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Introduction
Fractional Schrödinger and wave equation

Fractional heat equation
Regularity theory for fractional PDEs

Open problems

We study the controllability problem for the following fractional
evolution equations
• Fractional Schrödinger equation: iut + (−∆)su = 0
• Fractional wave equation: utt + (−∆)2su = 0
• Fractional heat equation: ut + (−∆)su = 0 .

Main results

SCHRÖDINGER and WAVE:
• s > 1/2: null controllability in any time T > 0.
• s = 1/2: null controllability in time T > T0.
• s < 1/2: the problems are not null-controllable.

HEAT:
• s > 1/2: null controllability in any time T > 0 (in the

one-dimensional case).
• s ∈ (0,1): approximate controllability in any time T > 0.
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Fractional laplacian

For any function u sufficiently regular and for any s ∈ (0,1), the s-th
power of the Laplace operator is given by

(−∆)su(x) = cN,sP.V .
∫
RN

u(x)− u(y)

|x − y |N+2s dy .

Functional setting: fractional Sobolev spaces

• Hs(Ω) :=

{
u ∈ L2(Ω) : |u(x)−u(y)|

|x−y|
N
2 +s
∈ L2(Ω× Ω)

}
.

• ‖u‖Hs(Ω) :=

(∫
Ω

|u|2dx +

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x − y |N+2s dxdy
) 1

2

.

• Hs
0 (Ω) :=

{
u ∈ Hs(RN) : u = 0 in RN \ Ω

}
.
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Formulation of the problem
We analyse the control problem for the fractional Schrödinger equation

iut + (−∆)su = 0

on a bounded C1,1 domain Ω ⊂ RN . We show null controllability from a
neighbourhood of the boundary ω ⊂ Ω. As a consequence, we obtain the
controllability for the fractional wave equation

utt + (−∆)2su = 0.

CONTROL REGION

Γ0 :=
{

x ∈ ∂Ω
∣∣ (x · ν) > 0

}
,

Γ1 :=
{

x ∈ ∂Ω
∣∣ (x · ν) < 0

}
,

Oε :=
⋃

x∈Γ0

B(x , ε), ω := Oε ∩ Ω.

Ω
ω

Γ1

Γ0
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Controllability result

Theorem (U.B., PhD Thesis, 2016)

Let Ω ⊂ RN be a bounded C1,1 domain with boundary Γ and
s ∈ [1/2,1). For u0 ∈ L2(Ω) and h ∈ L2(ω × [0,T ]), let u = u(x , t) be
the solution of iut + (−∆)su = hχ(ω×[0,T ]), (x , t) ∈ Q

u ≡ 0, (x , t) ∈ Ωc × [0,T ]
u(x ,0) = u0(x), x ∈ Ω.

(1)

(i) If s ∈ (1/2, 1), for any T > 0 the control function h is such that the
solution of (1) satisfies u(x ,T ) = 0.

(ii) If s = 1/2, there exists a minimal time T0 > 0 such that the same
result as in (i) holds for any T ≥ T0.
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Observability inequality

Proposition

Let Ω ⊂ RN be a bounded C1,1 domain with boundary Γ and s ∈ [1/2, 1). For
v0 ∈ L2(Ω), let v = v(x , t) be the solution of the adjoint system

ivt + (−∆)sv = 0, (x , t) ∈ Q
v ≡ 0, (x , t) ∈ Ωc × [0,T ]
v(x , 0) = v0(x), x ∈ Ω.

(2)

(i) If s ∈ (1/2, 1), then for every T > 0 there exists a positive constant C,
depending only on s, T , N and Ω, such that

‖v0‖2
L2(Ω) ≤ C

∫ T

0
‖v(t)‖2

L2(ω) dt . (3)

(ii) If s = 1/2, then (3) holds for any T ≥ T0, where T0 is the minimal time
introduced before.
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Pohozaev identity

Identity for the elliptic problem

∫
Ω

(−∆)su (x · ∇u) dx =
2s − N

2

∫
Ω

u(−∆)su dx

− Γ(1 + s)2

2

∫
∂Ω

( u
δs

)2
(x · ν) dσ 1,

1 X. Ros-Oton and J. Serra, Arch. Ration. Mech. Anal., 2014

Identity for the Schrödinger equation

Γ(1 + s)2
∫

Σ

(
|u|
δs

)2

(x · ν) dσdt = 2s
∫ T

0

∥∥∥(−∆)s/2u(t)
∥∥∥2

L2(RN )
dt

+ =
∫

Ω

ū(x · ∇u) dx
∣∣∣∣T
0

+ <
∫

Q
f (Nū + 2x · ∇ū) dxdt .
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Boundary observability

Proposition

There exists two positive constants A1 and A2, depending only on s, T ,
N and Ω, such that

(i) if s ∈ (1/2,1), then for any T > 0 and for all v solution of (2) it
holds

A1‖u0‖2
Hs(Ω) ≤

∫
Σ

(
|u|
δs

)2

(x · ν)dσdt ≤ A2‖u0‖2
Hs(Ω); (4)

(ii) if s = 1/2, there exists a minimal time T0 > 0 such that (4) holds
for any T > T0.
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A technical result

Lemma

Let 1/2 < s < 1, ψ ∈ Hs
0 (Ω) and η ∈ C∞(RN) be a cut-off function such that

η(x) = 1, x ∈ ω̂
0 ≤ η(x) ≤ 1, x ∈ ω \ ω̂
η(x) = 0, x ∈ ωc .

Then (−∆)s(ψη) = ψ(−∆)sη + R and

‖R‖L2(RN ) ≤ C
[
‖ψ‖Hs(ω) + ‖ψ‖L2(ωc )

]
.
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Fourier analysis for the Schrödinger equation

Theorem

The exponent s = 1/2 is sharp for the control.

Let s ∈ (0, 1). For the eigenvalues associated to the problem{
(−d2

x )sφk (x) = λkφk (x), x ∈ (−1, 1)
φk (x) ≡ 0, x ∈ (−1, 1)c

it holds

λk =

(
kπ
2
− (2− 2s)π

8

)2s

+ O
(

1
k

)
, as k → +∞. 2 (5)

Thanks to (5), we have

lim inf
k→+∞

(λk+1 − λk ) = γ∞ > 0, for s ≥ 1/2,

lim inf
k→+∞

(λk+1 − λk ) = 0, for s < 1/2.

2 M. Kwaśnichi, J. Funct. Anal., 2012
13 / 25
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Fractional wave equation

Let us consider the problem
utt + (−∆)2su = hχ{ω×[0,T ]}, (x , t) ∈ Q
u ≡ (−∆)su ≡ 0, (x , t) ∈ Ωc × [0,T ]
u(x ,0) = u0(x)
ut (x ,0) = u1(x)

, x ∈ Ω.

Definition (Higher order fractional Laplacian)

(−∆)2su(x) := (−∆)s(−∆)su(x), s ∈ [1/2,1),

D
(

(−∆)2s
)

=
{

u ∈ Hs
0 (Ω)

∣∣∣ (−∆)su|Ωc ≡ 0, (−∆)2su ∈ L2(Ω)
}
.
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Controllability result

Theorem

Let Ω ⊂ RN be a bounded C1,1 domain and s ∈ [1/2,1). For any
couple of initial data (u0,u1) ∈ H2s(Ω)× L2(Ω) and h ∈ L2(ω × [0,T ]),
let us consider the following equation

utt + (−∆)2su = hχ{ω×[0,T ]}, (x , t) ∈ Q
u ≡ (−∆)su ≡ 0, (x , t) ∈ Ωc × [0,T ]
u(x ,0) = u0(x)
ut (x ,0) = u1(x)

, x ∈ Ω.
(6)

(i) If s ∈ (1/2, 1), for any T > 0 the control function h is such that the
solution of (6) satisfies u(x ,T ) = ut (x ,T ) = 0.

(ii) If s = 1/2, there exists a minimal time T0 > 0 such that the same
result as in (i) holds for T > T0.
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Control results
We consider the following parabolic problem ut + (−d2

x )su = gχ(ω×[0,T ]), (x , t) ∈ (−1,1)× [0,T ]
u ≡ 0, (x , t) ∈ (−1,1)c × [0,T ]
u(x ,0) = u0(x), x ∈ (−1,1).

(7)

Theorem

For all u0 ∈ L2(−1, 1) the parabolic problem (7) is null-controllable with
a control function g ∈ L2((−1,1)× (0,T )) if and only if s > 1/2.

Theorem

Let s ∈ (0,1). For all u0 ∈ L2(−1,1), there exists a control function
g ∈ L2(ω × (0,T )) such that the unique solution u to the parabolic
problem (7) is approximately controllable.
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Proofs (sketch)

• NULL CONTROLLABILITY: the result is equivalent to the
condition ∑

k≥1

1
λk

< +∞

which holds for s > 1/2 and fails for s ≤ 1/2.
• APPROXIMATE CONTROLLABILITY: it holds for all s ∈ (0,1),

since the Fractional Laplacian possess the Unique Continuation
property. 3

3 M.M. Fall and V. Felli, Comm. Partial Differential Equations, 2014..

MORE DETAILS (WITH NUMERICS) NEXT WEEK.
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‖R‖L2(RN ) ≤ C
[
‖ψ‖Hs(ω) + ‖ψ‖L2(ωc)

]
.

This estimates for the L2(RN)-norm of the remainder term R can be
applied also for proving local elliptic 4 and parabolic 5 regularity for the
fractional Laplacian.

4 U. B., M. Warma and E. Zuazua, Adv. Nonlinear Stud., 2017.
5 U. B., M. Warma and E. Zuazua, Preprint, 2017.
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Theorem

Let 1 < p <∞. Given f ∈ Lp(Ω), let u be the unique weak solution to
the Dirichlet problem

(−∆)su = f , x ∈ Ω, u = 0, x ∈ RN \ Ω.

Then u ∈
(
L p

2s

)
loc (Ω). As a consequence we have the following result.

1 If 1 < p < 2 and s 6= 1/2, then u ∈ (B2s
p,2)loc(Ω).

2 If 1 < p < 2 and s = 1/2, then u ∈W 2s,p
loc (Ω) = W 1,p

loc (Ω).

3 If 2 ≤ p <∞, then u ∈W 2s,p
loc (Ω).

POTENTIAL SPACE:

L p
2s(RN) :=

{
u ∈ Lp(RN) : (−∆)su ∈ Lp(RN)

}
, 1 ≤ p ≤ ∞, s ≥ 0,

(L p
2s)loc(Ω) :=

{
u ∈ Lp(Ω) : uη ∈ L p

2s(RN), ∀η ∈ D(Ω)
}
.
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Theorem

Let 1 < p <∞. Given f ∈ Lp(Ω× (0,T )), let u be the unique weak
solution to the parabolic problem

ut + (−∆)su = f , (x , t) ∈ Ω× (0,T ),
u = 0, (x , t) ∈ (RN \ Ω)× (0,T ),
u(·,0) = 0, x ∈ Ω.

Then u ∈ Lp
(

(0,T );
(
L p

2s

)
loc (Ω)

)
. As a consequence we have the

following result.

1 If 1 < p < 2 and s 6= 1/2, then u ∈ Lp
(

(0,T ); (B2s
p,2)loc(Ω)

)
.

2 If 1 < p < 2 and s = 1/2, then
u ∈ Lp

(
(0,T ); W 2s,p

loc (Ω)
)

= Lp
(

(0,T ); W 1,p
loc (Ω)

)
.

3 If 2 ≤ p <∞, then u ∈ Lp
(

(0,T ); W 2s,p
loc (Ω)

)
.
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Proofs (sketch)

The proof of the elliptic regularity is obtained by means of a cut-off
argument, employing known results for the fractional Poisson
equation on RN .6

The parabolic regularity is a consequence of the elliptic one,
employing general results from semi-group theory.7

We mention that the elliptic regularity can be obtain also
employing the theory of pseudo-differential operators.8

6 E. Stein, 1970.
7 D. Lamberton, J. Funct. Anal., 1987.
8 G. Grubb, Adv. Math., 2015.
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Open problems

Develop Geometric Optics expansions exhibiting the propagation
of pulses along rays, leading to sharp geometric results on
controllability of these models.
Carleman estimates for the fractional Laplacian on a domain and
application to the controllability of fractional heat equations.
Analyse the global regularity up to ∂Ω for the solutions of the
elliptic and parabolic problem associated to the fractional
Laplacian.
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THANK YOU FOR YOUR ATTENTION!
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