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The model case of a bridge

The displacement solves the linear
elasticity system
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The rigidy of the bridge is measured by its compliance aka the work of
applied loadings

F(D,g)/FNguD/DAe(uD):e(uD).



Objectif

Starting from a parametrized shape problem
(D,w)— F(D,w), VD e A,we

we consider the average objective

E[F|(D) = / F(D,w)dP(w).
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or a weighted combination of moments

E[F|(D) + aVar[F|(D).



Objectif

Starting from a parametrized shape problem
(D,w)— F(D,w), VD e A,we

we consider the average objective

E[F|(D) = /QF(D,w)dP(w).

or a weighted combination of moments
E[F|(D) + aVar[F|(D).
Objective

Given a partial statistical description of the random loading, design an
efficient algorithm to minimize the expectation of the objective



The main difficulty : the curse of dimension.

» The space of events {2 -in our example, the space of loadings- can
be enormous. It is a vector space of infinite dimension !!!

» So the question is how to compute first
[ s@unepw
L2(Ty)

then its gradient withs respect to D ...
» Natural idea : use Galerkin approximation

> But nevertheless integral on high dimensional domains are to be
computed there are no deterministic appropriate quadrature methods
to perform so and one is forced to use Monte-Carlo method ...
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Our result

Consider a special class of problems:

Minimize the expectation of a quadratic shape functional for the state
function which is defined by a state equation with a random right-hand
side.

Then,

» all quantities for performing a gradient-based shape optimization
algorithm can be expressed deterministically .

> only the random parameter’s first and second moment are needed.

Consequence:
» a fully deterministic algorithm

» same cost as for classical shape optimization when no uncertainties
are taken into account.



The idea (1/2)
Consider a finite dimensional example: h design variable

> the state u(h,w) solve the linear system A(h)u(h,w) = f(w)

» the original cost C is quadratic

C(h,w) = Bu(h,w) - u(h,w) = B : u(h,w) @ u(h,w).



The idea (1/2)
Consider a finite dimensional example: h design variable

> the state u(h,w) solve the linear system A(h)u(h,w) = f(w)

» the original cost C is quadratic

C(h,w) = Bu(h,w) - u(h,w) = B : u(h,w) @ u(h,w).

» the averaged cost is now
E[C](h) = B : E[u(h,.) ® u(h,.)] = B : Cor[u](h)

where the correlation matrix
Corlu](h);; = / u(h,w);u(h,w);dP(w)
Q

solves the bigger linear system

(A(h) ® A(h))Cor(u)(h) = Cor(f).



The idea (2/2)

Now we derive w.r. the design variable h. We get the deterministic
expression . .
DpE[R].h = (DpA(h).h @ Id)Cor|u, p](h)

where

> the adjoint state p(h,w) solves
A(h)Tp(h, (.d) = _2BTU'(h'a (.U),
» the correlation matrix Cor|u, p](h) solves

(A(h) @ A(h)T)Corlu, p|(h) = —(A(h) ® B)Cor[u](h).



On the example

The correlation of the displacement solves the equations:

(div, @ divy)(Ae, ® Aey) Cor(u

)=
(u) =
(divy ® Iy)(Aey ® 1)) Cor(u) =
(I, ® divy) (I, ® Aey) Cor(u) =
(Ae, ® Aey) Cor(u)(n, ® ny) =

(divy ® Iy)(Ae, ® Aey) Cor(u) (I, @ ny) =
(I, ® divy)(Ae, ® Aey) Cor(u)(n, @ 1))
(Ae, ® Aey) C )=
(Ae, ® I,) C 1)
)C )

(I, ® Aey,

or(u)(ng ® ny,

or(u)(n; ®
() (L

or(u

in D x D,

onT'p xI'p,

on D xT'p,

onT'p x D,

on Ty xI'y,

on D x (IxyUT),

on (PyUTN) x D,

n (TxyUT) x (TxUD))\ Ty x Ty),
on Iy xT) xT'p,

onT'p x (y xT).

Not so easy to solves on the numerical point of view ...
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If
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Well prepared RHS

If
Corlf]=> fi®fi

Then

Cor|u Z u;(h) ® u;(h) and Corfu, p|( Z ui(h) @ p;(h

where u;(h) and p;(h) solve
A(h)u;(h) = f; and AT (h)p;(h) = —Bu,.

Idea: approximate Cor[f] by a low rank approximation of the type
Cor(fl~ ) fi® fi
i=N

(use incomplete Choleski decomposition for example or SVD, PGD...)



Numerical ezample

Fix two loads:

() ()

The applied loadings are
9(z,w) = &1 (w)ga + E2(w)gb

where the random variables £, &, are centered and normalized and
correlated:

a:/fl(w)fg(w)dP(w).
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Numerical ezample

Fix two loads:

() ()

The applied loadings are

9(z,w) = &§1(w)ga + E2(w)gs

where the random variables £, &, are centered and normalized and
correlated:

a:/fl(w)fg(w)dP(w).
Q

Here
Corlg] = ga ® ga + 9v @ gb + (g0 @ gb + 96 @ ga)

and no approximation is needed



Numerical ezample

/NN
AN

—0.7,0,0.5,0.8,1 (from left to right, top to bottom).
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