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Bilinear control problems, introduction

Dynamical system:

ẏ = f(y, u)

y ∈ Y state of the system

u ∈ U control
ẏ = Ay + uBy

Problem: local controllability along a trajectory
Let (ȳ, ū) be a trajectory of the control system ẏ = f(y, u).
The control system is locally controllable along the trajectory
(ȳ, ū) if, for every ε > 0, there exists ν > 0 such that, for
every (a, b) ∈ Y × Y with |a− ȳ(0)| < ν and |b− ȳ(T )| < ν,
there exists a trajectory (y, u) such that

y(0) = a, y(T ) = b,

|u(t)− ū(t)| ≤ ε, t ∈ [0, T ]
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Methods

Non linear equations

trajectory → linearized system

controllability of linearized system → inversion theorem

K. Beauchard, 2008 ⇒ Nash - Moser Theorem

linearized system → moment theory ( Ingham inequality )
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Beam bending, model

Euler-Bernoulli model, 1750.

Assumptions:

linear elasticity of the material, Hooke’s law

plane sections remain plane and perpendicular to the neutral
axis ( transverse vibrations ).

Figure: A beam in bending
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Beam bending, equation

If u(t, x) is the beam deflection, the equation for the bending is

ρA(x)
∂2u(t, x)

∂t2
+

∂2

∂x2

[
EI(x)

∂2u(t, x)

∂x2

]
= f(t, x)

where ρ density per unit length, A(x) cross-sectional area, E
Young elastic modulus, I(x) cross-sectional area moment of inertia
(about “z axis”), f(t, x) total external force.
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Beam equation, previous results

J. M. Ball, J. E. Marsdent, M, Slemrod, “Controllability for
distributed bilinear systems”, 1982 → the beam equation is
not controllable in H2

0 ((0, 1),R)× L2((0, 1),R), with control
p in L2

loc([0,+∞),R)

K. Beauchard, “Local controllability of one-dimentional beam
equation”, 2008 → local controllability in
H5+ε

(0) ((0, 1),R)×H3+ε
(0) ((0, 1),R), with ε > 0 and control p in

H1
loc(R+,R).
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Beam equation with pinned ends, controllability

Control system{
utt + uxxxx + p(t)µ(x)uxx = 0, (t, x) ∈ R+ × (0, 1),
u(t, 0) = u(t, 1) = uxx(t, 0) = uxx(t, 1) = 0.

(1)
µ(x) is the effect of an axial force.

We introduce the operator A defined by

D(A) := H4 ∩H2
0 ((0, 1),R), Av :=

d4v

dx4
.

whose eigenvalues and eigenvectors are

λ2
k = µk = (kπ)4, ϕk =

√
2 sin(kπx), ∀k ∈ N∗.

ψk(t, x) = ϕk(x)e−iλkt are solutions of (1) with control p ≡ 0.
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Beam equation with pinned ends, controllability

The system
utt + uxxxx + p(t)µ(x)uxx + f(t) = 0, (t, x) ∈ R+ × (0, 1),
u(t, 0) = u(t, 1) = uxx(t, 0) = uxx(t, 1) = 0,
u(0, x) = u0(x), ut(0, x) = u1(x)

(2)
can be transformed into the Cauchy problem{

dψ
dt = −Aψ − p(t)µ(x)Bψ + F (t),
ψ(0) = ψ0

(3)

where the linear operators A e B are defined as follows

D(A) := H4
(0) ×H

2
0 ((0, 1),R), D(B) := H2

0 × L2((0, 1),R)

A
(
ψ1

ψ2

)
:=

(
−ψ2

ψ1
xxxx

)
, B

(
ψ1

ψ2

)
:=

(
0
ψ1
xx

)
and F : (0, T )→ H2

0 × L2((0, 1),R).
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Beam equation with pinned ends, controllability

By choosing ψ = (u, ut), ψ0 = (u0, u1), and F = (0,−f) the
problems (2) e (3) are equivalent.

Let us consider as solution of the homogeneus problem

ψ̂1(t, x) = (ψ1(t, x), (ψ1(t, x))t)

and initial datum

ψ(0, x) = ϕ̂1(x) = (ϕ1(x), λ1ϕ1(x))

.

Cristina Urbani Controllability of the beam equation



Beam equation with pinned ends, controllability

By choosing ψ = (u, ut), ψ0 = (u0, u1), and F = (0,−f) the
problems (2) e (3) are equivalent.

Let us consider as solution of the homogeneus problem

ψ̂1(t, x) = (ψ1(t, x), (ψ1(t, x))t)

and initial datum

ψ(0, x) = ϕ̂1(x) = (ϕ1(x), λ1ϕ1(x))

.

Cristina Urbani Controllability of the beam equation



Beam equation with pinned ends, controllability

Theorem

Let T > 0 and µ ∈ H3((0, 1),R) such that

∃c > 0 such that |〈µ(ϕ1)xx, ϕk〉| ≥
c

k3
, ∀k ∈ N∗. (4)

There exists δ > 0 and a C1 map

Γ : VT → L2((0, T ),R),

VT := {Ψf ∈ S2∩H5
(0)×H

3
(0)((0, 1),C); ||Ψf−ψ̂1(T )||H5

(0)
×H3

(0)
< δ}

such that, Γ(ψ̂1(T )) = 0 and for all Ψf ∈ VT the solution of (3),
with ψ = (u, ut), ψ0 = (u0, u1), initial condition

ψ0 = ϕ̂1 (5)

and control p = Γ(Ψf ), satisfies ψ(T ) = Ψf .
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Beam equation with pinned ends, controllability

Sketch of the proof:

proof of existence, uniqueness and
C0([0, T ], H2

0 × L2((0, 1),R)) regularity of the weak solution
of {

dψ
dt = −Aψ − p(t)µ(x)Bψ + F (t),
ψ(0) = ψ0,

(6)

definition of

VT := {ξ = (ξ1, ξ2) ∈ L2×L2(0, 1); I〈iλ1ξ
1 +ξ2, ψ1(T )〉 = 0}

and the othogonal projection onto VT

PT : L2 × L2((0, T ),R)→ VT .
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Beam equation with pinned ends, controllability

definition of the end point map

ΘT : L2((0, T ),R)→ VT ∩H2
0 × L2(0, 1)

u 7→ PT [ψ(T )],

proof of C1 regularity of ΘT ,
dΘT (p) · q = PT (Ψ(T )) where Ψ is solution of the linearized
system, {

Ψt = −AΨ− p(t)µ(x)BΨ− q(t)µ(x)Bψ,
Ψ(t, 0) = Ψ(t, 1) = 0,Ψ(0, x) = 0

proof of the existence of the map

dΘT (0)−1 : VT ∩H2
0 × L2(0, 1)→ L2((0, T ),R)

and its C0 regularity (controllability of the linearized system)

moment problem → (Corollary of) Ingham inequality
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Beam equation with pinned ends, controllability

Moment problem to solve

−
∫ T

0
q(s)e−i(λk−λ1)sds = dk−1(Ψf ) :=

=

(
i

〈Ψ1
f (x), ϕk(x)〉

〈µ(x)(ϕ1(x))xx, ϕk(x)〉
λk +

〈Ψ2
f (x), ϕk(x)〉

〈µ(x)(ϕ1(x))xx, ϕk(x)〉

)
e−iλkT .

We need to show that given

Ψf = (Ψ1
f ,Ψ

2
f ) ∈ VT ∩H2

0 × L2(0, 1),

there exists
q ∈ L2((0, T ),R)

that satisfies the moment problem.
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Beam equation with pinned ends, controllability

Corollary (of Ingham Theorem)

Let T > 0 and (ωk)k∈N an increasing sequence in [0,+∞) such
that ω0 = 0, and

ωk+1 − ωk → +∞ when k → +∞.

There exist a linear and continuous map

L : l2r(N,C)→ L2((0, T ),R),

d 7→ L(d)

such that, for all d = (dk)k∈N ∈ l2r(N,C), the function v := L(d)
solves ∫ T

0
v(t)eiωktdt = dk, ∀k ∈ N.
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Beam equation with pinned ends, controllability

We should ensure that

d0 ∈ R:

d0 =
〈iλ1Ψ1

f + Ψ2
f , ϕ1〉

〈µ(x)(ϕ1)xx, ϕ1〉
e−iλ1T ∈ R

(dk)k∈N ∈ l2(N,C):

∞∑
k=1

|dk(Ψf )|2 =

=
∞∑
k=1

∣∣∣∣∣
(
i

〈Ψ1
f (x), ϕk(x)〉

〈(µ(x)ϕ1(x))xx, ϕk(x)〉
λk +

〈Ψ2
f (x), ϕk(x)〉

〈(µ(x)ϕ1(x))xx, ϕk(x)〉

)
e−iλkT

∣∣∣∣∣
2

≤ 2
∞∑
k=1

∣∣∣∣∣ 〈Ψ1
f (x), ϕk(x)〉

〈(µ(x)ϕ1(x))xx, ϕk(x)〉
k2π2

∣∣∣∣∣
2

+

∣∣∣∣∣ 〈Ψ2
f (x), ϕk(x)〉

〈(µ(x)ϕ1(x))xx, ϕk(x)〉

∣∣∣∣∣
2

≤ 2

∞∑
k=1

∣∣∣∣∣ |〈Ψ
1
f (x), ϕk(x)〉|

c
k5π2

∣∣∣∣∣
2

+

∣∣∣∣∣ |〈Ψ
2
f (x), ϕk(x)〉|

c
k3

∣∣∣∣∣
2

= 2
∞∑
k=1

|〈k5Ψ1
f (x), ϕk(x)〉|2

c
π4 +

|〈k3Ψ2
f (x), ϕk(x)〉|2

c
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〈(µ(x)ϕ1(x))xx, ϕk(x)〉
λk +

〈Ψ2
f (x), ϕk(x)〉

〈(µ(x)ϕ1(x))xx, ϕk(x)〉

)
e−iλkT

∣∣∣∣∣
2

≤ 2
∞∑
k=1

∣∣∣∣∣ 〈Ψ1
f (x), ϕk(x)〉

〈(µ(x)ϕ1(x))xx, ϕk(x)〉
k2π2

∣∣∣∣∣
2

+

∣∣∣∣∣ 〈Ψ2
f (x), ϕk(x)〉

〈(µ(x)ϕ1(x))xx, ϕk(x)〉

∣∣∣∣∣
2

≤ 2

∞∑
k=1

∣∣∣∣∣ |〈Ψ
1
f (x), ϕk(x)〉|

c
k5π2

∣∣∣∣∣
2

+

∣∣∣∣∣ |〈Ψ
2
f (x), ϕk(x)〉|

c
k3

∣∣∣∣∣
2

= 2
∞∑
k=1

|〈k5Ψ1
f (x), ϕk(x)〉|2

c
π4 +

|〈k3Ψ2
f (x), ϕk(x)〉|2

c
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Beam equation with pinned ends, controllability

Recall: the space
Hs

(0)(I,C)

is equipped with the norm

||φ||Hs
(0)

=

∞∑
k=1

|ks〈φ, ϕk〉|2.

We can conclude the proof defining

Γ(Ψf ) =: Θ−1
T [PTΨf ].

Therefore the solution of the control system with p = Γ(Ψf )
satisfies

ψ(T ) = PT (ψ(T )) +
√

1− ||PTψ(T )||2
L2×L2ψ̃(T ) =

= PT (Ψf ) +
√

1− ||PTΨf ||2L2×L2ψ̃(T ) = Ψf
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Beam equation with sliding ends, controllability

Let us consider the system

{
utt + uxxxx + p(t)µ(x)uxx = 0, (t, x) ∈ R+ × (0, 1),
ux(t, 0) = ux(t, 1) = uxxx(t, 0) = uxxx(t, 1) = 0.

(7)

We introduce the operator A defined by

D(A) := H4 ∩H2
0 ((0, 1),R), Av :=

d4v

dx4
.

whose eigenvalues and eigenvectors are

µk = (kπ)4, ϕk =
√

2 cos(kπx), ∀k ∈ N∗.

Again the system can be transformed into{
dψ
dt = −Aψ − p(t)µ(x)Bψ + F (t),
ψ(0) = ψ0
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Beam equation with sliding ends, controllability

Theorem

Let T > 0 and µ ∈ H3((0, 1),R) such that

∃c > 0 tale che |〈µ(ϕ1)xx, ϕk〉| ≥
c

k2
, ∀k ∈ N∗.

There exists Γ > 0 and a C1 map

Γ : VT → L2((0, T ),R),

VT := {Ψf ∈ S2∩H4
(0)×H

2
(0)((0, 1),C); ||Ψf−ψ̂1(T )||H4

(0)
×H2

(0)
< δ}

such that, Γ(ψ̂1(T )) = 0 and for every Ψf ∈ VT the solution of
(7), with ψ = (u, ut), ψ0 = (u0, u1), initial condition

ψ0 = ϕ̂1

and control p = Γ(Ψf ), satisfies ψ(T ) = Ψf .
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Beam equation with sliding ends, controllability

If we compute explicitly

〈µ(x)(ϕ1)xx, ϕk〉 = µ′(1)

[
(−1)k2(k2 + 1)

(k2 − 1)2

]
+ µ′(0)

[
2(k2 + 1)

(k2 − 1)2

]
+

−
∫ 1

0
µ′′′(x)

(
sin((k + 1)πx)

(k + 1)3π
+

sin((k − 1)πx)

(k − 1)3π

)
dx

we have

∞∑
k=1

|dk(Ψf )|2 =
∞∑
k=1

∣∣∣∣∣
(
i

〈Ψ1
f (x), ϕk(x)〉

〈(µ(x)ϕ1(x))xx, ϕk(x)〉
λk +

〈Ψ2
f (x), ϕk(x)〉

〈(µ(x)ϕ1(x))xx, ϕk(x)〉

)
e−iλkT

∣∣∣∣∣
2

≤ 2
∞∑
k=1

∣∣∣∣∣ |〈Ψ1
f (x), ϕk(x)〉|

|〈(µ(x)ϕ1(x))xx, ϕk(x)〉|
k2π2

∣∣∣∣∣
2

+

∣∣∣∣∣ |〈Ψ2
f (x), ϕk(x)〉|

|〈(µ(x)ϕ1(x))xx, ϕk(x)〉|

∣∣∣∣∣
2

≤ 2

∞∑
k=1

∣∣∣∣∣ 〈Ψ
1
f (x), ϕk(x)〉

c
k4π2

∣∣∣∣∣
2

+

∣∣∣∣∣ |〈Ψ
2
f (x), ϕk(x)〉|

c
k2

∣∣∣∣∣
2

= 2
∞∑
k=1

|〈k4Ψ1
f (x), ϕk(x)〉|2

c
π4 +

|〈k2Ψ2
f (x), ϕk(x)〉|2

c

Thanks for your attention!
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k=1

∣∣∣∣∣ 〈Ψ
1
f (x), ϕk(x)〉

c
k4π2

∣∣∣∣∣
2

+

∣∣∣∣∣ |〈Ψ
2
f (x), ϕk(x)〉|

c
k2

∣∣∣∣∣
2
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k=1
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Thanks for your attention!
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