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Generalized Characteristics

The idea

Classical characteristics.
Generalized characteristics
Extremal backward characteristics.
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Generalized Characteristics

Some articles

Ancona-Marson (1998) : Reachable states, half-line, 0 initial condition.
Horsin (1998) : sufficient conditions on interval for Burgers.
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Generalized Characteristics

Advantages and Limitations

A posteriori analysis.
Very precise description.
Only 1d.
Much more difficult with non convex flux.
Much more difficult with system.
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Vanishing Viscosity

The idea

Shock selection and viscosity.
Boundary layer.
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Vanishing Viscosity

Some articles

Glass-Guerrero (2007) : Burgers constant target.
Imanuvilov-Puel (2009) : 2D Burgers.
Leautaud (2012) : More general flux.
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Vanishing Viscosity

Advantages and limitations

Work with smoother functions.
Real boundary.
Uniform controllability (good and bad).
More difficult with system (Bianchini Bressan Ancona).
Reachable states?
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Wave Front Tracking

The idea

Riemann problem.
Piecewise constant approximations.
Non physical fronts.
Backward solver.
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Wave Front Tracking

Some Articles

Bressan-Coclite (2002), counter-example, no linear test.
Ancona-Coclite (2005), Temple systems.
Glass (2007, 2014) , Euler isentropic and non-isentropic.
Li Tatsien- Lei Yu (2016), Linearly degenerate systems.
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Wave Front Tracking

Advantages and limitations

Any scalar flux.
Work with system.
Numerically implementable (at least theoretically).
No black box, even for obvious results.
Reachable states.
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Lyapunov Functionals

The case of the transport equation

∂ty + c∂x y = 0, (t, x) ∈ (0,T )× (0, L)

y(t, 0) = 0, t ∈ (0,T ).

Using the method of characteristics :

y(t, x) =

{
y0(x − ct) if x > ct,
0 otherwise.

For t ≥ L, y(t, .) = 0.
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Lyapunov Functionals

A Family of Lyapunov Functionals

For ν > 0 :

Jν(t) :=

∫ L

0
y2(t, x)e−νx dx .

Formally at least :

J̇ν(t) =

∫ L

0
2yt(t, x)y(t, x)e−νx dx

=

∫ L

0
−2cyx (t, x)y(t, x)e−νx dx

= [−cy2(t, x)e−νx ]L0 − cνJν(t)

≤ −cνJν(t).

Using Gronwall :
Jν(t) ≤ e−cνtJν(0).
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Lyapunov Functionals

Return on the L2 norm

Norm equivalence

∀t ≥ 0, e−νL||y(t, .)||2L2(0,L) ≤ Jν(t) ≤ ||y(t, .)||2L2(0,L).

Inequality on L2

||y(t, .)||2L2(0,L) ≤ e−νc(t− L
c )||y0||2L2(0,L),

For t ≥ L
c , letting ν → +∞ we get y(t, .) = 0.
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Lyapunov Functionals

A simple geometric condition

Definition
Let Ω be an smooth open set of Rd and I be a segment of R. We say that they
satisfy the replacement condition in time T > 0 if there exists a vector
w ∈ Rd and a positive number c such that

L := sup
x∈Ω
〈w |x〉 − inf

x∈Ω
〈w |x〉 < +∞.

∀u ∈ I, 〈f ′(u)|w〉 ≥ c,

and T = L
c .
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Lyapunov Functionals

and its simple corresponding result

Theorem (Donadello, P.)
Let v ∈ L∞((0,+∞)× Ω) be an entropy solution to

∂tu + div(f (u)) = 0

and u0 be a function in L∞(Ω).
Suppose that both u0 and v take value in a segment I such that Ω, I and f satisfy
the replacement condition in time T . Then for any times T1 and T2 greater than
T we have an entropy solution u of the previous equation satisfying

u(0, x) = u0(x), u(T1, x) = v(T2, x) for almost all x ∈ Ω.
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Lyapunov Functionals

THANK YOU FOR YOUR ATTENTION
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