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Grushin equation

Q=[-1,1xT
Of — 02 — X282f =1,
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- Null-controllable in arbitrarily small time if w
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y

- Null-controllable only in large time if w
(Beauchard, Cannarsa & Guglielmi 2014)
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- Goal: disprove the observability inequality

/ F(T, R <C
Q

If?
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-\, first eigenvalue of —9?2 + (nx)? with Dirichlet condition on
(=1,1); v, the associated eigenfunction

* Vn(x)e" is an eigenfunction of —87 — x*9; with eigenvalue A,

- Approximation of —82 + (nx)? on (=1, 1) by itself on R: we expect
Vp ~ (%)W e=™/2 et A\, ~n

- Observability inequality with f(t,x,y) = 3 apv,(x)e™ =t
heuristics A\, =nand [v,vy, =1:

: .2 .
/ ’ZanefnTemy dy < C/ ’Zanefntemy
T [0,T]xw

2
dtdy
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Let H={>",>0ane™, 3 |an|? < +oo} and DY aze™ =" nase™.
Let w be a strict open set of the unit circle.

The equation 0if + Df = 1,,u is never null-controllable.

Observability inequality f(t,y) = 3 a,e="te:

/ ‘Z ane—nTeiny
T

It is the approximate observability inequality of the Grushin

2 2
dy <C
[0,T] xw

aﬂe—nte/'ny

dtdy

equation!
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Proof of the non null-controllability of the toy model

Observability inequality with f(t,y) = > a,e~"te:

Z|an|2€—2nT < C/

[0,T]xw

2

‘ ape~"e™| dtdy

letz=e ™Y = u+ivandf(z) = 3,5, an2""

w
[ @R duas
2eD(0,e-T) 0
y

< nC / IF(2)? dpe do

zeD

False thanks to Runge’s theorem (take f, — 1/z uniformly on every
compact subset of C\ e’R) O
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Differences between the Grushin equation and the Toy model

“Holomorphic” observability inequality (we know it is false):

> lanfe™ T < C/ ‘Z an(z)M)2 dudv
D

Observability inequality of the Grushin equation

- lethy=n+4+prandz=p+iv

1

Slanpe e <c [ [ S wtaniap

—1zeD

2
dpdr dx

- Solution:
- e~?»T in the lhs: not a problem
- Treat x as a parameter
- Write v, = va(x)|¢|?" and prove

St <[S0

Lo (V)
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- Is there any initial condition that can be steered to 0 at all?
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That's all folks!
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Definition

Let S(r) the space of functions v such that forall 0 < 8 < 7/2:
- v is holomorphic on {|z| > r(0), | arg(z)| < 0}
-~ has sub-exponential growth on each of these domains

Theorem
There exists v in a S(r) such that

4
Ao =a+y(a)e™ ¥~ —=a?

Nz
Theorem
Let v in S(r), and Hy(3_ anz") = Y- v(n)a,z". Let U a bounded
domain star-shaped with respect to 0, let 6 > 0 and
U = {z,distance(z,U) < §}. For all polynomials f:
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Holomorphic and exponential estimate of the eigenvalues

Theorem
There exists v in some S(r) such that:

Ao =a+y(a)e™ -t

Idea of the proof.

- Explicitly solve the ODE (solution as an integral on some
complex path)

- Deduce from that solution an implicit equation between a and
Aa

- Solve that equation with Newton’s method (necessary estimates
provided by the stationary phase theorem) O]



Estimates on some operators on entire functions

Theorem

Let v in S(r), and H, (> anz") = >~ ~v(n)a,z". Let U an bounded
domain, star shaped with respect to 0, let 6 > 0 and

U° = {z,distance(z,U) < §}. For all entire functions f:

|Hy (F)|oo () < CIf |00 (usy
Idea of the proof.

- Write H. ()(2) = }[ Tk, (Z> £(¢) d¢ with
BD(O.R) ¢ "\¢
Ky(¢) = 5= > v(n)¢" (Cauchy's integral formula)
- Extend K, to C\ [1, +oo[ thanks to Poisson’s summation formula
(we can do it because the holomorphy of v allows us to extend

the Fourier transform of v to C\ iRy)
- Change the path of integration O]
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