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This talk deals with the minimal null controllability time for the following
degenerate parabolic equation of Grushin type

∂tf − ∂xxf − x2∂yyf = 1ω(x, y)u(t, x, y), (t, x, y) ∈ (0, T )× Ω,

f(t, x, y) = 0, (t, x, y) ∈ (0, T )× ∂Ω,

f(0, x, y) = f0(x, y), (x, y) ∈ Ω,

(G)

with Ω = (−1, 1)× (0, 1).
I will briefly recall the ideas used in [2] (transmutation of observability,

sideways energy estimates) to prove that the minimal time for null controllability
of (G) is Tmin = a2

2 when ω =
[
(−b,−a) ∪ (a, b)

]
× (0, 1).

Then I will prove that in this setting Tmin is also the minimal time for the
necessary quantitative Fattorini-Hautus test introduced in [3] to hold. Thus in
this setting the validity of such a quantitative Fattorini-Hautus test is equiv-
alent to null controllability. This analysis is extracted from a joint work with
F. Ammar Khodja, A. Benabdallah and M. González-Burgos [1].
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