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Problem Statement

%_?(t’x):g%(tjx) t>0, x e (0,m),
(BCH) \ w(t,0) = ug(t), w(t,7)=ur(t) t € [0,00),
| w(0,2) =0 z € (0,m),

Given 7 > 0, define the input to state map

Ur

O [“’0] = w(r,") (1 >0, ug, ur € L2[0,7]),

Basic question: what can we say about Ran ®,7
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EXxisting results

Given 7 > 0 it is known that:
e Ran®, ¢ W~1%(0, 7);

e Ran ®. C HOL(D), where
D={s=xz+iyeC | |yl <z and |y| <7 —z};

e Ran®, O {¢p € HOL(S) | ¥ (0) = 4¥) (1) = 0 for k € N}, where
S={s=x+iyeC | |yl <n} (Fattorini and Russell, 1971);

e Ran®. O HOL(B), where B = {S e C | }S — %‘ < %e@e)_1 }
(Martin, Rosier and Rouchon, 2016);

e For every ¢ > 0 we have Ran®, D HOL(D.), where D, is an e&-
neighbourhood of the square D (Dardé and Ervedoza, 2016).
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Main new results

Proposition 1. For every 7 > 0 we have Ran ®, C A%*(D), where

A%(D) = {f € HOL(D f|f +4y)|* dedy < oo}

Theorem 1. For every T > 0 we have Ran ®, D E?(D), where

EX(D) = {f €HOL(D) | [ 7(Q)F1d¢] < o).
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I 3
|
BBBBBBBB

Benasque, 2017



Outline

» Some background on control operators

* The 1D heat equation with boundary control: various
representations of the solution

 Proof of the regularity result
« Aresult of Alkawa, Hayashi and Saitoh
 Proof of Proposition 1

* Proof of the main result
» Aresult of Levin and Ljubarskii
 Proof of Theorem 1

e Extensions and comments

Institut de
athématiques de

Benasque, 2017



Some background on
control operators
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Some notation

We consider control systems described by equations of the form
(SE) 2(t) = Az(t) + Bult), with

e X (the state space) and U (the input space) are complex Hilbert
spaces. We have X = C" and U = C™ for finite-dimensional con-
trol systems.

e T = (Ty);>0 is a strongly continuous semigroup on X generated by
A. We have T; = et4 for for finite-dimensional control systems. X3

is D(A) endowed with the graph norm and X_; is the dual of D(A*)
with respect to the pivot space X.

e B e L(U;X 1) is the control operator.
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Admissible control operators

The solution of (SE) writes:
z(t) = Tyz(0) + Pyu,

where T is the semigroup generated by A and

t
D, € L(L2([0,00): U), X_1), ®u = / T,_, Bu(o)do.
0

Definition.B s called an admissble control operator for T if Ran ®; C X
for one (and hence all) t > 0.

Example. Take A = —Ag with Ay > 0. For a > 0, denote X, = D(Af)
and X_, 1s the dual of X, with respect to the pivot space X. Then every
operator B € L(U, X_1) is admissible.
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Controllability types

(A, B) is said ezactly controllable in time 7 if Ran &, = X.

(A, B) is said null controllable in time 7 if Ran ®; D Ran T,. This is equiv-
alent to the existence, for eaxh 29 € X of u € L?[0,7];U) such that the

solution of
2(t) = Az(t) + Bu(t), 2(0) = zp,

satisfies z(7) = 0.

(A, B) is approximatively controllable in time 7 if Ran &, = X.

The three above concepts coincide with the usual controllability
concept in the case of finite dimensional LT1Is.
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Null controllability and reachable space

Proposition. (Fattorini, Seidman) If (A, B) is null controllable in any
tyime then Ran ®, does not depend on 7 > 0.

Proof. Let 0 < 7 < t, n € Ran®, and let u = [30] be a control such that
w(T,-) =n. Let u be the control defined by
0 for o €0,t— 7],
u(o) =9 _
w(oc+7—t) for o€ lt—rT,tl.

Then w(t,-) = n, thus Ran &, C Ran ®;.

~

Let now n € Ran ®; and u(o) = u(o +1t — 7), w(o) =w(oc+t—r,-).
Then n =w(t,-) = w(r, ) = T;w(0,-) + ®,u. Since Ran®, D RanT,, we
have n € Ran ®,, thus Ran ®; C Ran ...

W o o
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The commercial break:
for the controllability
theory of linear time
Invariant systems

one can see

Observation and Control

for Operator Semigroups
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The 1D heat equation with
boundary control:
various representations of
the solution
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Fourler series expansion

Writting ®;u = w(t,-) in the form w(t, ) = > -, wy(t) sin (n7z),
we obtain the formula

(Pru)(x) = %;n [/OT ey (o) da] sin(nx)

n % S n(—1)m ! [ /0 "m0y (o) da] sin(nz) (1 >0, € (0,7)),

n=1

The above representation is at the basis of the classical results of Fattorini
and Russell who showed, in particular, the null controllability in any time.

The same formula does not seem useful to prove our new results.
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Sum of Gaussians

Proposition. (®,u)(z) = [, Bgio (1—0,z)up(0) do+ [ 8}; , x)ur(o)do,
where
1 (a:—l—2m7r)2
K = — e - o
o(o, x) — Z e 4 (0 >0, x € R),
meZ
K ( ) 1 Z _(:B—F(QT—I)?T)Q ( >0 c R)
T O-, ) = - c a o 9 i ’
o
meZ

Proof. Apply the Poisson summation formula to the Fourier series represen-
tation or use the method of images.
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Proof of the regularity result
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A decomposition

. T 0Ky
(@) (z) = (Bru)(z) + (CIJTu) @)+ [ 221 — o, 2)up(0) do
0 833
—I—/ 0K+ (1 — 0,2)ur (o) do (x € (0,7)),
0 ox
82 ~
where (®.u)(s) \/_ JTe - 4(; 3‘2 su(o)do, (Pru)(s) = (Pru)(m — s)
(:c—|—2m7r)2 ~ 1 . (:c+(2m—1)7r)2
\/ Z e 10, Ki(o,x)= — Ze 1o .
TREZ* meZ*

 (st+km)? k2

Since |(s + km)e” 4= 0)‘ < ak?eT- for k € Z\ {—1,0} and s € D,
it suffices to show that the ﬁrst two terms in the right-hand side of can be
extended to a function holomorphic in A%(D).
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A result of Aikawa, Hayashi and Saitoh

Theorem. Let A= {seC | —Z<args<Z}. Forse A, >0 and
f € L?[0, 7] we set

S2
Se 4(1’—0‘)

2\/7(T —0)?

Then P, defines an isometric isomorphism from L?[0,7] onto A%(A,wy),
Re(sQ)
where wy(s) = <= (s € A).

f(o)V/o do.

P = [

Corollary. ®, € £(L?[0,7], A%(D)).

This ends the proof of the regularity result.
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Proof of the main result
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A result of Levin and Ljubarskii

Theorem. Let A ={(2k+1)(1+14): k€ Z} and

(7Im )\ for \ € I'y,
1 | —mReX for A €Iy,
2| —xlm\ for \ € I's,
\WRe)\ for A € I'y.

Then the family (gy), ., defined by

AEA
gr(s) = Mo~ 5 e HO (Ae A, seC),

is a Riesz basis in E?(D).
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A decomposition result in E#(D)

Lemma 1. Let 7 > 0 and ¢ € E*(D). Then there exists o1 € A%(A,wp),
9 € A%(m — A, wy) such that

p(s) = p1(s) + pa(s) (s € D).

Proof. Let ¢ € E*(D) with ¢ = >, axgx. Roughly speaking, we define

1= Y axgx and @a= ) axgy,

AEA AEA
Re A<0 Re A>0

and we use Hilbert’s inequality to prove the required estimates.
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Proof of the main result

Let M, € £ ((L*([0,7]))% A%(A,wp) x A% (7 — A,w;)) be defined by

M L PT_I_RA,T RC,T
T }%IB,T C??"+‘-1313;T- |
Since
58
Qe 2(z2(10,71))2,42(A o) x A2 (1A )
lim gA’T gC’T] =0,
ToOH LB DT £((12((0,m]))2,A%(A wo) X A2 (1 — A wn))

we have that M, is invertible, at least for 7 small enough. The result follows

b lying L L.
y applying Lemma 5
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Extensions and comments
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Dirichlet control at one end

4 W 2
88—t(t,:c) CZ) - (t, ) t>0, ze€(0,m),
Y w(t,0) =ug(t), wt,7)=0 t €0, 00),
- w(0,2) =0 z e (0,m).

Given 7 > 0, we are interested in the range of the input to state map:
®Vug = w(r, -) (ug € L?[0,7]).

Proposition. Denote G ={s=x+iy € C | |y| <z and |y| <27 —x},,
A2(G) ={y € A2(G) | ¥(s)+v(2r —s)=0 forall s e G},

E2G)={y € E*G) | ¥(s)+v(2r—s)=0 forall seG}.

Then

Bordeaux
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Neumann control at both ends

%(t, T) = gf(t T) t>0, ze(0,7),
| 2(t0) = uo(t), F(t7) = us(t) t€10,00),
L 0(0,2) =0 z€(0m).

uQ

The input to state map is &N [u

] =0(r, ) (ug, ur € L?[0,7]).

Proposition. We have E%1(D) c Ran @YY c W21(D) n Hol(D), where
E?%1(D) is the Smirnov-Sobolev space

E*Y(D) = {f € Hol(D) | f' € E*(D)}. (1)

ttttttt
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Some perspectives

e Considering 1D parabolic equations with analytic coeflicients;
e Several space dimensions?
e Consequences for inverse problems:;

e Consequences for time optimal control problems;
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