A quantitative Fattorini-Hautus test: the minimal null control time problem in the parabolic setting

Morgan MORANCEY

I2M, Aix-Marseille Université

August 2017

"Controllability of parabolic equations: new results and open problems"

- Control theory and duality
 - Abstract setting
 - Unique continuation
 - Observability inequalities
- 2 Some known criterion for controllability
 - Hautus test
 - Fattorini criterion
 - A necessary inequality
- 3 A quantitative Fattorini-Hautus test
 - Definition of the minimal time
 - Examples of minimal null controllability time in the parabolic setting
 - A necessary and sufficient condition for null controllability
- Open problems

- Control theory and duality
 - \bullet Abstract setting
 - Unique continuation
 - Observability inequalities
- 2 Some known criterion for controllability
- 3 A quantitative Fattorini-Hautus test
- 4 Open problems

Abstract linear control problem

$$\begin{cases} y'(t) = Ay(t) + Bu(t), & t \in (0, T), \\ y(0) = y_0, \end{cases}$$
 (S)

where

- A generates a C^0 -semigroup on the Hilbert space $(H, \|\cdot\|)$,
- the space of controls is the separable Hilbert space $(U, \| \cdot \|_U)$,
- the control operator $B \in \mathcal{L}(U, D(A^*)')$ is assumed to be admissible

$$\exists K_T > 0$$
, such that $\int_0^T \|B^* e^{tA^*} z\|_U^2 dt \le K_T \|z\|^2$, $\forall z \in D(A^*)$.

Wellposedness

Let T > 0. For any $y_0 \in H$ and any $u \in L^2(0,T;U)$, a solution $y \in C^0([0,T],H)$ is defined by

$$\langle y(t), z \rangle - \langle y_0, e^{tA^*}z \rangle = \int_0^t \langle u(\tau), B^*e^{(t-\tau)A^*}z \rangle_U d\tau, \quad \forall t \in [0, T], \ \forall z \in H.$$

Wellposedness

For any $y_0 \in H$ and any $u \in L^2(0,T;U)$, there exists a unique solution $y \in C^0([0,T],H)$. Moreover, there exists C > 0 such that for any y_0 , u, the solution satisfies

$$\|y(t)\| \leq C \left(\|y_0\| + \|u\|_{L^2(0,T;U)}\right), \quad \forall t \in [0,T].$$

Approximate controllability/unique continuation

- Approximate controllability in time T: for any $y_0, y_1 \in H$, for any $\varepsilon > 0$, there exists $u \in L^2(0,T;U)$ such that $||y(T) y_1|| \le \varepsilon$.
- Let $y_0 = 0$ and define the input-to-state map

$$L_T: L^2(0,T;U) \to H$$

$$u \mapsto y(T)$$

Approximate controllability in time $T \iff \overline{L_T(L^2(0,T;U))} = H$ $\iff \operatorname{Ker} L_T^* = \{0\}.$

For any $z \in H$,

$$L_T^*z: t \in (0,T) \mapsto B^*e^{(T-t)A^*}z.$$

• Unique continuation:

$$\left(\begin{cases} \partial_t z(t) + A^* z(t) = 0 \\ z(T) = z^T \end{cases} + B^* z(t) = 0, \ \forall t \in (0, T) \right) \implies z^T = 0.$$

Some necessary conditions for approximate controllability

Observation of eigenvectors.

$$A^*\varphi_k = \lambda_k \varphi_k \quad \Longrightarrow \quad B^*\varphi_k \neq 0.$$

ex: pointwise control.

• $\dim U = 1$: simple eigenvalues.

$$\begin{cases} A^* \varphi_{k,1} = \lambda_k \varphi_{k,1} \\ A^* \varphi_{k,2} = \lambda_k \varphi_{k,2} \end{cases} \implies \dim \operatorname{Span}(\varphi_{k,1}, \varphi_{k,2}) = 1.$$

ex: a single boundary control in 1D.

Exact controllability

- Exact controllability in time T: for any $y_0, y_1 \in H$, there exists $u \in L^2(0,T;U)$ such that $y(T) = y_1$.
- Let $y_0 = 0$ and recall

$$L_T: L^2(0,T;U) \rightarrow H$$

 $u \mapsto y(T)$

Exact controllability in time $T \iff L_T(L^2(0,T;U)) = H$ $\iff \exists c > 0; \ \|L_T^*z\|_{L^2(0,T;U)} \ge c\|z\|, \ \forall z \in H.$

• Observability in time T:

$$\int_{0}^{T} \|B^*z(t)\|_{U}^{2} dt \ge c\|z^{T}\|^{2}, \quad \forall z^{T} \in D(A^*),$$

where

$$\begin{cases} \partial_t z(t) + A^* z(t) = 0 \\ z(T) = z^T \end{cases}$$

Remark: observability = quantitative unique continuation.

Controllability to trajectories and null controllablility

Regularization is an obstacle to exact controllability.

• Controllability to trajectories in time T: for any $y_0, \overline{y_0} \in H$, for any $\overline{u} \in L^2(0,T;U)$, there exists $u \in L^2(0,T;U)$ such that $y(T) = \overline{y}(T)$ where

$$\begin{cases} \overline{y}'(t) = A\overline{y}(t) + B\overline{u}(t), & t \in (0, T), \\ \overline{y}(0) = \overline{y_0}. \end{cases}$$

• Null controllability in time T: for any $y_0 \in H$, there exists $u \in L^2(0,T;U)$ such that y(T) = 0.

Controllability to trajectories in time $T \iff \text{Null controllability in time } T$.

(Final time) Observability

• Let $y_0 \in H$. Then

$$y(T) = e^{TA}y_0 + L_T u.$$

Null controllability in time $T \iff \forall y_0 \in H, \ \exists u \in L^2(0,T;U); \ L_T u = -e^{TA}y_0$ $\iff e^{TA}(H) \subset L_T(L^2(0,T;U))$ $\iff \exists c > 0; \ \|L_T^*z\|_{L^2(0,T;U)} \ge c\|e^{TA^*}z\|, \ \forall z \in H.$

• (Final time) Observability in time T:

$$\int_0^T \|B^* z(t)\|_U^2 dt \ge c \|z(0)\|^2, \quad \forall z^T \in D(A^*),$$

where

$$\begin{cases} \partial_t z(t) + A^* z(t) = 0 \\ z(T) = z^T \end{cases}$$

- Control theory and duality
- 2 Some known criterion for controllability
 - Hautus test
 - Fattorini criterion
 - A necessary inequality
- 3 A quantitative Fattorini-Hautus test
- 4 Open problems

Hautus test: characterization of controllability in finite dimension

- Finite dimensional setting: $H = \mathbb{R}^n$, $U = \mathbb{R}^m$, $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$. Equivalence between exact, null and approximate controllability in time T.
- Hautus test: M.L.J. Hautus (1969).

controllability in time
$$T \iff \operatorname{Ker}(A^* - \lambda) \cap \operatorname{Ker} B^* = \{0\}, \quad \forall \lambda \in \mathbb{C}.$$

Necessary condition: $\dim \operatorname{Ker}(A^* - \lambda) \leq m$ for all $\lambda \in \mathbb{C}$.

Fattorini criterion: a sufficient condition for approximate controllability

• Setting: assume moreover that A^* has compact resolvent and the root vectors of A^* form a complete sequence in H. Assume that $C:D(C)\subset H\to U$ is A^* -bounded i.e.

$$||Cz|| \le \alpha ||z|| + \beta ||A^*z||, \quad \forall z \in D(A^*).$$

• Fattorini criterion: H.O. Fattorini (1966).

$$\left(z \in D(A^*) \text{ and } Ce^{tA^*}z = 0, \text{ for a.e. } t \in (0, +\infty)\right) \implies z = 0,$$

$$\iff$$

$$\operatorname{Ker}(A^* - \lambda) \cap \operatorname{Ker} C = \{0\}, \quad \forall \lambda \in C.$$

• Thus, if B^* is A^* -bounded and moreover the semigroup generated by A is analytic,

Approximate controllability \iff $\operatorname{Ker}(A^* - \lambda) \cap \operatorname{Ker} B^* = \{0\}, \quad \forall \lambda \in \mathbb{C}.$

Question: quantitative Fattorini-Hautus test for null controllability?

A necessary inequality

T. Duyckaerts & L. Miller (2012). Assume that A generates a C^0 -semigroup on H and that B is admissible.

Null controllability in time $T \implies \exists C_T > 0; \quad \forall y \in D(A^*), \ \forall \lambda \in \mathbb{C} \text{ with } \operatorname{Re}(\lambda) > 0,$

$$||y||^2 \le C_T e^{2\operatorname{Re}(\lambda)T} \left(\frac{||(A^* + \lambda)y||^2}{\operatorname{Re}(\lambda)^2} + \frac{||B^*y||_U^2}{\operatorname{Re}(\lambda)} \right).$$

Necessary conditions for null controllability in time T:

• Sufficient observation of eigenvectors (depending on time!)

$$-A^*\varphi_k = \lambda_k \varphi_k \quad \Longrightarrow \quad \|B^*\varphi_k\|_U \ge C_T \sqrt{\operatorname{Re}(\lambda_k)} e^{-\operatorname{Re}(\lambda_k)T}.$$

• $\dim U = 1$: distance between eigenvalues

$$\begin{cases} -A^* \varphi_k = \lambda_k \varphi_k \\ -A^* \varphi_j = \lambda_j \varphi_j \end{cases} + \varphi_k \perp \varphi_j \implies |\lambda_k - \lambda_j| \ge C_T \lambda_k e^{-\operatorname{Re}(\lambda_k)T}.$$

- 1 Control theory and duality
- 2 Some known criterion for controllability
- 3 A quantitative Fattorini-Hautus test
 - Definition of the minimal time
 - Examples of minimal null controllability time in the parabolic setting
 - A necessary and sufficient condition for null controllability
- Open problems

Classical controllability behaviour

Parabolic setting

- Infinite speed of propagation;
- Null controllability in arbitrary time;
- No restriction on the control domain (internal control, boundary control).
- H.O. Fattorini & D.L. Russell (1971),
- A.V. Fursikov & O.Y. Imanuvilov (1996)
- and G. Lebeau & L. Robbiano (1995).

Hyperbolic setting

- Finite speed of propagation;
- Exact controllability only in large time;
- Geometric condition on the control domain (internal control, boundary control).

C. Bardos, G. Lebeau & J. Rauch (1992).

The minimal time

However, there are examples of parabolic control problems exhibiting a **minimal** time for null controllability and/or a geometric condition...

Let

$$T_{0} = \inf \left\{ T > 0 \; ; \; \exists C_{T} > 0 \; ; \forall y \in D(A^{*}), \forall \lambda \in \mathbb{C} \text{ with } \operatorname{Re}(\lambda) > 0, \right.$$
$$\left\| y \right\|^{2} \leq C_{T} e^{2T \operatorname{Re}(\lambda)} \left(\frac{\left\| (A^{*} + \lambda) y \right\|^{2}}{\operatorname{Re}(\lambda)^{2}} + \frac{\left\| B^{*} y \right\|_{U}^{2}}{\operatorname{Re}(\lambda)} \right) \right\}$$
(*)

and $T_0 = +\infty$ when the previous set is empty.

With a pointwise control

S. Dolecki (1973)

$$\begin{cases} \partial_t y - \partial_{xx} y = \delta_{x=x_0} u(t), & t \in (0,T), x \in (0,1), \\ y(t,0) = y(t,1) = 0. \end{cases}$$

Notations: $\varphi_k(x) = \sqrt{2}\sin(k\pi x)$, $\lambda_k = k^2\pi^2$.

Minimal time:
$$T_{min} = \limsup_{k \to +\infty} \frac{-\ln|\varphi_k(x_0)|}{\lambda_k} = T_0$$

With a zero-order coupling term supported outside the control domain

F. Ammar Khodja, A. Benabdallah, M. González Burgos & L. de Teresa (2016).

$$\begin{cases} \partial_t y + \begin{pmatrix} -\partial_{xx} & 0 \\ 0 & -\partial_{xx} \end{pmatrix} y + \begin{pmatrix} 0 & q(x) \\ 0 & 0 \end{pmatrix} y = \begin{pmatrix} 0 \\ \mathbf{1}_{\omega} u(t,x) \end{pmatrix}, & t \in (0,T), x \in (0,1), \\ y(t,0) = y(t,1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}. \end{cases}$$

Notations: $\varphi_k(x) = \sqrt{2}\sin(k\pi x), \ \lambda_k = k^2\pi^2.$

$$\omega = (a, b), \quad \mathbf{Supp}(q) \cap \omega = \emptyset$$

$$I_k(q) = \int_0^1 q(x)\varphi_k(x)^2 dx, \qquad I_{1,k}(q) = \int_0^a q(x)\varphi_k(x)^2 dx.$$

where $|I_k(q)| + |I_{1,k}(q)| \neq 0$ for any $k \in \mathbb{N}^*$.

Minimal time:
$$T_{min} = \limsup_{k \to +\infty} \frac{\min\left(-\ln|I_k(q)|, -\ln|I_{1,k}(q)|\right)}{\lambda_k} = T_0.$$

Degenerate Grushin equation in dimension two

K. Beauchard, P. Cannarsa & R. Guglielmi (2014) and K. Beauchard, L. Miller & M. M. (2015).

$$\begin{cases} \partial_t y - \partial_{x_1 x_1} y - x_1^2 \partial_{x_2 x_2} y = \mathbf{1}_{\omega} u(t, x_1, x_2), & t \in (0, T), (x_1, x_2) \in \Omega \\ y(t, x_1, x_2) = 0, & (x_1, x_2) \in \partial \Omega. \end{cases}$$

Notations:

$$\Omega = (-1,1) \times (0,1),$$

$$\omega = \left[(-b,-a) \cup (a,b) \right] \times (0,1).$$

Minimal time:
$$T_{min} = \frac{a^2}{2} = T_0$$
.

A system with different diffusion coefficients

F. Ammar Khodja, A. Benabdallah, M. González Burgos & L. de Teresa (2014).

$$\begin{cases} \partial_t y + \begin{pmatrix} -\partial_{xx} & 0 \\ 0 & -d\partial_{xx} \end{pmatrix} y + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} y = 0, & t \in (0, T), x \in (0, 1), \\ y(t, 0) = \begin{pmatrix} 0 \\ u(t) \end{pmatrix}, & y(t, 1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}. \end{cases}$$

Notations : $\Lambda = \{k^2\pi^2, dk^2\pi^2; k \in \mathbb{N}^*\}.$

Minimal time:
$$T_{min} = c(\Lambda) = T_0$$
.

where $c(\Lambda)$ is the condensation index defined by

$$c(\Lambda) = \limsup_{k \to +\infty} \frac{-\ln |E'(\lambda_k)|}{\lambda_k} \quad \text{with} \quad E(z) = \prod_{j=1}^{+\infty} \left(1 - \frac{z^2}{z_k^2}\right).$$

Setting

• Assume that the operator $-A^*$ admits a sequence of eigenvalues $\Lambda = (\lambda_k)_{k \in \mathbb{N}^*}$ such that

$$\exists \delta > 0, \ \operatorname{Re}(\lambda_k) \ge \delta |\lambda_k|, \ \forall k \in \mathbb{N}^* \quad \text{and} \quad \sum_{k=1}^{+\infty} \frac{1}{|\lambda_k|} < +\infty.$$
 (Spectrum)

- For any $k \in \mathbb{N}^*$, we denote by $r_k = \dim(\operatorname{Ker}(A^* + \lambda_k))$ the geometric multiplicity of the eigenvalue λ_k and assume that $\sup_{k \in \mathbb{N}^*} r_k < +\infty$.
- We denote by $(\varphi_{k,j})_{k \in \mathbb{N}^*, 1 \le j \le r_k}$ the associated sequence of normalised eigenvectors and we assume that it forms a complete sequence in H i.e.

$$\left(\langle \Phi, \varphi_{k,j} \rangle = 0, \quad \forall k \in \mathbb{N}^*, \forall j \in \{1, \dots, r_k\}\right) \implies \Phi = 0.$$

Equivalence between quantitative Fattorini-Hautus test and null controllability

F. Ammar Khodja, A. Benabdallah, M. González Burgos & M. M. (submitted)

Theorem 1

Assume that the condensation index of the sequence $\Lambda = (\lambda_k)_{k \in \mathbb{N}^*}$ satisfies $c(\Lambda) = 0$. Let T_0 be defined by (*). Then:

- If $T_0 > 0$ and $T < T_0$, system (S) is not null controllable in time T;
- If $T_0 < +\infty$ and $T > T_0$, system (S) is null controllable in time T.
- \bullet Condition (Spectrum) in a parabolic setting: "restriction to space dimension 1".
- Generalization to "suitable growth" of the geometric multiplicity.
- Qualitative result $(T_{min} \in [T_0, 2T_0])$ for algebraic multiplicity 2 (i.e. Jordan chain of length 2)
- Assumption $c(\Lambda) = 0$ is not so strong.

Sketch of proof: simple eigenvalues I

• Definition of solutions

$$\langle y(T), \varphi_j \rangle - \langle y_0, e^{-\lambda_j T} \varphi_j \rangle = \int_0^T e^{-\lambda_j (T-t)} \langle u(t), B^* \varphi_j \rangle_U dt.$$

• Complete family of eigenvectors

$$y(T) = 0 \quad \Longleftrightarrow \quad \int_0^T e^{-\lambda_j(T-t)} \langle u(t), B^* \varphi_j \rangle_U dt = -e^{-\lambda_j T} \langle y_0, \varphi_j \rangle, \ \forall j \in \mathbb{N}^*.$$

• Biorthogonal family

Let T>0 and let $\sigma=(\sigma_k)_{k\in\mathbb{N}}$ be a normally ordered complex sequence satisfying (Spectrum). Then, there exists a biorthogonal family $(q_k)_{k\in\mathbb{N}}$ to the exponentials associated with σ i.e.

$$\int_0^T e^{-\sigma_j t} q_k(t) dt = \delta_{k,j}, \quad \forall k, j \in \mathbb{N},$$

such that for any $\varepsilon > 0$ there exists $C_{\varepsilon} > 0$ such that

$$||q_k||_{L^2(0,T;\mathbb{C})} \le C_{\varepsilon} e^{\operatorname{Re}(\sigma_k)(\operatorname{c}(\sigma)+\varepsilon)}.$$

Sketch of proof: simple eigenvalues II

 \bullet " New " form of controls for the moment problem

$$u(t) = \sum_{k \in \mathbb{N}^*} \alpha_k \ q_k(T - t) \ B^* \varphi_k,$$

where the scalar coefficient α_k has to be determined.

$$\int_{0}^{T} e^{-\lambda_{j}(T-t)} \langle u(t), B^{*}\varphi_{j} \rangle_{U} dt = -e^{-\lambda_{j}T} \langle y_{0}, \varphi_{j} \rangle, \ \forall j \in \mathbb{N}^{*}$$

$$\iff \sum_{k \in \mathbb{N}^{*}} \alpha_{k} \langle B^{*}\varphi_{k}, B^{*}\varphi_{j} \rangle \int_{0}^{T} e^{-\lambda_{j}(T-t)} q_{k}(T-t) dt = -e^{-\lambda_{j}T} \langle y_{0}, \varphi_{j} \rangle, \ \forall j \in \mathbb{N}^{*}$$

$$\iff \alpha_{k} = -\frac{e^{-\lambda_{k}T} \langle y_{0}, \varphi_{k} \rangle}{\|B^{*}\varphi_{i}\|_{L^{2}}^{2}}, \ \forall k \in \mathbb{N}^{*}.$$

• Convergence of the series thanks to quantitative Fattorini-Hautus test

$$u(t) = -\sum_{k \in \mathbb{N}^*} e^{-\lambda_k T} \langle y_0, \varphi_k \rangle \ q_k(T - t) \ \frac{B^* \varphi_k}{\|B^* \varphi_k\|_U^2}.$$

 \rightarrow Multiple eigenvalues: construct and estimate a biorthogonal family to $(B^*\varphi_{k,1},\ldots,B^*\varphi_{k,r_k})$.

Minimal time coming from condensation of the spectrum

Theorem 2

Assume that the eigenvectors of A^* form a Riesz basis of H. Assume that for any $k \neq j \in \mathbb{N}^*$,

$$\operatorname{Ker}(B^*) \cap \operatorname{Span}(\varphi_k, \varphi_j) \neq \{0\}$$

and for any $\varepsilon > 0$

$$||B^*\varphi_k||_U e^{\varepsilon \operatorname{Re}(\lambda_k)} \underset{k \to +\infty}{\longrightarrow} +\infty.$$

Finally, assume that the condensation index of the sequence $\Lambda = (\lambda_k)_{k \in \mathbb{N}^*}$ satisfies $c(\Lambda) = Bohr(\Lambda)$.

Let T_0 be defined by (*). Then:

- If $T_0 > 0$ and $T < T_0$, system (S) is not null controllable in time T;
- If $T_0 < +\infty$ and $T > T_0$, system (S) is null controllable in time T.
- \bullet Structural assumption on B^* \to generalizes $\dim U=1$ \Longrightarrow simple eigenvalues.
- Technical (?) assumption on the condensation index: "allow eigenvalues to get exponentially close but only two by two".
- Remove the sufficient observation of eigenvectors hypothesis: qualitative result $T_{min} \in [T_0, 2T_0]$.

The general setting

Theorem 3

Let T_0 be defined by (*). Then, there exists $\widetilde{T} \in [T_0, T_0 + c(\Lambda)]$ such that

- if $\widetilde{T} > 0$ and $T < \widetilde{T}$, system (S) is not null controllable in time T;
- if $\widetilde{T} < +\infty$ and $c(\Lambda) < +\infty$, for $T > \widetilde{T}$, system (S) is null controllable in time T.
- Quite general setting for (systems) of one dimensional parabolic equations.

- Control theory and duality
- 2 Some known criterion for controllability
- 3 A quantitative Fattorini-Hautus test
- 4 Open problems

On the spectral assumption
$$\sum_{k=1}^{+\infty} \frac{1}{|\lambda_k|} < +\infty$$

- Used for the moment method: needed for the biorthogonal family with respect to the time exponentials \longrightarrow biorthogonal family to $e^{-\bar{\lambda}_k} B^* \varphi_k$ in $L^2(0,T;\hat{U})$?
- Crucial for the characterization of controllability through the quantitative Fattorini-Hautus test.

Quantum harmonic oscillator, T. Duyckaerts & L. Miller (2012).

Let
$$H = L^2(\mathbb{R})$$
, $U = L^2(\mathbb{R})$, $B = \mathbf{1}_{(-\infty,x_0)}$ with $x_0 \in \mathbb{R}$ and

$$A = -\partial_{xx} + x^2, \qquad D(A) = \{ y \in H^2(\mathbb{R}); x \mapsto x^2 y(x) \in L^2(\mathbb{R}) \}.$$

A is self-adjoint and generates a C^0 -semigroup. Its eigenvalues are $\{\lambda_k = 2k-1; k \in \mathbb{N}^*\}$ and its eigenvectors are the Hermite polynomials (Hilbert basis).

For this operator $T_{min} = +\infty$ and $\exists M, m \in \mathbb{R}$ such that

$$||y||^2 \le M||(A^* + \lambda)y||^2 + m||B^*y||_U^2, \quad \forall y \in D(A^*), \ \forall \lambda \in \mathbb{R} \implies T_0 = 0.$$

Notice that this example satisfies every assumption of Theorem 3 except that $\sum_{k \in \mathbb{N}^*} \frac{1}{\lambda_k} = +\infty.$

Open problems

- A "better" quantitative Fattorini-Hautus test: capture the minimal time coming from <u>both</u> the condensation of eigenvalues and the "localization" of eigenvectors.
- Minimal time for null controllability of parabolic systems in higher dimensions?
 Lack of methods...