
NECESSARY CONDITIONS FOR INFINITE HORIZON OPTIMAL
CONTROL PROBLEMS WITH STATE CONSTRAINTS

VINCENZO BASCO - PIERMARCO CANNARSA - HÉLÈNE FRANKOWSKA

Abstract. Partial and full sensitivity relations are obtained for nonautonomous
optimal control problems with infinite horizon subject to state constraints, assum-
ing that the associated value function be locally Lipschitz in the state. Sufficient
structural conditions are given to ensure such a Lipschitz regularity in presence of
a positive discount factor, as it is typical of macroeconomics models.

1. Introduction

Consider the infinite horizon optimal control problem B∞

minimize

∫ ∞
t0

L(t, x(t), u(t)) dt (1)

over all the trajectory-control pairs subject to the state constrained control system
x′(t) = f(t, x(t), u(t)) a.e. t ∈ [t0,∞)

x(t0) = x0

u(t) ∈ U(t) a.e. t ∈ [t0,∞)

x(t) ∈ A t ∈ [t0,∞)

(2)

where A is a nonempty closed subset of Rn, U : [0,∞) ⇒ Rm is a Lebesgue mea-
surable set valued map with closed nonempty images and (t0, x0) ∈ [0,∞) × A is
the initial datum. Every trajectory-control pair (x(·), u(·)) that satisfies the state
constrained control system (2) is called feasible. We refer to such x(·) as a feasible
trajectory. The infimum of the cost functional in (1) over all feasible trajectory-
control pairs, with the initial datum (t0, x0), is denoted by V (t0, x0) (if no feasible
trajectory-control pair exists at (t0, x0), we set V (t0, x0) = +∞). The function
V : [0,∞)× A→ R ∪ {±∞} is called the value function of the problem B∞.

The literature about unconstrained infinite horizon optimal control problems is
quite rich. For instance, necessary optimality conditions were derived in absence of
state constraints (cfr. e.g. [3] and the reference therein). Usually assumptions on f
and L are so that they imply the Lipschitz regularity of V (·, ·). Recovering necessary
conditions in presence of state constraints appears quite challenging, despite the fact

1



INFINITE HORIZON WITH STATE CONSTRAINTS 2

that necessary conditions for Bolza problems in presence of state constraints (cfr.
[11]) are well known.

The technique used in this paper is based on reformulating the infinite horizon
problem as a Bolza problem with finite horizon and then using known results. For
this purpose we observe that, taking T > 0, for all (s, y) ∈ [0, T ] × A (cfr. Lemma
4.2)

V (s, y) = inf

{
V (T, x(T )) +

∫ T

s

L(t, x(t), u(t)) dt

}
where the infimum is taken over all the feasible trajectory-control pairs (x, u) satis-
fying (2) with initial datum (s, y). Hence the problem B∞ becomes a Bolza problem
on [0, T ] with the additional final cost term φT (·) = V (T, ·). Then, as it is customary,
rewriting the problem in (n+ 1)-dimension, we may consider it as a Mayer problem
and apply known results.

Infinite horizon problems have a very natural application in mathematical econom-
ics (see, for instance, the Ramsey model in [7]). In this case the planner seeks to find
a solution to B∞ (dealing with a maximization problem instead of a minimization
one) with

L(t, x, u) = e−λtl(ug(x)) & f(t, x, u) = f̃(x)− ug(x)

where l(·) is called the “utility”function, f̃(·) the “production”function, and g(·)
the “consumption”function, while the variable x stands for the “capital”(in many
applications one takes as constraint set A = [0,∞) with U(·) ≡ [−1, 1]). The ap-
proach used by many authors to address this problem is to find necessary conditions
of the first or second order (cfr. [1], [4], [6], [10]). Usually, in mathematical eco-
nomics, in order to find candidates for optimality of infinite horizon problems under
state constraints, the Pontryagin maximum principle is applied to unconstrained in-
finite horizon problems and then one considers as candidates for optimal solutions
only the trajectories that satisfy the state constraints. For instance consider the
following problem: maximize J(u) :=

∫∞
0
e−λt(xu(t) + u(t)) dt over all trajectory-

control pair satisfying x′(t) = −au(t) and x(0) = 1, with u(t) ∈ [−1, 1] a.e., sub-
ject to the state constraints x(t) 6 1, where a > λ > 0. It is straightforward to
show that, applying the maximum principle stated for unconstrained problems, any
optimal trajectory-control pair satisfies either one of the following three relations:
(i) x−(t) = 1 + at associated to u−(t) ≡ −1; (ii) x+(t) = 1 − at associated to
u+(t) ≡ +1; (iii) x±(t) = (1− at)χ[0,t̄](t) + (1− at̄ + a(t− t̄))χ(t̄,∞)(t) associated to
u±(t) = χ[0,t̄](t) − χ(t̄,∞)(t), for some t̄ > 0. Excluding now trajectories x− and x±,
since are not feasible, then this analysis leads to deduce that x+ is the only candidate
for optimality. But this conclusion is not correct. Indeed, one can easily see that the
feasible trajectory x̄(t) ≡ 1 associated to the control ū(t) ≡ 0 verifies J(ū) > J(u+)
(cfr. Example 5.6).
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Necessary conditions in form of the maximum principle and partial sensitivity
relations, for infinite horizon problems under smooth functional constraints, such as
h(t, x(t)) > 0 are known. Roughly speaking (cfr. [8]) if (x̄, ū) is optimal at (t0, x0)
for the problem 

maximize
∫∞
t0
L(t, x(t), u(t)) dt

x′(t) = f(t, x(t), u(t)) a.e. t ∈ [t0,∞)

x(t0) = x0

u(t) ∈ U a.e. t ∈ [t0,∞)

h(t, x(t)) > 0 t ∈ [t0,∞),

with U closed convex subset of Rm, h ∈ C2, f and L continuous and with continuous
partial derivatives with rspect to x and u, then there exist q0 ∈ {0, 1}, a co-state
q(·), and a nondecreasing function µ(·), constant on any interval where h(t, x̄(t)) > 0,
such that (q0, q(t0)) 6= (0, 0), µ(t0) = 0 and q(·) satisfies

q(t) = q(t0)−
∫ t

t0

∇xH(s, x̄(s), q(s), ū(s)) ds−
∫

[t0,t]

∇xh(s, x̄(s)) dµ(s)

and the maximum principle

H(t, x̄(t), q(t), ū(t)) = max
u∈U

H(t, x̄(t), q(t), u) a.e. t ∈ [t0,∞),

where H(t, x, p, u) := 〈 p, f(t, x, u)〉 + q0L(t, x, u). Furthermore in [5], using the
language of calculus of variations, the authors provide partial results on sensitivity
relations showing that, if A is convex and intA 6= ∅, then for any optimal trajectory
x̄(·) of the problem B∞ there exists an absolutely continuous function q(·), solving
the adjoint equation, such that q(t) ∈ ∂xV (t, x̄(t)) for all t ∈ [t0,∞).

In the present work, for the first time we provide partial and full sensitivity re-
lations, together with a transversality condition at the initial time, under mild as-
sumption on the dynamic and constraint set. To describe our results, assume for the
sake of simplicity that L(t, x, u) = e−λtl(x, u) is regular, U(·) ≡ U is a closed subset
of Rm, V (t, ·) is regular, and denote by NA(y) the limiting normal cone to A at y.
If (x̄, ū) is optimal for B∞ at (t0, x0) then (cfr. Theorem 4.3 below) there exist an
absolutely continuous co-state p(·), a nonnegative locally finite Borel measure µ on
[t0,∞) and a Borel measurable selection ν(·) ∈ coNA(x̄(·))∩B such that p(·) satisfies
the adjoint equation

−p′(t) = d∗xf(t, x̄(t), ū(t)) (p(t) + η(t))− e−λt∇xl(x̄(t), ū(t)) a.e. t ∈ [t0,∞),
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the maximality condition

〈 p(t) + η(t), f(t, x̄(t), ū(t))〉 − e−λtl(x̄(t), ū(t))

= max
u∈U

{
〈 p(t) + η(t), f(t, x̄(t), u)〉 − e−λtl(x̄(t), u)

}
a.e. t ∈ [t0,∞),

and the transversality and sensitivity relations

−p(t0) = ∇xV (t0, x̄(t0)), − (p(t) + η(t)) = ∇xV (t, x̄(t)) a.e. t ∈ (t0,∞) (3)

where η(t0) = 0 and η(t) =
∫

[t0,t]
ν(s) dµ(s) for ll t ∈ (t0,∞). Observe that if x̄(·) ∈

intA then ν(·) ≡ 0 and the usual maximum principle holds true. But if x̄(t) ∈ ∂A
for some time t, then a measure multiplier factor,

∫
[0,t]

ν dµ, may arise modifying the

adjoint equation. Furthermore, the transversality condition and sensitivity relation
in (3) lead to a significant economic interpretation (cfr. [2], [9]): the co-state p + η
can be regarded as the “shadow price”or “marginal price”, i.e. (3), describes the
contribution to the value function (the optimal total utility) of a unit increase of
capital x.

The outline of the paper is as follows. In Section 2, we provide basic definitions,
terminology, and facts from nonsmooth analysis. In Section 3, we give a bound on
the total variation of measures associated to Mayer problems. In Section 4, we focus
on the main result, investigating the problem B∞ and stating sensitivity relations
and transversality condition on the co-state. Finally, in the last Section, it is proved
the uniform locally Lipschitz continuity of a large class of value functions.
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