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The Problem

Consider the 1-D heat equation

ẏ(t, x) = ∂2
xy(t, x) (t ∈ IR∗+ , x ∈ (0, 1)) ,

∂xy(t, 0) = v0(t) (t ∈ IR∗+) ,

∂xy(t, 1) = v1(t) (t ∈ IR∗+) ,

with initial condition y0 > 0, given,

y(0, x) = y0(x) (x ∈ (0, 1)) .

The aim is to control this system to a constant steady state y1 > 0

y(T , x) = y1 (x ∈ (0, 1)) ,

It is well known that

for every time T > 0 there exists controls v0 and v1 ∈ L2(0,T ) such that
y(T , ·) = y1

if v0 = v1 = 0, y is nonnegative.

Is it possible to find T > 0 and controls v0 and v1 such that y satisfies y(T , ·) = y1

together with,
y(t, x) > 0 ((t, x) ∈ (0, 1)× (0,T ) a.e.) ?
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ẏ(t, x) = ∂2
xy(t, x) (t ∈ IR∗+ , x ∈ (0, 1)) ,

∂xy(t, 0) = v0(t) (t ∈ IR∗+) ,

∂xy(t, 1) = v1(t) (t ∈ IR∗+) ,

with initial condition y0 > 0, given,

y(0, x) = y0(x) (x ∈ (0, 1)) .

The aim is to control this system to a constant steady state y1 > 0

y(T , x) = y1 (x ∈ (0, 1)) ,

It is well known that

for every time T > 0 there exists controls v0 and v1 ∈ L2(0,T ) such that
y(T , ·) = y1

if v0 = v1 = 0, y is nonnegative.

Is it possible to find T > 0 and controls v0 and v1 such that y satisfies y(T , ·) = y1

together with,
y(t, x) > 0 ((t, x) ∈ (0, 1)× (0,T ) a.e.) ?
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First considerations I

If inf
x∈(0,1)

y0(x) > y1, then y1 cannot be reached in arbitrarily small time T .

The constraint y(t, x) > 0 ensures that

y(t, 0) > 0 and y(t, 1) > 0

for every x ∈ (0, 1),

y0(x) > inf
x∈(0,1)

(
y0(x)

)
sinπx

due to the comparison principle,

y(t, x) > e−π
2t inf

x∈(0,1)

(
y0(x)

)
sinπx

in particular,

y(t, 1
2
) > e−π

2t inf
x∈(0,1)

(
y0(x)

)
finally,

y(t, 1
2
) > y1 for t ∈

[
0,

1

π2
ln

inf y0

y1

)
.
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First considerations II

Due to the comparison principle, the constraint

y(t, x) > 0

is equivalent to the constraints

y(t, 0) > 0 and y(t, 1) > 0 .

Consequently, we will first consider the control problem

ẏ(t, x) = ∂2
xy(t, x) (t ∈ IR∗+ , x ∈ (0, 1)) ,

y(t, 0) = u0(t) (t ∈ IR∗+) ,

y(t, 1) = u1(t) (t ∈ IR∗+) ,

with the control constraints

u0(t) > 0 and u1(t) > 0 (t > 0 a.e.).

J. Lohéac (LS2N) Control with state constraints Benasque 22/08/2017 4 / 27



First considerations II

Due to the comparison principle, the constraint

y(t, x) > 0

is equivalent to the constraints

y(t, 0) > 0 and y(t, 1) > 0 .

Consequently, we will first consider the control problem
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Nonnegative Dirichlet controls

The constrained Dirichlet control problem

Consider the 1-D heat equation

ẏ(t, x) = ∂2
xy(t, x) (t > 0 , x ∈ (0, 1)) , (1a)

y(t, 0) = u0(t) (t > 0) , (1b)

y(t, 1) = u1(t) (t > 0) , (1c)

with constant initial condition y0 ∈ L2(0, 1), given,

y(0, x) = y0(x) (x ∈ (0, 1)) .

The aim is to control this system to a constant steady state y1 > 0

y(T , x) = y1 (x ∈ [0, 1] a.e.) ,

with the control constraints

u0(t) > 0 and u1(t) > 0 (t > 0 a.e.).
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Nonnegative Dirichlet controls Existence of nonnegative controls

Existence of controls

Proposition

For every y0 ∈ L2(0, 1) and every y1 ∈ IR∗+, there exists a time T > 0 large enough and
controls u0, u1 ∈ H1(0,T ) such that

u0(t) > 0 and u1(t) > 0 (t ∈ [0,T ])

and the solution y of (1) satisfies

y(T , ·) = y1 .

This allows us to define

T
(
y0, y1

)
= inf

{
T > 0 , ∃u0, u1 ∈ L1(0,T ) s.t. u0 > 0 , u1 > 0 and y(T , ·) = y1

}
> 0 ,
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Nonnegative Dirichlet controls Existence of nonnegative controls

Proof I
Existence of controls

For the proof, we also refer to Schmidt 1980

Set
ỹ(t, x) = y(t, x)− y1 , ũ0(t) = u0(t)− y1 and ũ1 = u1 − y1 ,

Then, ỹ is solution of (1) with controls ũ0 and ũ1 and initial condition

ỹ(0, x) = y0(x)− y1 (x ∈ (0, 1)) .

Consequently, we aim to prove the existence of a time T > 0 and controls ũ0 and ũ1

satisfying,
ũ0(t) > −y1 and ũ1(t) > −y1 (t ∈ (0,T ) a.e.)

such that
ỹ(T , ·) = 0 .

For any T > 0 the existence of controls ũ0, ũ1 ∈ H1(0,T ) such that ỹ(T , ·) = 0 is
ensured by Fattorini-Russel 1971.
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Nonnegative Dirichlet controls Existence of nonnegative controls

Proof II
Existence of controls

In terms of the adjoint system,

−ż(t, x) = ∂2
x z(t, x) (t > 0 , x ∈ (0, 1)) ,

z(t, 0) = z(t, 1) = 0 (t > 0) ,

z(T , x) = z0(x) (x ∈ (0, 1)) ,

there exists a constant c̃(T ) > 0 such that,

‖z(0, ·)‖2
L2(0,1) 6 c̃(T )

(
‖∂xz(·, 0)‖2

H−1(0,T ) + ‖∂xz(·, 1)‖2
H−1(0,T )

)
(z0 ∈ L2(0, 1)) .

This inequality being true in any time interval, we also have

‖z(T
2
, ·)‖2

L2(0,1) 6 c̃(T
2

)
(
‖∂xz(·, 0)‖2

H−1(0,T ) + ‖∂xz(·, 1)‖2
H−1(0,T )

)
Using the dissipativity properties,

‖z(0, ·)‖2
L2(0,1) 6 e−C0

T
2 ‖z(T

2
, ·)‖2

L2(0,1) ,
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Nonnegative Dirichlet controls Existence of nonnegative controls

Proof III
Existence of controls

we obtain

‖z(0, ·)‖2
L2(0,1) 6 e−C0

T
2 c̃(T

2
)
(
‖∂xz(·, 0)‖2

H−1(0,T ) + ‖∂xz(·, 1)‖2
H−1(0,T )

)
.

By duality this means that the controls ũ0 and ũ1 can be chosen such that

‖ũi‖2
H1(0,T ) 6 e−C0

T
2 c̃(T

2
) ‖y0 − y1‖2

L2(0,1) (i ∈ {0, 1})

Using the embedding H1(0,T ) ⊂ L∞(0,T ),

‖ũi‖2
L∞(0,T ) 6 Ce−C0

T
2 c̃(T

2
) ‖y0 − y1‖2

L2(0,1) (i ∈ {0, 1})

Thus, for T large enough,

‖ũ0‖L∞(0,T ), ‖ũ1‖L∞(0,T ) < y1

and hence,
ũ0(t) > −y1 and ũ1(t) > −y1 (t ∈ [0,T ] a.e.) .

�
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Nonnegative Dirichlet controls Minimal controllability time

Minimal control time

Theorem

Let y0 ∈ L2(0, 1) and y1 ∈ IR∗+ with y0 6= y1. Then,

1 T := T
(
y0, y1

)
> 0,

2 there exist nonnegative controls u0, u1 ∈M(0,T ) such that the solution y with
controls u0 and u1 satisfies y(T , ·) = y1.

The solution y , of the Dirichlet control problem with controls in the set of Radon
measures, is defined by transposition.

Remark

T
(
y0, y1

)
> 0 even if y0 < y1.
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Nonnegative Dirichlet controls Minimal controllability time

Proof of T > 0 I

Define yn(t) =

∫ 1

0

y(t, x) sin(nπx) dx , where y is solution of (1). We have

ẏn(t) =

∫ 1

0

∂2
xy(t, x) sin(nπx) dx = −nπ

∫ 1

0

∂xy(t, x) cos(nπx)dx

= nπ (u0(t)− (−1)nu1(t))− (nπ)2yn(t)

with yn(0) =

∫ 1

0

y0(x) sin(nπx)dx := y0
n. Thus,

yn(T ) = e−(nπ)2Ty0
n + nπ

∫ T

0

e−(nπ)2(T−t) (u0(t)− (−1)nu1(t)) dt .

If y(T , x) ≡ y1, we have yn(T ) =

∫ 1

0

y1 sin(nπx) dx =
1− (−1)n

nπ
y1.

Consequently,

1− (−1)n

nπ
y1 − e−(nπ)2Ty0

n = nπ

∫ T

0

e−(nπ)2(T−t) (u0(t)− (−1)nu1(t)) dt .
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Nonnegative Dirichlet controls Minimal controllability time

Proof of T > 0 II

For n = 2p, ∫ T

0

e(2pπ)2t (u0(t)− u1(t)) dt =
y0

2p

2pπ
,

For n = 2p + 1,

2 y1

(2p + 1)π
− e−(2p+1)2π2T y0

2p+1 = (2p + 1)π

∫ T

0

e−(2p+1)2π2(T−t) (u0(t) + u1(t)) dt .

But,

e−(2p+1)2π2T 6 e−(2p+1)2π2(T−t) 6 1 (t ∈ [0,T ]) .

u0 and u1 being nonnegative,

e−(2p+1)2π2T

∫ T

0

(u0(t) + u1(t)) dt 6
∫ T

0

e−(2p+1)2π2(T−t) (u0(t) + u1(t)) dt

6
∫ T

0

(u0(t) + u1(t)) dt ,
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Nonnegative Dirichlet controls Minimal controllability time

Proof of T > 0 III

We have obtained,

2 y1

(2p + 1)2π2
− e−(2p+1)2π2T y0

2p+1

(2p + 1)π
6
∫ T

0

(u0(t) + u1(t)) dt

6 e(2p+1)2π2T 2 y1

(2p + 1)2π2
−

y0
2p+1

(2p + 1)π
.

If for every T > 0 there exists nonnegative controls uT
0 and uT

1 steering y0 to y1 in
time T , then

lim
T→0

∫ T

0

(
uT

0 (t) + uT
1 (t)

)
dt =

2 y1

(2p + 1)2π2
−

y0
2p+1

(2p + 1)π
:= γ ∈ IR (p ∈ IN) .

Hence,

y0
2p+1 =

2y1

(2p + 1)π
− (2p + 1)πγ (p ∈ IN) .

y0 ∈ L2(0, 1), ensures that
∞∑
n=0

∣∣∣y0
n

∣∣∣2 <∞ and hence γ = 0, y0
2p+1 =

2y1

(2p + 1)π
and

lim
T→0

∫ T

0

(
uT

0 (t) + uT
1 (t)

)
dt = 0 .
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Nonnegative Dirichlet controls Minimal controllability time

Proof of T > 0 IV

Since uT
0 > 0 and uT

1 > 0, we can also conclude

lim
T→0

∫ T

0

uT
0 (t)dt = lim

T→0

∫ T

0

u1(t)dt = 0 .

consequently passing to the limit T → 0 in∫ T

0

e(2pπ)2t
(

uT
0 (t)− uT

1 (t)
)
dt =

y0
2p

2pπ
,

we obtain
y0

2p = 0 (p ∈ IN∗) .

All in all, since the family
{√

2 sin(nπ ·)
}

n∈IN∗
is an orthonormal basis of L2(0, 1), we

conclude that y0 can be steered to y1 in arbitrarily small time with nonnegative controls
if and only if

y0(x) = y1 (x ∈ (0, 1)) .
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Nonnegative Dirichlet controls Minimal controllability time

Proof of Controllability in the minimal time T I

Define (εk)k∈IN a sequence of positive numbers converging to 0.
For every k ∈ IN, there exist nonnegative controls uk

0 , u
k
1 ∈ L1(0,T + εk), so that the

solution y satisfies y(T + εk , ·) = y1.
Define ε̄ = sup

k∈IN
εk .

According to

2 y1

(2p + 1)π
− e−(2p+1)2π2T y0

2p+1 = (2p + 1)π

∫ T

0

e−(2p+1)2π2(T−t)
(

uk
0 (t) + uk

1 (t)
)
dt ,

we obtain,

‖uk
0‖L1(0,T+ε̄) + ‖uk

1‖L1(0,T+ε̄) =

∫ T+εk

0

(
uk

0 (t) + uk
1 (t)

)
dt

6 inf
p∈IN

(
e(2p+1)2π2(T+εk ) 2 y1

(2p + 1)2π2
−

y0
2p+1

(2p + 1)π

)
6

2eπ
2(T+ε̄) |y1|
π2

+
|y0

1|
π
6∞ .
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Nonnegative Dirichlet controls Minimal controllability time

Proof of Controllability in the minimal time T II

In conclusion,

The sequences (uk
0 )k and (uk

1 )k are bounded in L1(0,T + ε̄);

(uk
0 )k and (uk

1 )k have their support contained in [0,T + εk ], with εk → 0;

Thus, they are (up to a subsequence) weakly convergent in the sense of measures to
some nonnegative controls ui in M([0,T ]);

These limits ensure the control requirements in the minimal control time T .

�

J. Lohéac (LS2N) Control with state constraints Benasque 22/08/2017 18 / 27



Nonnegative Dirichlet controls Minimal controllability time

Lower bounds on T

When y0 is a constant initial condition, T := T
(
y0, y1

)
satisfies

1 if y1 < y0,

T >
1

π2
log

y0

y1
and sup

p∈IN∗

1

(2p + 1)2

(
y1

y0
− e−(2p+1)2π2T

)
6

y1

y0
eπ

2T − 1 .

For y1 ≡ 1 and y0 ≡ 5, we obtain (numerically): T > 0.165297;

2 if y1 > y0,
y1

y0
− e−π

2T 6 inf
p∈IN∗

1

(2p + 1)2

(
y1

y0
e(2p+1)2π2T − 1

)
.

For y1 ≡ 5 and y0 ≡ 1, we obtain (numerically): T > 0.023076;
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Nonnegative Dirichlet controls Numerical examples

Numerical examples

From y0 ≡ 5 to y1 ≡ 1, T
(
y0, y1

)
' 0.1931.

From y0 ≡ 1 to y1 ≡ 5, T
(
y0, y1

)
' 0.0438.
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Consequences

Heat equation with nonnegative state constraint I

Consider the 1-D heat equation

ẏ(t, x) = ∂2
xy(t, x) + 1ω(x)w(t, x) (t > 0 , x ∈ (0, 1)) ,

∂xy(t, 0) = v0(t) (t > 0) ,

∂xy(t, 1) = v1(t) (t > 0) ,

with given initial condition y0 > 0,

y(0, ·) = y0 ∈ L2(0, 1) .

The aim is to control this system to a constant steady state y1 > 0

y(T , x) = y1 (x ∈ (0, 1) a.e.) ,

with the state constraint,

y(t, x) > 0 (t > 0 , x ∈ (0, 1) a.e.).

We assume ω ⊂ (0, 1) is such that there exists an interval (a, b) ⊂ (0, 1) \ ω.
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Consequences

Heat equation with nonnegative state constraint II

For v0, v1 ∈ L2(0,T ) and w ∈ L2((0,T )× ω), define

ua = y(·, a) ∈ L2(0,T ) and ub = y(·, b) ∈ L2(0,T ) .

Furthermore, y |(a,b) is solution of

ẏ(t, x) = ∂2
xy(t, x) (t > 0 , x ∈ (a, b)) ,

y(t, a) = ua(t) (t > 0) ,

y(t, b) = ub(t) (t > 0) ,

Consequently, if v0, v1 and w are controls in time T > 0 such that

y(t, x) > 0 and y(T , x) = y1 ,

then we have
ua(t) > 0 and ub(t) > 0 (t ∈ [0,T ] a.e.)

and hence T cannot be arbitrarily small unless y0
∣∣

(0,1)\ω = y1
∣∣

(0,1)\ω.
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Consequences

Numerical example I

Consider the 1-D heat equation with Neumann controls

ẏ(t, x) = ∂2
xy(t, x) (t > 0 , x ∈ (0, 1)) ,

∂xy(t, 0) = v0(t) (t > 0) ,

∂xy(t, 1) = v1(t) (t > 0) ,

with the state constraint,

y(t, x) > 0 (t > 0 , x ∈ (0, 1) a.e.).
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Consequences

Numerical example II

From y0 ≡ 5 to y1 ≡ 1, T (y0, y1) ' 0.1938.

Remind that with Dirichlet controls, we had,
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Conclusion

Our proofs are based on spectral decomposition and this can be used to prove similar
results for:

Controllability to any kind of steady state;

Parabolic equation of the form ẏ = ∂x (a(x)∂xy)− p(x)∂xy with internal and/or
boundary control;

n-D heat equations with constant coefficients;

Finite dimensional versions of the heat equation.

But cannot be used for

Non-linear heat equations;

Linear heat equation with time and space dependent parameters.

Some over open questions

Structure and uniqueness of the nonnegative Dirichlet controls in the minimal
time T ?

How the time optimal control is related to the adjoint state?
Numerical examples: 1→ 5 5→ 1

THANK YOU FOR YOUR ATTENTION!
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