Inverse obstacle problem with partial Cauchy data: a shape optimization approach.

Jérémi Dardé joint work with Fabien Caubet and Matías Godoy

Institut de Mathématiques de Toulouse, Université Toulouse 3

VII Partial differential equations, optimal design and numerics August 23, 2017

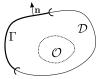
• • • • • • • • • • • •

Inverse obstacle problem

<u>The data:</u>

- \mathcal{D} open set of \mathbb{R}^d $(d \ge 2)$, with Lipschitz boundary

 $\begin{array}{l} - \ \Gamma \subset \partial \mathcal{D}, \ |\Gamma| > 0, \ \Gamma_c := \partial \mathcal{D} \setminus \overline{\Gamma} \\ - \ (g_D, g_N): \ (\text{possibly noisy}) \ \text{Cauchy data}, \\ (g_D, g_N) \in H^{1/2}(\Gamma) \times H^{-1/2}(\Gamma). \end{array}$



A D > A B > A B > A

• Problem:

Find an inclusion $\mathcal{O}, \overline{\mathcal{O}} \subset \mathcal{D}, \Omega := \mathcal{D} \setminus \overline{\mathcal{O}}$ connected, and $u \in H^1(\Omega)$, s.t.

$$(\mathcal{P}) \begin{cases} \Delta u = 0 & \text{in } \Omega \\ u = g_D & \text{on } \Gamma \\ \partial_n u = g_N & \text{on } \Gamma \\ u = 0 & \text{on } \partial \mathcal{O} \end{cases}$$

Inverse problems: typical questions

- Classical questions in context of inverse problems:
- 1) Identifiability there exists at most one couple (\mathcal{O}, u) solution of (\mathcal{P}) .

2) Stability - log-type stability (really bad) : *Optimal stability for inverse elliptic boundary value problems with unknown boundaries*, G. Alessandrini, E. Beretta, E. Rosset, and S. Vessella, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2000).

3) Reconstruction.

イロト イポト イヨト イヨト

Reconstruction methods (non-exhaustive list)

• 2d problem - methods based on conformal mappings: *Conformal mappings and inverse boundary value problem*, H. Haddar and R. Kress, Inverse Problems **21** (2005).

• Integral equations: Nonlinear integral equations and the iterative solution for an inverse boundary value problem, R. Kress and W. Rundell, Inverse Problems (2005).

• Exterior approach, based on the Quasi-reversibility method: A quasi-reversibility approach to solve the inverse obstacle problem, L. Bourgeois and J.D., Inverse problems and Imaging (2010).

• Shape optimization methods: *Detecting perfectly insulated obstacles by shape optimization techniques of order two*, L. Afraites, M. Dambrine, K. Eppler, D. Kateb, Discrete Contin. Dyn. Syst. Ser. B (2007).

→ detection of obstacles in fluids:

- A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid, F. Caubet, M. Dambrine, D. Kateb, and C. Z. Timimoun, Inverse Probl. Imaging (2013)

- On the detection of several obstacles in 2d stokes flow: Topological sensitivity and combination with shape derivatives, F. Caubet, C. Conca, and M. Godoy, Inverse Probl. Imaging (2016).

• . . .

ヘロト ヘロト ヘヨト ヘヨト

Reconstruction methods (non-exhaustive list)

• 2d problem - methods based on conformal mappings: *Conformal mappings and inverse boundary value problem*, H. Haddar and R. Kress, Inverse Problems **21** (2005).

• Integral equations: Nonlinear integral equations and the iterative solution for an inverse boundary value problem, R. Kress and W. Rundell, Inverse Problems (2005).

• Exterior approach, based on the Quasi-reversibility method: A quasi-reversibility approach to solve the inverse obstacle problem, L. Bourgeois and J.D., Inverse problems and Imaging (2010).

• Shape optimization methods: *Detecting perfectly insulated obstacles by shape optimization techniques of order two*, L. Afraites, M. Dambrine, K. Eppler, D. Kateb, Discrete Contin. Dyn. Syst. Ser. B (2007).

 \rightsquigarrow detection of obstacles in fluids:

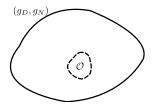
- A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid, F. Caubet, M. Dambrine, D. Kateb, and C. Z. Timimoun, Inverse Probl. Imaging (2013)

- On the detection of several obstacles in 2d stokes flow: Topological sensitivity and combination with shape derivatives, F. Caubet, C. Conca, and M. Godoy, Inverse Probl. Imaging (2016).

• . . .

ヘロト ヘロト ヘヨト ヘヨト

Shape optimization for inverse obstacle problems: general strategy

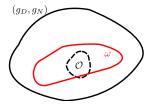


Initial situation

 $one \quad \text{ or } \quad \text{ on } \mathcal{D} \setminus \overline{\omega} \\ one \quad \text{ on } \quad \mathcal{D} \setminus \overline{\omega} \\ \partial_{\nu} u_{\omega} = g_N \text{ on } \partial \mathcal{D} \\ one \quad \text{ on } \quad \partial \mathcal{D} \end{aligned}$

• compute $J(\omega) = \int_{\partial D} (g_D - u_\omega)^2 ds \rightarrow \text{ if zero, ok, if not, compute the shape}$ A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Shape optimization for inverse obstacle problems: general strategy



Initial situation

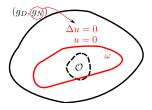
2 choose an arbitrary open set $\omega \Subset \mathcal{D}$

3 compute *u* solving the direct problem

 $\Delta u_{\omega} = 0 \text{ in } \mathcal{D} \setminus \overline{\omega}$ $\partial_{\nu} u_{\omega} = g_{N} \text{ on } \partial \mathcal{D}$ $u_{\omega} = 0 \text{ on } \partial \omega$

• compute $J(\omega) = \int_{\partial D} (g_D - u_\omega)^2 ds \rightarrow$ if zero, ok, if not, compute the shape derivative of J w.r.t. $\omega \rightarrow$ gradient algorithm.

Shape optimization for inverse obstacle problems: general strategy



- Initial situation
- **2** choose an arbitrary open set $\omega \Subset \mathcal{D}$
- Sompute *u* solving the direct problem

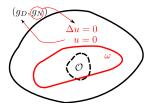
$$\Delta u_{\omega} = 0 \text{ in } \mathcal{D} \setminus \overline{\omega}$$

$$\partial_{\nu} u_{\omega} = g_{N} \text{ on } \partial \mathcal{D}$$

$$u_{\omega} = 0 \text{ on } \partial \omega$$

• compute $J(\omega) = \int_{\partial D} (g_D - u_\omega)^2 ds \rightarrow$ if zero, ok, if not, compute the shape derivative of J w.r.t. $\omega \rightarrow$ gradient algorithm.

Shape optimization for inverse obstacle problems: general strategy



Initial situation

- **2** choose an arbitrary open set $\omega \Subset \mathcal{D}$
- Sompute *u* solving the direct problem

$$\begin{cases} \Delta u_{\omega} = 0 \text{ in } \mathcal{D} \setminus \overline{\omega} \\ \partial_{\nu} u_{\omega} = g_{N} \text{ on } \partial \mathcal{D} \\ u_{\omega} = 0 \text{ on } \partial \omega \end{cases}$$

• compute $J(\omega) = \int_{\partial D} (g_D - u_\omega)^2 ds \rightarrow \text{ if zero, ok, if not, compute the shape derivative of } J \text{ w.r.t. } \omega \rightarrow \text{ gradient algorithm.}$

Kohn-Vogelius functional

• In our computation, we will minimize a Kohn-Vogelius functional:

$$\min_{\omega} \ \mathcal{K}(\omega) := \int_{\mathcal{D} \setminus \overline{\omega}} |
abla (u^D_{\omega} - u^N_{\omega}) |^2 \, dx$$

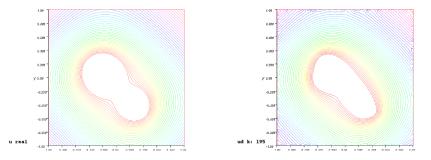
where u_{ω}^{D} , u_{ω}^{N} solve

$$\left\{ \begin{array}{l} \Delta u_{\omega}^{D} = 0 \text{ in } \mathcal{D} \setminus \overline{\omega} \\ u_{\omega}^{D} = g_{D} \text{ on } \partial \mathcal{D} \\ u_{\omega}^{D} = 0 \text{ on } \partial \omega \end{array} \right. , \qquad \left\{ \begin{array}{l} \Delta u_{\omega}^{N} = 0 \text{ in } \mathcal{D} \setminus \overline{\omega} \\ \partial_{\nu} u_{\omega}^{N} = g_{N} \text{ on } \partial \mathcal{D} \\ u_{\omega}^{N} = 0 \text{ on } \partial \omega \end{array} \right.$$

- Advantages:
 - (g_D, g_N) are treated symmetrically
 - only volumic quantities
 - numerically: better reconstructions.
- Still a severely ill-posed problem! Regularization?

< □ > < 同 > < 回 > < 回 >

Example of reconstruction



An example of reconstruction with noisy data.

・ロト ・日下・ ・ ヨト・

Incomplete data

• The whole strategy is possible only if the data (g_D, g_N) are available on the whole boundary of the domain \mathcal{D} (at least one of them).

- But in lots of practical applications, some parts of the boundary are unaccessible \rightarrow no measurements on them (particularly true for fluid problems).
- \Rightarrow the whole strategy fails.

• Main objective: propose a *shape optimization* strategy to reconstruct the unknown inclusion when only Cauchy data are available *only on a subpart of the boundary of the domain of study*.

• Clearly, we have to reconstruct both ω and the missing data \longrightarrow data completion problem.

Incomplete data

• The whole strategy is possible only if the data (g_D, g_N) are available on the whole boundary of the domain \mathcal{D} (at least one of them).

- But in lots of practical applications, some parts of the boundary are unaccessible \rightarrow no measurements on them (particularly true for fluid problems).
- \Rightarrow the whole strategy fails.
- Main objective: propose a *shape optimization* strategy to reconstruct the unknown inclusion when only Cauchy data are available *only on a subpart of the boundary of the domain of study*.

• Clearly, we have to reconstruct both ω and the missing data \longrightarrow data completion problem.

Incomplete data

- The whole strategy is possible only if the data (g_D, g_N) are available on the whole boundary of the domain \mathcal{D} (at least one of them).
- But in lots of practical applications, some parts of the boundary are unaccessible \rightarrow no measurements on them (particularly true for fluid problems).
- \Rightarrow the whole strategy fails.
- Main objective: propose a *shape optimization* strategy to reconstruct the unknown inclusion when only Cauchy data are available *only on a subpart of the boundary of the domain of study*.
- \bullet Clearly, we have to reconstruct both ω and the missing data \longrightarrow data completion problem.

イロン イロン イヨン イヨン

Data completion problem

- The data:
- $\mathcal D$ open set of \mathbb{R}^d $(d \ge 2)$, with Lipschitz boundary
- $\Gamma \subset \partial \mathcal{D}, |\Gamma| > 0. \ \Gamma_c := \partial \mathcal{D} \setminus \overline{\Gamma}.$
- (g_D, g_N) : (possibly noisy) Cauchy data, $(g_D, g_N) \in H^{1/2}(\Gamma) \times H^{-1/2}(\Gamma)$.

• Problem: find
$$u \in H^1(\Omega)$$
, s.t. (\mathcal{P}_c)
$$\begin{cases} \Delta u = 0 & \text{in } \mathcal{D} \\ u = g_D & \text{on } \Gamma \\ \partial_n u = g_N & \text{on } \Gamma \end{cases}$$

• This problem is severely ill-posed (exponentially ill-posed), it has at most one solution that does not depend continuously on the data. In particular, the set of data for which the problem has no solution is dense in

 $H^{1/2}(\Gamma) \times H^{-1/2}(\Gamma) \Rightarrow$ high instability \Rightarrow it is mandatory to propose a regularization method to solve the problem numerically.

• In the sequel, we denote by u_{ex} the exact solution corresponding to exact data (g_D, g_N) .

イロト イヨト イヨト イヨト

Data completion problem

- The data:
- $\mathcal D$ open set of \mathbb{R}^d $(d\geq 2)$, with Lipschitz boundary
- $\Gamma \subset \partial \mathcal{D}, |\Gamma| > 0. \ \Gamma_c := \partial \mathcal{D} \setminus \overline{\Gamma}.$
- (g_D, g_N) : (possibly noisy) Cauchy data, $(g_D, g_N) \in H^{1/2}(\Gamma) \times H^{-1/2}(\Gamma)$.

• Problem: find
$$u \in H^1(\Omega)$$
, s.t. (\mathcal{P}_c)
$$\begin{cases} \Delta u = 0 & \text{in } \mathcal{D} \\ u = g_D & \text{on } \Gamma \\ \partial_n u = g_N & \text{on } \Gamma \end{cases}$$

• This problem is severely ill-posed (exponentially ill-posed), it has at most one solution that does not depend continuously on the data. In particular, the set of data for which the problem has no solution is dense in $H^{1/2}(\Gamma) \times H^{-1/2}(\Gamma) \Rightarrow$ high instability \Rightarrow it is mandatory to propose a regularization method to solve the problem numerically.

• In the sequel, we denote by u_{ex} the exact solution corresponding to exact data (g_D, g_N) .

Kohn-Vogelius minimization strategy

- Introduced in Solving Cauchy problems by minimizing an energy-like functional,
- S. Andrieux, T.N. Baranger and A. Ben Abda, Inverse Problems 22, (2006).
- Main idea: minimize the energy functional

$$\mathcal{K}(\varphi,\psi) := rac{1}{2} \int_{\mathcal{D}} |
abla(u_{arphi} - u_{\psi})|^2 dx$$

over all $(\varphi, \psi) \in H^{-1/2}(\Gamma_c) \times H^{1/2}(\Gamma_c)$, where u_{φ} and u_{ψ} verify

$$\left\{ \begin{array}{l} \Delta u_{\varphi} = 0 \text{ in } \mathcal{D} \\ u_{\varphi} = g_{D} \text{ on } \Gamma \\ \partial_{\nu} u_{\varphi} = \varphi \text{ on } \Gamma_{c} \end{array} \right. \qquad \left\{ \begin{array}{l} \Delta u_{\psi} = 0 \text{ in } \mathcal{D} \\ \partial_{\nu} u_{\psi} = g_{N} \text{ on } \Gamma \\ u_{\psi} = \psi \text{ on } \Gamma_{c} \end{array} \right.$$

• Easy remark: $\mathcal{K}(\varphi, \psi) = 0 \Leftrightarrow u_{\varphi} = u_{ex} = u_{\psi} + cte$.

Property

$$\inf_{H^{-1/2}(\Gamma_c)\times H^{1/2}(\Gamma_c)}\mathcal{K}(\varphi,\psi)=0$$

イロト イヨト イヨト イヨト

Regularization of the K-V functional

• Regularized Kohn-Vogelius functional: for $\varepsilon > 0$, for $(\varphi, \psi) \in H^{-1/2}(\Gamma_c) \times H^{1/2}(\Gamma_c)$,

$$\mathcal{K}_{arepsilon}(arphi,\psi) = \mathcal{K}(arphi,\psi) + rac{arepsilon}{2} \left(\|oldsymbol{v}_{arphi}\|_{H^1(\Omega)}^2 + \|oldsymbol{v}_{\psi}\|_{H^1(\Omega)}^2
ight).$$

with

$$\left\{ \begin{array}{l} \Delta v_{\varphi} = 0 \text{ in } \mathcal{D} \\ v_{\varphi} = 0 \text{ on } \Gamma \\ \partial_{\nu} v_{\varphi} = \varphi \text{ on } \Gamma_{c} \end{array} \right., \qquad \left\{ \begin{array}{l} \Delta v_{\psi} = 0 \text{ in } \mathcal{D} \\ \partial_{\nu} v_{\psi} = 0 \text{ on } \Gamma \\ v_{\psi} = \psi \text{ on } \Gamma_{c} \end{array} \right.$$

Property

There exists a unique
$$(\varphi_{\varepsilon}, \psi_{\varepsilon}) \in H^{-1/2}(\Gamma_c) \times H^{1/2}(\Gamma_c)$$
 s.t.

$$\mathcal{K}_{arepsilon}(arphi_{arepsilon},\psi_{arepsilon}) = \operatorname*{argmin}_{(arphi,\psi)\in H^{-1/2}(\Gamma)} \mathcal{K}_{arepsilon}(arphi,\psi).$$

Convergence results

Property

The sequence $(\varphi_{\varepsilon}, \psi_{\varepsilon})$ is a minimizing sequence for \mathcal{K} .

Theorem

Suppose (\mathcal{P}_{c}) admits a (necessarily unique) solution u_{ex} . Then $(\varphi_{\varepsilon}, \psi_{\varepsilon})$ converges to $(\partial_{\nu}u_{ex}, u_{ex} + cte) \Leftrightarrow u_{\varphi_{\varepsilon}} \xrightarrow{\varepsilon \to 0}_{H^{1}(\Omega)} u_{ex}$. Furthermore, the convergence is monotonic: the map $\varepsilon \mapsto ||u_{\varphi_{\varepsilon}} - u_{ex}, u_{\psi_{\varepsilon}} - u_{ex}||_{H^{1}(\Omega) \times H^{1}(\Omega)}$ is strictly increasing. Suppose (\mathcal{P}_{c}) does not admit a solution. Then $\lim_{\varepsilon \to 0} ||\varphi_{\varepsilon}, \psi_{\varepsilon}||_{H^{-1/2}(\Gamma_{c}) \times H^{1/2}(\Gamma_{c})} = +\infty$.

• It is mandatory to propose a strategy to deal with noisy data.

Derivatives of $\mathcal{K}_{\varepsilon}$

• We define w_N , $w_D \in H^1(\mathcal{D})$ solutions of

$$\left\{ \begin{array}{ll} \Delta w_N = \varepsilon v_{\psi} & \text{ in } \mathcal{D} \\ \partial_{\nu} w_N = \partial_{\nu} u_{\varphi} - g_N & \text{ on } \Gamma \\ w_N = 0 & \text{ on } \Gamma_c \end{array} \right. \quad \left\{ \begin{array}{ll} \Delta w_D = \varepsilon v_{\varphi} & \text{ in } \mathcal{D} \\ w_D = u_{\psi} - g_D & \text{ on } \Gamma \\ \partial_{\nu} w_D = 0 & \text{ on } \Gamma_c \end{array} \right.$$

Property

For all $(\varphi, \psi), (\tilde{\varphi}, \tilde{\psi})$ in $H^{-1/2}(\Gamma_c) \times H^{1/2}(\Gamma_c)$, we have

$$\frac{\partial \mathcal{K}_{\varepsilon}}{\partial \varphi}(\varphi, \psi)[\tilde{\varphi}] = \langle \tilde{\varphi}, u_{\varphi} + \varepsilon v_{\varphi} + w_D - \psi \rangle_{\mathsf{F}_{c}}$$

and

$$\frac{\partial \mathcal{K}_{\varepsilon}}{\partial \psi}(\varphi,\psi)[\tilde{\psi}] = \langle \partial_{\nu} u_{\psi} + \varepsilon \partial_{\nu} v_{\psi} + \partial_{\nu} w_{N} - \varphi, \tilde{\psi} \rangle_{\Gamma_{c}}.$$

Inverse obstacle problem with partial Cauchy data

• Problem:

Find an inclusion $\mathcal{O}, \overline{\mathcal{O}} \subset \mathcal{D}, \Omega := \mathcal{D} \setminus \overline{\mathcal{O}}$ connected, and $u \in H^1(\Omega)$, s.t.

$$(\mathcal{P}) \begin{cases} \Delta u = 0 & \text{in } \Omega \\ u = g_D & \text{on } \Gamma \\ \partial_n u = g_N & \text{on } \Gamma \\ u = 0 & \text{on } \partial \mathcal{O} \end{cases}$$

• Kohn-Vogelius strategy: minimization of the regularized Kohn-Vogelius functional w.r.t to ω , φ and ψ .

$$\mathcal{K}_{\varepsilon}(\omega,\varphi,\psi) := \int_{\mathcal{D}\setminus\overline{\omega}} |\nabla(u_{\varphi}-u_{\psi})|^2 \, d\mathbf{x} + \frac{\varepsilon}{2} \left(\|v_{\varphi}\|_{H^1(\mathcal{D}\setminus\overline{\omega})}^2 + \|v_{\psi}\|_{H^1(\mathcal{D}\setminus\overline{\omega})}^2 \right).$$

 \rightarrow Existence of a minimizer?

< □ > < 同 > < 回 > < 回 >

Computation of the shape derivative

• As usual, for $\mathbf{V}\in W^{2,\infty}(\mathbb{R}^d)$, compactly supported in \mathcal{D} , we note

$$D\mathcal{K}_{\varepsilon}(\omega) := \lim_{t \to 0} \frac{\mathcal{K}_{\varepsilon}((\mathbf{I} + t\mathbf{V})\omega) - \mathcal{K}_{\varepsilon}(\omega)}{t}.$$

Property

We have

$$\begin{split} \mathcal{D}\mathcal{K}_{\varepsilon}(\omega)\cdot\mathbf{V} &= -\int_{\partial\omega} (\partial_{\nu}\rho_{\mathsf{N}}^{\mathsf{u}} \partial_{\nu}u_{\varphi} + \partial_{\nu}\rho_{\mathsf{N}}^{\mathsf{v}} \partial_{\nu}v_{\varphi})(\mathbf{V}\cdot\nu) \\ &- \int_{\partial\omega} (\partial_{\nu}\rho_{D}^{\mathsf{u}} \partial_{\nu}u_{\varphi} + \partial_{\nu}\rho_{D}^{\mathsf{v}} \partial_{\nu}v_{\psi})(\mathbf{V}\cdot\nu) \\ &+ \frac{1}{2}\int_{\partial\omega} |\nabla(u_{\varphi} - u_{\psi})|^{2}(\mathbf{V}\cdot\nu) \\ &+ \frac{\varepsilon}{2}\int_{\partial\omega} (|\nabla v_{\varphi}|^{2} + |\nabla v_{\psi}|^{2} + |v_{\varphi}|^{2} + |v_{\psi}|^{2})(\mathbf{V}\cdot\nu) \end{split}$$

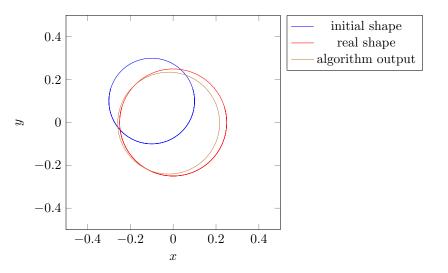
イロト イヨト イヨト イヨト

Global algorithm

- choose an initial guess ($\omega_0, \varphi_0, \psi_0$)
- at step n,
 - solve 10 (!) elliptic problems in $\mathcal{D} \setminus \overline{\omega_n}$ to obtain u_{φ_n} , u_{ψ_n} , v_{φ_n} , v_{ψ_n} , w_N , w_D , ρ_D^u , ρ_N^u , ρ_N^v and ρ_N^v
 - 2 compute the descent directions $\tilde{\varphi}$ and $\tilde{\psi}$
 - (a) compute the $\nabla \mathcal{K}_{\varepsilon}(\omega_n)$
 - update φ_n , ψ_n , ω_n (line search) $\rightarrow \varphi_{n+1}$, ψ_{n+1} , ω_{n+1} .
- repeat until stopping criterion is reached.

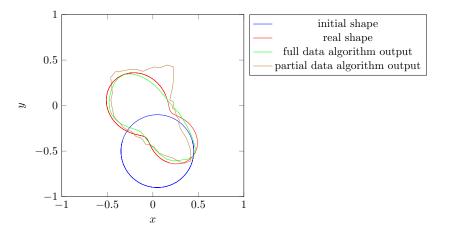
イロト イヨト イヨト

Reconstructions - easy case



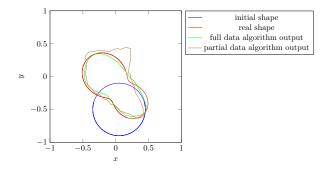
・ロト ・日下・ ・ ヨト・

Reconstructions - hard case



・ロト ・日下・ ・ ヨト

Future works

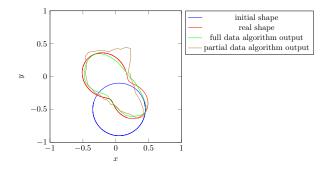


• In case of noisy data, propose a strategy to set the parameter of regularization w.r.t. noise amplitude

- \rightarrow for the data completion problem, ok
- \rightarrow for the inverse obstacle problem, ?.
- Reconstruction of objects in fluids (Stokes and Navier-Stokes equations)

THANK YOU FOR YOUR ATTENTION

Future works



• In case of noisy data, propose a strategy to set the parameter of regularization w.r.t. noise amplitude

- \rightarrow for the data completion problem, ok
- \rightarrow for the inverse obstacle problem, ?.
- Reconstruction of objects in fluids (Stokes and Navier-Stokes equations)

THANK YOU FOR YOUR ATTENTION