An inverse problem in the biology of olfactory cilia

Carlos Conca

Universidad de Chile Department of Mathematical Engineering Center for Mathematical Modelling, UMI 2807 CNRS-UChile Center for Biotechnology & Bioengineering

Joint work with

T. Bourgeron (École Normale Supérieure de Lyon) & R. Lecaros (Universidad Técnica Federico Santa María)

Transduction of olfactory signals

The molecular machinery that carries out this job is in the olfactory cilia

 CNG ion channels through which depolarization of

the neuron occurs, making it more positive charged,

or less negative

Structure and function of the olfactory epithelium

Olfactory mechanism

Depolarization of olfactory neurons Electrical activity of ion exchange (main ions $\downarrow Ca^{2+}, \uparrow Cl^{-}$)

 $\implies \Delta V = V_{ext} - V_{int} =$ membrane difference potential

reference value of ΔV : -40[mv]electrical activity during olfaction : $\pm 10[mv]$ VII PDE's, Optimal Design and Numerics * 2017, August 20 – September 1 * Centro Pedro Pascual

æ

Experimental measurement of the probability of opening for a CNG channel \mathbb{P} depends on the concentration ω of [*cAMP*] by means of a Hill type-like function

Typical values for *n* are $n \simeq 2$

VII PDE's, Optimal Design and Numerics * 2017, August 20 - September 1 * Centro Pedro Pascual

э

イロト イポト イヨト イヨト

Outline

Mathematical Modelling Considerations

A Quick User's Guide to the Mellin Transform

Main Results

A convolution equation

A priori estimates : Continuity and observability inequalities Existence and uniqueness of ρ in a weighted L^2 space

A pathological model : Non-existence of observability inequalities

A non-stable identificability result

Numerics

Path Forward

Thanks

VII PDE's, Optimal Design and Numerics * 2017, August 20 – September 1 * Centro Pedro Pascual

- 32

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

A difusion model for $\omega = [cAMP]$

$$\frac{\partial w}{\partial t} - D \frac{\partial^2 w}{\partial x^2} = 0$$

$$w(t,0) = w_0 \longrightarrow \frac{\partial w}{\partial x}(t,L) = 0$$

Under the hypothesis of an infinitely long cilium, we have

$$\omega(t,x) \simeq w(t,x) = \omega_0 \operatorname{erfc}\left(\frac{x}{2\sqrt{Dt}}\right)$$

where $ext{erfc}(z) = 1 - rac{2}{\sqrt{\pi}} \int\limits_{0}^{z} e^{- au^2} d au$ (complementary error function)

An approximate explicit expression for ω

$$\frac{\partial w}{\partial t} - D \frac{\partial^2 w}{\partial x^2} = 0$$

$$w(t,0) = w_0 \longrightarrow \frac{\partial w}{\partial x}(t,L) = 0$$

Under the hypothesis of an infinitely long cilium, we have

$$\omega(t,x) \simeq w(t,x) = \omega_0 \operatorname{erfc}\left(rac{x}{2\sqrt{Dt}}
ight)$$

where $\operatorname{erfc}(z) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-\tau^{2}} d\tau$ (complementary error function).

A direct and an inverse problem

• Total average current as a function of ρ (direct problem)

$$I[\rho](t) = \alpha_0 \int_0^L \rho(x) \mathbb{P}(w(t,x)) dx$$

If $\ensuremath{\mathbb{P}}$ is smooth, the inverse problem is ill-posed

Proof.- The operator $\rho \mapsto I[\rho]$ is compact from $L^{p}(0, L)$ into $L^{p}(0, T)$. Thus, $\rho \mapsto I[\rho]$ cannot be at the same time injective with a left inverse continuous, because if so, then the identity map in $L^{p}(0, L)$ would be compact, which is knowingly false.

A direct and an inverse problem

• ρ as a function of the total average current (inverse problem)

$$\mathrm{I}[\rho](t) = \alpha_0 \int_0^L \rho(x) \mathbb{P}(w(t,x)) dx$$

If $\mathbb P$ is smooth, the inverse problem is ill-posed

Proof.- The operator $\rho \mapsto I[\rho]$ is compact from $L^{\rho}(0, L)$ into $L^{\rho}(0, T)$. Thus, $\rho \mapsto I[\rho]$ cannot be at the same time injective with a left inverse continuous, because if so, then the identity map in $L^{\rho}(0, L)$ would be compact, which is knowingly false.

A direct and an inverse problem

• ρ as a function of the total average current (inverse problem)

$$I[\rho](t) = \alpha_0 \int_0^L \rho(x) \mathbb{P}(w(t,x)) dx$$

If \mathbb{P} is smooth, the inverse problem is ill-posed

Proof.- The operator $\rho \mapsto I[\rho]$ is compact from $L^{p}(0, L)$ into $L^{p}(0, T)$. Thus, $\rho \mapsto I[\rho]$ cannot be at the same time injective with a left inverse continuous, because if so, then the identity map in $L^{p}(0, L)$ would be compact, which is knowingly false.

A new inverse model

 $\ensuremath{\mathbb{P}}$ is replaced by its following non-smooth version :

$$H(x) = \mathbb{P}(x) \mathbb{1}_{x \leq a} + \mathbb{1}_{a < x \leq \omega_0},$$

where *a* is a real parameter in $(0, \omega_0)$; imposed saturation level.

Figure: The Hill function \mathbb{P} and its disruptive version H (dashed line) $a = 0.157, \quad \omega_0 = .9, \quad \omega \in [0, \omega_0]$

 $\ensuremath{\mathbb{P}}$ is replaced by its following non-smooth version :

$$H(x) = \mathbb{P}(x) \mathbb{1}_{x \leq a} + \mathbb{1}_{a < x \leq \omega_0},$$

where *a* is a real parameter in $(0, \omega_0)$; imposed saturation level.

The new inverse model consists of finding $\rho = \rho(x) > 0$;

$$\forall t \geq 0, \qquad \mathrm{I}[\rho](t) = \alpha_0 \int_0^L \rho(x) H(w(t,x)) dx$$

A quick user's guide to the Mellin transform Definition

• For
$$q \in \mathbb{R}$$
, we denote $q + i\mathbb{R} = \{q + it, t \in \mathbb{R}\}$

• For $p \in \mathbb{R}, p \geq 1$, we define

$$L^{p}\left([0,\infty),x^{q}\right) = \left\{ f:\left[0,+\infty\right) \to \mathbb{R} \mid \left\|f\right\|_{L^{p}_{q}} \stackrel{(\mathrm{def})}{=} \left(\int_{0}^{\infty} \left|f(x)\right|^{p} x^{q} dx\right)^{1/p} < +\infty \right\}$$

• Let f be in $L^1([0,\infty), x^q)$. The Mellin transform of f is a complex valued function defined on the vertical line $q + 1 + i\mathbb{R}$ by

$$\mathcal{M}f(s) \stackrel{(\mathrm{def})}{=} \int_0^\infty x^s f(x) \frac{dx}{x}$$

** ** **

A quick user's guide to the Mellin transform

Basic user's operational properties

• Theorem #1

The Mellin transform is a linear continuous map from $L^1([0,\infty),x^q)$ into $\mathcal{C}^0(q+1+i\mathbb{R};\mathbb{C}) \hookrightarrow L^\infty(q+1+i\mathbb{R};\mathbb{C})$; its operator norm is 1.

• Main operational properties

function	Mellin transform
f(at), a > 0	$a^{-s}\mathcal{M}f(s)$
$f(t^a), a \neq 0$	$\left a ight ^{-1}\mathcal{M}f(a^{-1}s)$
$f^{(k)}(t)$	$(-1)^k(s-k)_k\mathcal{M}f(s-k)$

where, $\forall x \in \mathbb{R} \ \forall k \geq 1$ we write

$$(x)_k = x \cdots (x - k + 1) = \prod_{j=0}^{k-1} (x - j)$$
 (Pochhammer symbol)

The Mellin multiplicative convolution

• For two functions f, g, the multiplicative convolution (f * g) is

$$(f * g)(x) = \int_0^\infty f(y) g\left(\frac{x}{y}\right) \frac{dy}{y}$$

• Proposition #1

$$\mathcal{M}(f * g)(s) = \mathcal{M}f(s)\mathcal{M}g(s),$$

whenever this expression is well defined.

Proof.- A careful and appropriate used of integration by parts.

Our inverse problem as a convolution equation

$$\forall t \ge 0 \qquad \mathrm{I}[\rho](t) = \int_{0}^{L} \rho(x) H(w(t,x)) dx = \int_{0}^{L} \rho(x) H(\omega_0 \operatorname{erfc}(\frac{x}{2\sqrt{Dt}})) dx$$

Defining G as

$$G(z) = H\left(\omega_0 \operatorname{erfc}\left(rac{1}{2\sqrt{D}z}
ight)
ight)$$

we have $I[\rho](t) = \int_{0}^{L} \rho(x)G(\frac{\sqrt{t}}{x})dx$. Thus, by extending ρ by zero to $[0, +\infty]$, and rescaling time t in t^2 ,

$$I[\rho](t^{2}) = \int_{0}^{\infty} x\rho(x)G\left(\frac{t}{x}\right)\frac{dx}{x} = \left(x\rho(x)\right) * G$$

which is a convolution equation in $x\rho(x)$.

Our inverse problem as a convolution equation

Taking Mellin transform on both sides and using its operational properties, we formally obtain

$$\mathcal{M}G(s)\mathcal{M}\rho(s+1) = \mathcal{M}\left(\mathrm{I}[\rho](t^2)\right)(s) = \frac{1}{2}\mathcal{M}\mathrm{I}[\rho](s/2)$$

or equivalently,

$$(\star) \qquad \mathcal{M}\rho(s+1) = \frac{1}{2} \frac{\mathcal{M}I[\rho](s/2)}{\mathcal{M}G(s)}$$

• Plancherel's Identity

The Mellin transform extends, in a unique manner, to an isometry from $L^2([0,\infty), x^{2q-1})$ into the classical $L^2(q+i\mathbb{R})$ space, i.e.,

$$\mathcal{M} \in \mathcal{L}\left(L^2_{2q-1}; L^2(q+i\mathbb{R})\right)$$

where L_{2q-1}^2 is a short notation for $L^2([0,\infty), x^{2q-1})$ VII PDE's, Optimal Design and Numerics * 2017, August 20 – September 1 * Centro Pedro Pascual

- 3

Continuity of $I[\rho]$ in time weighted L^2 space

Continuity of the measured electrical transmembrane current

Theorem#2

Let a > 0 and r < 1 be given. Assume that the Mellin transforms of ρ and $I[\rho]$ satisfy (*).

•
$$\rho \in L^2([0,\infty), x^r) \Rightarrow \exists C > 0 \text{ s.t.}$$

$$\|\mathrm{I}[\rho]\|_{L^2([0,\infty), t^{\frac{r-3}{2}})} \leq C \|\rho\|_{L^2([0,\infty), x^r)}$$

where
$$C = \sqrt{2} \sup_{s \in \frac{r-1}{2} + i\mathbb{R}} |\mathcal{M}G(s)| < +\infty$$

• $\rho \in L^2([0,\infty), x^r)$ and *a* is small enough $\Rightarrow \exists C > 0$ s.t

$$\left\| (I[\rho])' \right\|_{L^2([0,\infty),t^{\frac{r+1}{2}})} \le C \left\| \rho \right\|_{L^2_r}$$

where $C = \sqrt{2} \sup_{s \in \frac{r-1}{2} + i\mathbb{R}} \left| \left(\frac{s}{2} \right) \mathcal{M}G(s) \right| < +\infty$

Existence and uniqueness of ρ in a weighted L^2 space Determination of a unique distribution of CNG ion channels

Theorem#3

Let a > 0 and r < 1 be given. Assume that the Mellin transforms of ρ and $I[\rho]$ satisfy (*), i.e.

$$\mathcal{M}
ho(s+1) = rac{1}{2}rac{\mathcal{M}\mathrm{I}[
ho]\left(s/2
ight)}{\mathcal{M}G(s)},$$

then

• If $I \in L^2([0,\infty), t^{\frac{r-3}{2}})$, $I' \in L^2([0,\infty), t^{2+\frac{r-3}{2}})$ and *a* is small enough, then $\exists! \ \rho \in L^2([0,\infty), x^r), \exists C > 0$ s.t.

$$\|\mathbf{I}\|_{L^{2}([0,\infty),t^{\frac{r-3}{2}})} + \left\|\mathbf{I}'\right\|_{L^{2}([0,\infty),t^{2+\frac{r-3}{2}})} \ge C \left\|\rho\right\|_{L^{2}_{r}}$$

where
$$C = \sqrt{2} \inf_{s \in \frac{r-1}{2} + i\mathbb{R}} \left| \left(\frac{s}{2} \right) \mathcal{M}G(s) \right| > 0$$

Theorem#2 and #3, Sketch of the proof

Two main steps :

- Appropriate algebraic manipulation of (*) using operational properties of the Mellin transform
- Come back to the original variables using Plancherel's isometry

From (\star) it follows that

$$\mathcal{M}I[\rho](s) = 2 \mathcal{M}G(2s) \mathcal{M}\rho(2s+1)$$

and hence,

$$(s-k)_k \mathcal{M}I[\rho](s-k) = 2(s-k)_k \mathcal{M}G(2(s-k)) \mathcal{M}\rho(2(s-k)+1)$$

Theorem #2 and #3, Sketch of the proof

• Come back to the original variables using Plancherel's isometry

As the Mellin transform is an isometry (up to the factor $1/\sqrt{2\pi}$) from L^2_{2q-1} onto $L^2(q+i\mathbb{R})$, for s in $q+i\mathbb{R}$ we have

$$\begin{split} \left\| (\mathrm{I}[\rho])^{(k)} \right\|_{L^{2}_{2q-1}} &= \frac{1}{\sqrt{2\pi}} \left\| (-1)^{k} (s-k)_{k} \mathcal{M}\mathrm{I}[\rho](s-k) \right\|_{L^{2}(q+i\mathbb{R})} \\ &= \frac{2}{\sqrt{2\pi}} \left\| (s-k)_{k} \mathcal{M}G(2(s-k)) \mathcal{M}\rho(2(s-k)+1) \right\|_{L^{2}(q+i\mathbb{R})} \\ &= \frac{2}{\sqrt{2\pi}} \left\| (s)_{k} \mathcal{M}G(2s) \mathcal{M}\rho(2s+1) \right\|_{L^{2}(q-k+i\mathbb{R})} \\ &= \frac{1}{\sqrt{\pi}} \left\| \left(\frac{s}{2} \right)_{k} \mathcal{M}G(s) \mathcal{M}\rho(s+1) \right\|_{L^{2}(2(q-k)+i\mathbb{R})} \end{split}$$

Theorem #2 and #3, Sketch of the proof

• Come back to the original variables using Plancherel's isometry

As \mathcal{M} is an isometry of $L^2(2(q-k)+1+i\mathbb{R})$ onto $L^2_{4(q-k)+1}$, we have $\|\mathcal{M}\rho(s+1)\|_{L^2(2(q-k)+i\mathbb{R})} = \|\mathcal{M}\rho(s)\|_{L^2(2(q-k)+1+i\mathbb{R})} = \sqrt{2\pi} \|\rho\|_{L^2_{4(q-k)+1}}$

Gathering together the above inequalities, the definitions of C_{ℓ}, C_{u} yield,

$$C_{\ell} \|\rho\|_{L^{2}_{4(q-k)+1}} \leq \left\| (\mathrm{I}[\rho])^{(k)} \right\|_{L^{2}_{2q-1}} \leq C_{u} \|\rho\|_{L^{2}_{4(q-k)+1}}$$

Taking r = 4(q - k) + 1, that is $q = k + \frac{r-1}{4}$, provides the result.

Our original inverse problem as a convolution equation

$$\forall t \geq 0$$
 $I[\rho](t) = \int_{0}^{\infty} \rho(x) \mathbb{P}(w(t,x)) dx$

Defining \tilde{G} as

$$ilde{G}(z) = \mathbb{P}\left(\omega_0 \operatorname{erfc}\left(rac{1}{2Dz}
ight)
ight),$$

and rescaling time t in t^2 , we obtain a convolution equation very similar to (\star) :

$$(\star\star) \qquad \mathcal{M}\rho(s+1) = \frac{1}{2} \frac{\mathcal{M}\mathrm{I}[\rho](s/2)}{\mathcal{M}\tilde{G}(s)}$$

VII PDE's, Optimal Design and Numerics * 2017, August 20 – September 1 * Centro Pedro Pascual

- 3

Stability and non-observability

Theorem#4 Let r < 1 be fixed. • $\rho \in L^2([0,\infty), x^r) \Rightarrow \exists C > 0$ s.t. $\|I[\rho]\|_{L^2([0,\infty), t^{\frac{r-3}{2}})} \leq C \|\rho\|_{L^2_r}.$

• $\forall k \in \mathbb{N} \mid \exists C_k \geq 0$ such that the observability inequality :

$$\left\| (\mathrm{I}[\rho])^{(k)} \right\|_{L^2([0,\infty),t^{2k+\frac{r-3}{2}})} \ge C_k \|\rho\|_{L^2_r},$$

holds for every function $\rho \in L^2([0,\infty), x^r)$.

Remark This result shows that $I \in \mathcal{L}\left(L_r^2; L_{\frac{r-3}{2}}^2\right)$, and if the inverse problem is identificable (i.e, I is injective), then I^{-1} cannot be continuous, as shown by the second inequality below.

Identificability result without stability

Theorem#5

Let r<0 and $\rho\in L^1([0,\infty),x^r)$ be arbitrary. We consider the operator $\mathrm{I}[\rho]$ defined by

$$\mathrm{I}[\rho](t) = \int_{0}^{\infty} \rho(x) \mathbb{P}(w(t,x)) dx \qquad \forall t \geq 0$$

If there exists a non empty open set U of $(0,\infty)$ s.t.

$$I[\rho](t) = 0 \quad \forall t \in U,$$

then $\rho = 0$ a.e. on $(0, \infty)$.

Proof.- Lebesgue's dominated convergence theorem for analytic functions allows us to prove that $I[\rho]$ is analytic in $(0, +\infty)$.

Proof of Identificability

Proof.- (cont.) As $I[\rho]$ vanishes on U, the principle of permanence implies that it vanishes on the connected set $(0, +\infty)$, i.e.,

$$\forall t \in (0, +\infty) \quad \mathrm{I}[\rho](t) = 0$$

To conclude, we take here Mellin transform and use the

Lemma (Holomorphy and rapid decay of the Mellin transform) Let $f \in S_x[0,\infty)$. Its Mellin transform $\mathcal{M}f$ is holomorphic on the right half-plane, and it decays faster than any negative power of tover every vertical line, i.e.,

$$egin{aligned} &orall q>0 \ orall k\in \mathbb{N} \ \exists C\geq 0 \ s.t. \ &|\mathcal{M}f(q+it)|\leq C \ rac{1}{t^k} \quad orall t\in \mathbb{R} \end{aligned}$$

Measured current is a sigmodial function with short delay, similar to the profiles in some applications (Chen et al., *BioPhysical J.* **76**, 1999)

with $t_{Delay} = 30 ms$, $n_{\rm I} \simeq 2.2$, $I_{Max} = 150 pA$ and $K_{\rm I} \simeq 100 ms$.

Path forward

• More accurate numerical simulations, a stronger validation of the inverse mathematical model

Thank You for your Attention !

