} in a ball B,(zg) C 2, then

/ |VM2+q@@Hu>O}ﬂBAQMf§/ Vo2 + g(zo) [{v > 0} N By (wo)| + C 12+,
By (zo By (330)

where we used that ¢ € C%® and C depends only on ¢q. Rescaling everything by q(xg), we can
assume that ¢(z¢) = 1, and so w is an almost minimizer for the functional Epp, that is for every
xo € Q and every 0 < r < dist(zg, 092) we have

/ |Vu|* + [{u > 0} N B, (x0)| < / Vo2 + [{v > 0} N By(xo)| + Cr*Te. (4.23)
By (zo

By (xzg

Next, using (4.1), which holds for any function, applied to u;s,, combined with the almost
monotonicity (4.23)), we get

£ o -3) 22 (5 (W -5) o).

Let us denote by ®(r) := W (u,,1) — §, then the previous inequality reads

2
0§¢Wﬁ—<165

) T‘_l‘I)(T) +Cret
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so that, multiplying both sides by =7, with v = 12% we get

67
—Cro < (tl)(r) 7"77)/ .

Choosing ¢ small enough depending only on ¢, we can assume that o —~ > 0, so that integrating
the previous inequality we conclude

®(s) + Cs* _ @(t) +Ct°

< forevery 0<s<t<rg.
sY tY

Reasoning as in Proposition this implies that there exists a universal constant v > 0 such
that for every compact set K € € there is a constant C' > 0 for which the following inequality
holds

WOP (u, 7, z0) — g <Cr? (WOP(u, 1,z0) — g) 0 <r<dist(K,00), Voo € 0{u >0} N K.
Applying this estimate together with , and reasoning as in proposition we immediately
conclude that for every compact set K & (), there is a constant C' > 0 such that for every free
boundary point zg € 9{u > 0} N K, the following decay holds

tzg,t — Uaosll20B,) < ci” for all 0< s <t < dist(K,00). (4.24)

Reasoning as in the proofs of Theorems [4 and [5 the conclusion easily follow.
O
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