Minimal controllability time for the heat equation under unilateral state constraint

Jérôme Lohéac, joint work with E. Trélat and E. Zuazua

Laboratoire des Sciences du Numérique de Nantes

VII Partial differential equations, optimal design and numerics Benasque 22/08/2017

The Problem

Consider the 1-D heat equation

$$egin{aligned} \dot{y}(t,x) &= \partial_x^2 y(t,x) & (t \in \mathbb{R}^+_+, \ x \in (0,1)), \ \partial_x y(t,0) &= v_0(t) & (t \in \mathbb{R}^+_+), \ \partial_x y(t,1) &= v_1(t) & (t \in \mathbb{R}^+_+), \end{aligned}$$

with initial condition $y^0 \ge 0$, given,

$$y(0,x) = y^{0}(x)$$
 $(x \in (0,1)).$

The aim is to control this system to a constant steady state $y^1 > 0$

$$y(T,x) = y^1$$
 $(x \in (0,1)),$

The Problem

Consider the 1-D heat equation

$$\dot{y}(t,x) = \partial_x^2 y(t,x)$$
 $(t \in \mathbb{R}^+_+, x \in (0,1)),$
 $\partial_x y(t,0) = v_0(t)$ $(t \in \mathbb{R}^+_+),$
 $\partial_x y(t,1) = v_1(t)$ $(t \in \mathbb{R}^+_+),$

with initial condition $y^0 \ge 0$, given,

$$y(0,x) = y^0(x)$$
 $(x \in (0,1)).$

The aim is to control this system to a constant steady state $y^1 > 0$

$$y(T,x) = y^1$$
 $(x \in (0,1)),$

It is well known that

- for every time T>0 there exists controls v_0 and $v_1\in L^2(0,\,T)$ such that $y(\,T,\,\cdot\,)={\rm y}^1$
- if $v_0 = v_1 = 0$, y is nonnegative.

The Problem

Consider the 1-D heat equation

$$\begin{split} \dot{y}(t,x) &= \partial_x^2 y(t,x) & (t \in \mathbb{R}^+_+, \ x \in (0,1)), \\ \partial_x y(t,0) &= v_0(t) & (t \in \mathbb{R}^+_+), \\ \partial_x y(t,1) &= v_1(t) & (t \in \mathbb{R}^+_+), \end{split}$$

with initial condition $y^0 \ge 0$, given,

$$y(0,x) = y^0(x)$$
 $(x \in (0,1)).$

The aim is to control this system to a constant steady state $y^1 > 0$

$$y(T,x) = y^1$$
 $(x \in (0,1)),$

It is well known that

- for every time T>0 there exists controls v_0 and $v_1\in L^2(0,\,T)$ such that $y(\,T,\,\cdot\,)={\rm y}^1$
- if $v_0 = v_1 = 0$, y is nonnegative.

Is it possible to find T > 0 and controls v_0 and v_1 such that y satisfies $y(T, \cdot) = y^1$ together with,

$$y(t,x) \ge 0$$
 ((t,x) \in (0,1) × (0, T) a.e.)?

If $\inf_{x\in (0,1)} y^0(x) > y^1$, then y^1 cannot be reached in arbitrarily small time \mathcal{T} .

э

э

・ロト ・日 ・ ・ ヨ ・ ・

If $\inf_{x\in(0,1)}y^0(x)>y^1,$ then y^1 cannot be reached in arbitrarily small time $\mathcal{T}.$

• The constraint $y(t, x) \ge 0$ ensures that

 $y(t,0) \ge 0$ and $y(t,1) \ge 0$

э

< □ > < 同 > < 回 > <

If $\inf_{x \in (0,1)} y^0(x) > y^1$, then y^1 cannot be reached in arbitrarily small time T.

• The constraint $y(t, x) \ge 0$ ensures that

 $y(t,0) \ge 0$ and $y(t,1) \ge 0$

• for every $x \in (0, 1)$,

 $y^{0}(x) \ge \inf_{x \in (0,1)} \left(y^{0}(x) \right) \sin \pi x$

If $\inf_{x\in(0,1)}y^0(x) > y^1$, then y^1 cannot be reached in arbitrarily small time T.

• The constraint $y(t, x) \ge 0$ ensures that

$$y(t,0) \geqslant 0$$
 and $y(t,1) \geqslant 0$

• for every $x \in (0, 1)$,

$$y^{0}(x) \ge \inf_{x \in (0,1)} \left(y^{0}(x) \right) \sin \pi x$$

• due to the comparison principle,

$$y(t,x) \ge e^{-\pi^2 t} \inf_{x \in (0,1)} \left(y^0(x) \right) \sin \pi x$$

Image: Image:

If $\inf_{x \in (0,1)} y^0(x) > y^1$, then y^1 cannot be reached in arbitrarily small time T.

• The constraint $y(t, x) \ge 0$ ensures that

$$y(t,0) \geqslant 0$$
 and $y(t,1) \geqslant 0$

• for every $x \in (0, 1)$,

$$y^{0}(x) \ge \inf_{x \in (0,1)} \left(y^{0}(x) \right) \sin \pi x$$

• due to the comparison principle,

$$y(t,x) \ge e^{-\pi^2 t} \inf_{x \in (0,1)} \left(y^0(x) \right) \sin \pi x$$

• in particular,

$$y(t, \frac{1}{2}) \ge e^{-\pi^2 t} \inf_{x \in (0,1)} \left(y^0(x) \right)$$

If $\inf_{x \in (0,1)} y^0(x) > y^1$, then y^1 cannot be reached in arbitrarily small time T.

• The constraint $y(t, x) \ge 0$ ensures that

$$y(t,0) \geqslant 0$$
 and $y(t,1) \geqslant 0$

• for every $x \in (0,1)$,

$$y^{0}(x) \ge \inf_{x \in (0,1)} \left(y^{0}(x) \right) \sin \pi x$$

• due to the comparison principle,

$$y(t,x) \ge e^{-\pi^2 t} \inf_{x \in (0,1)} \left(y^0(x) \right) \sin \pi x$$

• in particular,

$$y(t, \frac{1}{2}) \ge e^{-\pi^2 t} \inf_{x \in (0,1)} \left(y^0(x) \right)$$

• finally,

$$y(t, \frac{1}{2}) > y^1$$
 for $t \in \left[0, \frac{1}{\pi^2} \ln \frac{\inf y^0}{y^1}\right)$

J. Lohéac (LS2N)

Due to the comparison principle, the constraint

 $y(t,x) \ge 0$

is equivalent to the constraints

 $y(t,0) \ge 0$ and $y(t,1) \ge 0$.

Due to the comparison principle, the constraint

$$y(t,x) \ge 0$$

is equivalent to the constraints

 $y(t,0) \ge 0$ and $y(t,1) \ge 0$.

Consequently, we will first consider the control problem

$$\begin{split} \dot{y}(t,x) &= \partial_x^2 y(t,x) & (t \in \mathbb{R}^+_+, \ x \in (0,1)), \\ y(t,0) &= u_0(t) & (t \in \mathbb{R}^+_+), \\ y(t,1) &= u_1(t) & (t \in \mathbb{R}^+_+), \end{split}$$

with the control constraints

 $u_0(t) \ge 0$ and $u_1(t) \ge 0$ $(t \ge 0$ a.e.).

Image: A matched block

- Controllability of the heat equation with nonnegative Dirichlet controls
- 2 Consequences for the 1-D heat equation with nonnegative state constraint
- 3 Conclusion and open problems

Controllability of the heat equation with nonnegative Dirichlet controls

- Existence of nonnegative controls
- Minimal controllability time
- Numerical examples

2 Consequences for the 1-D heat equation with nonnegative state constraint

3 Conclusion and open problems

The constrained Dirichlet control problem

Consider the 1-D heat equation

- $\dot{y}(t,x) = \partial_x^2 y(t,x)$ (t > 0, x \in (0,1)), (1a)
- $y(t,0) = u_0(t)$ (t > 0), (1b)
- $y(t,1) = u_1(t)$ (t > 0), (1c)

with constant initial condition $\mathrm{y}^0 \in L^2(0,1),$ given,

$$y(0,x) = y^{0}(x)$$
 $(x \in (0,1)).$

The aim is to control this system to a constant steady state $y^1 > 0$

$$y(T,x) = y^1$$
 (x $\in [0,1]$ a.e.),

with the control constraints

 $u_0(t) \ge 0$ and $u_1(t) \ge 0$ (t > 0 a.e.).

Image: A matrix and a matrix

Existence of controls

Proposition

For every $y^0 \in L^2(0,1)$ and every $y^1 \in \mathbb{R}^*_+$, there exists a time T > 0 large enough and controls $u_0, u_1 \in H^1(0,T)$ such that

 $u_0(t) > 0$ and $u_1(t) > 0$ $(t \in [0, T])$

and the solution y of (1) satisfies

$$y(T,\cdot)=y^1.$$

э

Existence of controls

Proposition

For every $y^0 \in L^2(0,1)$ and every $y^1 \in \mathbb{R}^*_+$, there exists a time T > 0 large enough and controls $u_0, u_1 \in H^1(0,T)$ such that

 $u_0(t) > 0$ and $u_1(t) > 0$ $(t \in [0, T])$

and the solution y of (1) satisfies

$$y(T,\cdot)=\mathrm{y}^1\,.$$

This allows us to define

$$\underline{T}\left(\mathbf{y}^{0},\mathbf{y}^{1}\right)=\inf\left\{ T>0\,,\ \exists u_{0},u_{1}\in L^{1}(0,\,T)\text{ s.t. }u_{0}\geqslant0\,,\ u_{1}\geqslant0\text{ and }y(\,T,\cdot)=\mathbf{y}^{1}\right\} \geqslant0\,,$$

Proof I Existence of controls

For the proof, we also refer to Schmidt 1980

Set

$$ilde{y}(t,x)=y(t,x)-\mathrm{y}^1\,,\quad ilde{u}_0(t)=u_0(t)-\mathrm{y}^1 \quad ext{ and }\quad ilde{u}_1=u_1-\mathrm{y}^1\,,$$

Then, \tilde{y} is solution of (1) with controls \tilde{u}_0 and \tilde{u}_1 and initial condition

$$\widetilde{y}(0,x) = \mathrm{y}^0(x) - \mathrm{y}^1 \qquad (x \in (0,1)) \,.$$

Consequently, we aim to prove the existence of a time T>0 and controls \tilde{u}_0 and \tilde{u}_1 satisfying,

$$ilde{u}_0(t)>-\mathrm{y}^1$$
 and $ilde{u}_1(t)>-\mathrm{y}^1$ $(t\in(0,T)$ a.e.)

such that

$$\tilde{y}(T,\cdot)=0.$$

For any T > 0 the existence of controls $\tilde{u}_0, \tilde{u}_1 \in H^1(0, T)$ such that $\tilde{y}(T, \cdot) = 0$ is ensured by Fattorini-Russel 1971.

Image: A mathematical states and a mathem

Proof II Existence of controls

In terms of the adjoint system,

$$\begin{split} -\dot{z}(t,x) &= \partial_x^2 z(t,x) & (t>0\,,\,x\in(0,1))\,,\\ z(t,0) &= z(t,1) = 0 & (t>0)\,,\\ z(T,x) &= z^0(x) & (x\in(0,1))\,, \end{split}$$

there exists a constant $\tilde{c}(T) > 0$ such that,

$$\|z(0,\cdot)\|_{L^{2}(0,1)}^{2} \leqslant \tilde{c}(T) \left(\|\partial_{x} z(\cdot,0)\|_{H^{-1}(0,T)}^{2} + \|\partial_{x} z(\cdot,1)\|_{H^{-1}(0,T)}^{2} \right) \qquad (z^{0} \in L^{2}(0,1)) \,.$$

This inequality being true in any time interval, we also have

$$\|z(\tfrac{\tau}{2},\cdot)\|_{L^2(0,1)}^2\leqslant \tilde{c}(\tfrac{\tau}{2})\left(\|\partial_x z(\cdot,0)\|_{H^{-1}(0,T)}^2+\|\partial_x z(\cdot,1)\|_{H^{-1}(0,T)}^2\right)$$

Using the dissipativity properties,

$$||z(0,\cdot)||^2_{L^2(0,1)} \leqslant e^{-C_0 \frac{T}{2}} ||z(\frac{T}{2},\cdot)||^2_{L^2(0,1)}$$

Proof III Existence of controls

we obtain

$$\left\|z(0,\cdot)\right\|_{L^2(0,1)}^2 \leqslant e^{-C_0\frac{T}{2}} \tilde{c}(\frac{T}{2}) \left(\left\|\partial_x z(\cdot,0)\right\|_{H^{-1}(0,T)}^2 + \left\|\partial_x z(\cdot,1)\right\|_{H^{-1}(0,T)}^2\right).$$

By duality this means that the controls \tilde{u}_0 and \tilde{u}_1 can be chosen such that

$$\|\tilde{u}_{i}\|_{H^{1}(0,T)}^{2} \leqslant e^{-C_{0}\frac{T}{2}}\tilde{c}(\frac{T}{2})\|y^{0} - y^{1}\|_{L^{2}(0,1)}^{2} \qquad (i \in \{0,1\})$$

Using the embedding $H^1(0, T) \subset L^\infty(0, T)$,

$$\|\tilde{u}_{i}\|_{L^{\infty}(0,T)}^{2} \leqslant C e^{-C_{0}\frac{T}{2}} \tilde{c}(\frac{T}{2}) \|y^{0} - y^{1}\|_{L^{2}(0,1)}^{2} \qquad (i \in \{0,1\})$$

Thus, for T large enough,

$$\|\tilde{u}_0\|_{L^{\infty}(0,T)}, \|\tilde{u}_1\|_{L^{\infty}(0,T)} < y^1$$

and hence,

$$ilde{u}_0(t)>-\mathrm{y}^1 \quad ext{ and } \quad ilde{u}_1(t)>-\mathrm{y}^1 \qquad (t\in [0,T] ext{ a.e.})\,.$$

< □ > < 同 > .

Minimal control time

Theorem

- Let $y_0 \in L^2(0,1)$ and $y_1 \in I\!\!R^*_+$ with $y_0 \neq y_1$. Then,

 - exist nonnegative controls <u>u</u>₀, <u>u</u>₁ ∈ M(0, <u>T</u>) such that the solution y with controls <u>u</u>₀ and <u>u</u>₁ satisfies y(T, ·) = y¹.

The solution y, of the Dirichlet control problem with controls in the set of Radon measures, is defined by transposition.

Remark

$$\underline{T}(y^0, y^1) > 0$$
 even if $y^0 < y^1$.

Proof of $\underline{T} > 0 \ I$

Define
$$y_n(t) = \int_0^1 y(t,x) \sin(n\pi x) \, \mathrm{d}x$$
, where y is solution of (1). We have

$$\dot{y}_n(t) = \int_0^1 \partial_x^2 y(t,x) \sin(n\pi x) \, \mathrm{d}x = -n\pi \int_0^1 \partial_x y(t,x) \cos(n\pi x) \, \mathrm{d}x \\ = n\pi \left(u_0(t) - (-1)^n u_1(t) \right) - (n\pi)^2 y_n(t)$$

with
$$y_n(0) = \int_0^1 y^0(x) \sin(n\pi x) dx := y_n^0$$
. Thus,

$$y_n(T) = e^{-(n\pi)^2 T} y_n^0 + n\pi \int_0^T e^{-(n\pi)^2 (T-t)} \left(u_0(t) - (-1)^n u_1(t) \right) dt.$$

If
$$y(T, x) \equiv y_1$$
, we have $y_n(T) = \int_0^1 y_1 \sin(n\pi x) dx = \frac{1 - (-1)^n}{n\pi} y_1$.
Consequently,

$$\frac{1-(-1)^n}{n\pi} y^1 - e^{-(n\pi)^2 T} y^0_n = n\pi \int_0^T e^{-(n\pi)^2 (T-t)} \left(u_0(t) - (-1)^n u_1(t) \right) \, \mathrm{d}t \, .$$

æ

・ロト ・四ト ・ヨト ・ヨト

Proof of $\underline{T} > 0 | \mathbf{I} |$

For n = 2p, $\int_0^T e^{(2p\pi)^2 t} \left(u_0(t) - u_1(t) \right) \, \mathrm{d}t = \frac{y_{2p}^0}{2p\pi} \,,$

For n = 2p + 1,

$$\frac{2y^1}{(2p+1)\pi} - e^{-(2p+1)^2\pi^2\tau} y_{2p+1}^0 = (2p+1)\pi \int_0^T e^{-(2p+1)^2\pi^2(\tau-t)} \left(u_0(t) + u_1(t)\right) \,\mathrm{d}t \,.$$

But,

$$e^{-(2\rho+1)^2\pi^2T} \leqslant e^{-(2\rho+1)^2\pi^2(T-t)} \leqslant 1$$
 $(t \in [0, T]).$

 u_0 and u_1 being nonnegative,

$$e^{-(2p+1)^2\pi^2 T} \int_0^T (u_0(t) + u_1(t)) \, \mathrm{d}t \leqslant \int_0^T e^{-(2p+1)^2\pi^2(T-t)} (u_0(t) + u_1(t)) \, \mathrm{d}t$$

 $\leqslant \int_0^T (u_0(t) + u_1(t)) \, \mathrm{d}t \,,$

Proof of $\underline{T} > 0$ III

We have obtained,

$$\begin{aligned} \frac{2 y^1}{(2p+1)^2 \pi^2} - e^{-(2p+1)^2 \pi^2 \tau} \frac{y_{2p+1}^0}{(2p+1)\pi} &\leq \int_0^\tau \left(u_0(t) + u_1(t) \right) \, \mathrm{d}t \\ &\leq e^{(2p+1)^2 \pi^2 \tau} \frac{2 y^1}{(2p+1)^2 \pi^2} - \frac{y_{2p+1}^0}{(2p+1)\pi} \, . \end{aligned}$$

If for every T > 0 there exists nonnegative controls u_0^T and u_1^T steering y_0 to y_1 in time T, then

$$\lim_{T \to 0} \int_0^T \left(u_0^T(t) + u_1^T(t) \right) \, \mathrm{d}t = \frac{2 \, \mathrm{y}^1}{(2p+1)^2 \pi^2} - \frac{\mathrm{y}_{2p+1}^0}{(2p+1)\pi} := \gamma \in \mathbb{R} \qquad (p \in \mathbb{N}) \,.$$

Hence,

у

$$y_{2p+1}^{0} = \frac{2y^{1}}{(2p+1)\pi} - (2p+1)\pi\gamma \qquad (p \in \mathbb{N}) \,.$$

⁰ $\in L^{2}(0,1)$, ensures that $\sum_{n=0}^{\infty} \left| y_{n}^{0} \right|^{2} < \infty$ and hence $\gamma = 0$, $y_{2p+1}^{0} = \frac{2y^{1}}{(2p+1)\pi}$ and
 $\lim_{T \to 0} \int_{0}^{T} \left(u_{0}^{T}(t) + u_{1}^{T}(t) \right) \,\mathrm{d}t = 0 \,.$

Proof of $\underline{T} > 0$ IV

Since $u_0^T \ge 0$ and $u_1^T \ge 0$, we can also conclude

$$\lim_{T\to 0}\int_0^T u_0^T(t)\,\mathrm{d}t = \lim_{T\to 0}\int_0^T u_1(t)\,\mathrm{d}t = 0\,.$$

consequently passing to the limit $\, T \rightarrow 0$ in

$$\int_0^T e^{(2\rho\pi)^2 t} \left(u_0^T(t) - u_1^T(t) \right) \, \mathrm{d}t = \frac{\mathrm{y}_{2\rho}^0}{2\rho\pi} \,,$$

we obtain

$$\mathbf{y}_{2p}^{0} = \mathbf{0} \qquad (p \in \mathbb{N}^{*}).$$

All in all, since the family $\left\{\sqrt{2}\sin(n\pi \cdot)\right\}_{n\in\mathbb{N}^*}$ is an orthonormal basis of $L^2(0,1)$, we conclude that y^0 can be steered to y^1 in arbitrarily small time with nonnegative controls if and only if

$$y^{0}(x) = y^{1}$$
 $(x \in (0, 1)).$

Proof of Controllability in the minimal time \underline{T} I

Define $(\varepsilon_k)_{k \in \mathbb{N}}$ a sequence of positive numbers converging to 0. For every $k \in \mathbb{N}$, there exist nonnegative controls $u_0^k, u_1^k \in L^1(0, \underline{T} + \varepsilon_k)$, so that the solution y satisfies $y(\underline{T} + \varepsilon_k, \cdot) = y^1$. Define $\bar{\varepsilon} = \sup_{k \in \mathbb{N}} \varepsilon_k$.

Proof of Controllability in the minimal time \underline{T} I

Define $(\varepsilon_k)_{k\in\mathbb{N}}$ a sequence of positive numbers converging to 0. For every $k\in\mathbb{N}$, there exist nonnegative controls $u_0^k, u_1^k\in L^1(0, \underline{T}+\varepsilon_k)$, so that the solution y satisfies $y(\underline{T}+\varepsilon_k, \cdot) = y^1$. Define $\overline{\varepsilon} = \sup_{k\in\mathbb{N}} \varepsilon_k$.

According to

$$\frac{2 y^1}{(2p+1)\pi} - e^{-(2p+1)^2 \pi^2 T} y_{2p+1}^0 = (2p+1)\pi \int_0^T e^{-(2p+1)^2 \pi^2 (T-t)} \left(u_0^k(t) + u_1^k(t) \right) \, \mathrm{d}t \,,$$

we obtain,

$$\begin{split} \|u_0^k\|_{L^1(0,\underline{T}+\bar{\varepsilon})} + \|u_1^k\|_{L^1(0,\underline{T}+\bar{\varepsilon})} &= \int_0^{\underline{T}+\varepsilon_k} \left(u_0^k(t) + u_1^k(t) \right) \,\mathrm{d}t \\ &\leqslant \inf_{\rho \in \mathbb{N}} \left(e^{(2\rho+1)^2 \pi^2 (\underline{T}+\varepsilon_k)} \, \frac{2\,\mathrm{y}^1}{(2\rho+1)^2 \pi^2} - \frac{\mathrm{y}_{2\rho+1}^0}{(2\rho+1)\pi} \right) \\ &\leqslant \frac{2e^{\pi^2 (\underline{T}+\bar{\varepsilon})} \, |\mathrm{y}^1|}{\pi^2} + \frac{|\mathrm{y}_1^0|}{\pi} \leqslant \infty \,. \end{split}$$

Proof of Controllability in the minimal time \underline{T} II

In conclusion,

- The sequences $(u_0^k)_k$ and $(u_1^k)_k$ are bounded in $L^1(0, \underline{T} + \overline{\varepsilon})$;
- $(u_0^k)_k$ and $(u_1^k)_k$ have their support contained in $[0, \underline{T} + \varepsilon_k]$, with $\varepsilon_k \to 0$;
- Thus, they are (up to a subsequence) weakly convergent in the sense of measures to some nonnegative controls <u>u</u>; in M([0, <u>T</u>]);
- These limits ensure the control requirements in the minimal control time \underline{T} .

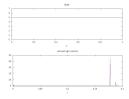
Lower bounds on \underline{T}

- When y^0 is a constant initial condition, $\underline{\mathcal{T}}:=\underline{\mathcal{T}}\left(y^0,y^1\right)$ satisfies
 - $\begin{array}{l} \bullet \quad \text{if } y^1 < y^0, \\ \underline{T} > \frac{1}{\pi^2} \log \frac{y^0}{y^1} \quad \text{and} \quad \sup_{p \in \mathbb{N}^*} \frac{1}{(2p+1)^2} \left(\frac{y^1}{y^0} e^{-(2p+1)^2 \pi^2 \underline{T}} \right) \leqslant \frac{y^1}{y^0} e^{\pi^2 \underline{T}} 1. \\ \text{For } y^1 \equiv 1 \text{ and } y^0 \equiv 5, \text{ we obtain (numerically): } \underline{T} \geqslant 0.165297; \\ \bullet \quad \text{if } y^1 > y^0, \\ \frac{y^1}{y^0} e^{-\pi^2 \underline{T}} \leqslant \inf_{p \in \mathbb{N}^*} \frac{1}{(2p+1)^2} \left(\frac{y^1}{y^0} e^{(2p+1)^2 \pi^2 \underline{T}} 1 \right). \end{array}$

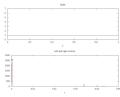
For $y^1 \equiv 5$ and $y^0 \equiv 1$, we obtain (numerically): $\underline{T} \ge 0.023076$;

Numerical examples

• From
$$y^0 \equiv 5$$
 to $y^1 \equiv 1$, $\underline{T}(y^0, y^1) \simeq 0.1931$.



• From $y^0 \equiv 1$ to $y^1 \equiv 5$, $\underline{T}(y^0, y^1) \simeq 0.0438$.



< 口 > < 🗗

Controllability of the heat equation with nonnegative Dirichlet controls

2 Consequences for the 1-D heat equation with nonnegative state constraint

3 Conclusion and open problems

Consequences

Heat equation with nonnegative state constraint I

Consider the 1-D heat equation

$$\begin{split} \dot{y}(t,x) &= \partial_x^2 y(t,x) + \mathbf{1}_{\omega}(x) w(t,x) & (t > 0, \ x \in (0,1)), \\ \partial_x y(t,0) &= v_0(t) & (t > 0), \\ \partial_x y(t,1) &= v_1(t) & (t > 0), \end{split}$$

with given initial condition $y^0 \ge 0$,

$$y(0,\cdot) = y^0 \in L^2(0,1).$$

The aim is to control this system to a constant steady state $y^1 > 0$

$$y(T,x) = y^1$$
 (x $\in (0,1)$ a.e.),

with the state constraint,

$$y(t,x) \ge 0$$
 $(t \ge 0, x \in (0,1)$ a.e.).

We assume $\omega \subset (0,1)$ is such that there exists an interval $(a,b) \subset (0,1) \setminus \omega$.

Consequences

Heat equation with nonnegative state constraint II

For $v_0, v_1 \in L^2(0, T)$ and $w \in L^2((0, T) \times \omega)$, define

 $u_a = y(\cdot, a) \in L^2(0, T)$ and $u_b = y(\cdot, b) \in L^2(0, T)$.

Furthermore, $y|_{(a,b)}$ is solution of

$$\begin{split} \dot{y}(t,x) &= \partial_x^2 y(t,x) & (t>0, \ x\in(a,b)), \\ y(t,a) &= u_a(t) & (t>0), \\ y(t,b) &= u_b(t) & (t>0), \end{split}$$

Consequently, if v_0 , v_1 and w are controls in time T > 0 such that

$$y(t,x) \ge 0$$
 and $y(T,x) = y^1$,

then we have

$$u_a(t) \ge 0$$
 and $u_b(t) \ge 0$ $(t \in [0, T]$ a.e.)

and hence ${\mathcal T}$ cannot be arbitrarily small unless $\left.y^0\right|_{(0,1)\setminus\omega}=\left.y^1\right|_{(0,1)\setminus\omega}.$

(日)

Consider the 1-D heat equation with Neumann controls

$$\begin{split} \dot{y}(t,x) &= \partial_x^2 y(t,x) & (t>0, \ x\in(0,1)), \\ \partial_x y(t,0) &= v_0(t) & (t>0), \\ \partial_x y(t,1) &= v_1(t) & (t>0), \end{split}$$

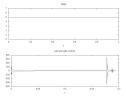
with the state constraint,

$$y(t,x) \ge 0$$
 $(t \ge 0, x \in (0,1)$ a.e.).

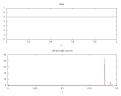
Consequences

Numerical example II

• From
$$y^0 \equiv 5$$
 to $y^1 \equiv 1$, $\underline{T}(y^0, y^1) \simeq 0.1938$.



Remind that with Dirichlet controls, we had,



< • • • **•**

Controllability of the heat equation with nonnegative Dirichlet controls

2 Consequences for the 1-D heat equation with nonnegative state constraint

3 Conclusion and open problems

Our proofs are based on spectral decomposition and this can be used to prove similar results for:

- Controllability to any kind of steady state;
- Parabolic equation of the form y
 ['] = ∂_x (a(x)∂_xy) − p(x)∂_xy with internal and/or boundary control;
- *n*-D heat equations with constant coefficients;
- Finite dimensional versions of the heat equation.

Our proofs are based on spectral decomposition and this can be used to prove similar results for:

- Controllability to any kind of steady state;
- Parabolic equation of the form y
 ['] = ∂_x (a(x)∂_xy) − p(x)∂_xy with internal and/or boundary control;
- *n*-D heat equations with constant coefficients;
- Finite dimensional versions of the heat equation.

But cannot be used for

- Non-linear heat equations;
- Linear heat equation with time and space dependent parameters.

Our proofs are based on spectral decomposition and this can be used to prove similar results for:

- Controllability to any kind of steady state;
- Parabolic equation of the form y
 ['] = ∂_x (a(x)∂_xy) − p(x)∂_xy with internal and/or boundary control;
- *n*-D heat equations with constant coefficients;
- Finite dimensional versions of the heat equation.

But cannot be used for

- Non-linear heat equations;
- Linear heat equation with time and space dependent parameters.

Some over open questions

- Structure and uniqueness of the nonnegative Dirichlet controls in the minimal time <u>T</u>?
- How the time optimal control is related to the adjoint state? Numerical examples: $1 \rightarrow 5 \quad 5 \rightarrow 1$

Image: A mathematical states of the state

Our proofs are based on spectral decomposition and this can be used to prove similar results for:

- Controllability to any kind of steady state;
- Parabolic equation of the form y
 ['] = ∂_x (a(x)∂_xy) − p(x)∂_xy with internal and/or boundary control;
- *n*-D heat equations with constant coefficients;
- Finite dimensional versions of the heat equation.

But cannot be used for

- Non-linear heat equations;
- Linear heat equation with time and space dependent parameters.

Some over open questions

- Structure and uniqueness of the nonnegative Dirichlet controls in the minimal time <u>T</u>?
- How the time optimal control is related to the adjoint state? Numerical examples: $1 \rightarrow 5 \quad 5 \rightarrow 1$

THANK YOU FOR YOUR ATTENTION!