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Shape optimal control problem:
e State equation is

_Au=finQ, u e H3(Q);

e state variable is u € H5(R?) (extended by
zero outside Q);

e control variable is the domain €2;

e cost function is of the form

(2,0) d
| i@, da
e class of admissible controls is
A={QcD, |9 <m},

where D is a fixed bounded domain of R?.
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The problem is to study the existence of an
optimal domain; ther is a competition:

homogenization vs shape optimization

In general homogenization wins and no opti-
mal domain exists, since minimizing sequences
tend to create fine perforations (Cioranescu-
Murat example) and optimal solution exist
only in a suitable relaxed sense (capacitary
measures introduced by Dal Maso-Mosco 1987).
However, in some cases optimal shapes exist.



A first situation in which optimal shapes ex-
ist is when geometrical constraints are added
to admissible controls, as for instance:

convexity, equi-Lipschitz condition, equi-bounded
perimeter, uniform exterior cone condition,
uniform capacity condition, uniform Wiener
estimates, topological conditions (in dim. 2). ..

that rule out the homogenization. In our
case we only have the Lebesgue measure
constraint {|2| < m} which is not sufficient
to provide enough compactness to enforce
the existence of an optimal €2.



Another case in which the existence of an op-
timal domain occurs is when the cost func-
tional verifies a monotonicity condition.

Theorem [Buttazzo-Dal Maso (ARMA 1993)]
Let F'(Q2) be such that:

e I is v-lower semicontinuous;

e ' is decreasing for set inclusion.

T hen the shape optimization problem

min {F(Q) ; |Q|§m}

admits a solution Qopt, and |Qppt| = m.



et us stress that the monotonicity condition
above is rather restrictive and, even if some
interesting problems (spectral optimization)
verify it, in the linear quadratic case

F(u,Q2) = /Q lu — ug|? dx

homogenization wins (i.e. no existence of ;).

We consider the case when the cost inte-
grand j is linear; if Ro is the resolvent op-
erator of the Dirichlet Laplacian in €2, our
problem can be rewritten as

min{/Qh(a:)RQ(f)d:U e gm}.
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Shape optimization under uncertainty on the
right-hand side f; two possibilities:

e f is known with a given probability P on
the space of data (stochastic optimization);
we minimize the average cost

Fave(@) = [ | [ h(@)Ro(f) da| P(df)
in the admissible class {|2| < m}.
e \\Norst-case optimization: we optimize the

worst case assuming the right-hand side f is
known up to an error 4.



Worst case cost

Fwe(§2) = _ h(x)R + g) dx
(@ = sup_ | [ h@Ra(f +9)d

= sup | [ Ro(h)(f +9) da]

lgll,2<5
— /Q Rq(h) f de + 5||Ra(h) || 2

Roughly speaking we are replacing the P-
average by a supremum.

Monotonicity is lost, since the two terms be-
have in a different way.



Results

e for the stochastic case, there exists a so-
lution 4, (Buttazzo-Velichkov arxiv 2017)
but the measure constraint could be not sat-
urated, i.e. in general |Q,p| < 1.

e for the worst case, there exists a solution
Qopt Provided the error 6 is small enough
(Bellido-Buttazzo-Velichkov Nonlinear Anal.
2017).
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A numerical example

D=1[0,1]x[0,1], p=2, &§=0.25
(

1 on [0,3] x [0, 1]

12 on [, 1] x [0, 1]

It is numerically convenient to simulate a do-
main 2 by a potential V(x) taking the value
0 in €2 and 4oo outside. The measure |2| is
then simulated through the quantity

/D e~V () 40 with o small.
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More precisely this approximation has to be
stated in terms on [-convergence, proved in
[BGRV, JEP 2014].

The simulation has been made by J.C. Bel-
lido using:

® FreeFEM++

e the Method of Moving Asymptotes (a kind
of gradient method widely used for Topology
and Structural Optimization problems)

e 2 mesh of 50 x 50 elements.
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